Math 281C Homework 7 Solutions

1. Define

$$
r_{S}(\lambda, \mu)=\mathbb{E}\left[\operatorname{soft}_{\lambda}(y)-\mu\right]^{2}
$$

where $y \sim \mathcal{N}(\mu, 1)$. Show that
(a) $\mu \rightarrow r_{S}(\lambda, \mu)$ is increasing on $[0, \infty)$;

Solution: It can be calculated that

$$
\begin{equation*}
r_{S}(\lambda, \mu)=\underbrace{\int_{-\infty}^{-\lambda-\mu}(x+\lambda)^{2} \phi(x) \mathrm{d} x}_{\mathrm{I}}+\underbrace{\mu^{2} \int_{-\lambda-\mu}^{\lambda-\mu} \phi(x) \mathrm{d} x}_{\mathrm{II}}+\underbrace{\int_{\lambda-\mu}^{\infty}(x-\lambda)^{2} \phi(x) \mathrm{d} x}_{\mathrm{III}}, \tag{1}
\end{equation*}
$$

and

$$
\frac{\partial}{\partial \mu} r_{S}(\lambda, \mu)=2 \mu(\Phi(\lambda-\mu)-\Phi(-\lambda-\mu))>0
$$

for $\mu>0$.
(b) For all $\lambda>0$, we have

$$
r_{S}(\lambda, 0) \leq \sqrt{\frac{2}{\pi}} \frac{1}{\lambda} e^{-\lambda^{2} / 2}
$$

Solution: When $\mu=0$, by the symmetric property,

$$
\begin{aligned}
r_{S}(\lambda, 0) & =2 \int_{\lambda}^{\infty}(x-\lambda)^{2} \phi(x) \mathrm{d} x \\
& =2\left[\int_{\lambda}^{\infty} x^{2} \phi(x) \mathrm{d} x-2 \lambda \int_{\lambda}^{\infty} x \phi(x) \mathrm{d} x+\lambda^{2} \int_{\lambda}^{\infty} \phi(x) \mathrm{d} x\right] \\
& =2\left(1+\lambda^{2}\right)(1-\Phi(\lambda))-2 \lambda \phi(\lambda)
\end{aligned}
$$

Using the Gaussian tail bound from Homework 1

$$
1-\Phi(\lambda) \leq \frac{\phi(\lambda)}{\lambda}
$$

gives us the desired result.
(c) When μ approaches $\pm \infty$,

$$
\lim _{\mu \rightarrow \infty} r_{S}(\lambda, \mu)=1+\lambda^{2}
$$

and

$$
\sup _{\mu \in \mathbb{R}} r_{S}(\lambda, \mu)=1+\lambda^{2}
$$

Solution: We only need to show the case for $\mu \rightarrow \infty$ by the symmetry. In the equation (1), I $\rightarrow 0$ since $(x+\lambda)^{2} \phi(x)$ is integrable, $\mathrm{II}=\mu^{2}(\Phi(\lambda-\mu)-\Phi(-\lambda-\mu)) \rightarrow 0$, and III $\rightarrow \mathbb{E}(x-\lambda)^{2}=1+\lambda^{2}$ where $x \sim \mathcal{N}(0,1)$. The second result is trivial.
2. Consider the model

$$
Y=\theta+\sigma \varepsilon
$$

where $\varepsilon \in \mathbb{R}^{n}$ consists of independent mean-zero 1 -sub-Gaussian components, and assume θ is k-sparse:

$$
\|\theta\|_{0}=\operatorname{card}\left\{j \in[n]: \theta_{j} \neq 0\right\} \leq k
$$

In this question, we investigate the soft-thresholding estimator

$$
\widehat{\theta}:=\underset{\theta}{\operatorname{argmin}} \frac{1}{2}\|\theta-Y\|_{2}^{2}+\lambda\|\theta\|_{1}
$$

(a) Show that if $\lambda \geq \sigma\|\varepsilon\|_{\infty}$, then

$$
\|\widehat{\theta}-\theta\|_{2}^{2} \leq 4 k \lambda^{2}
$$

Solution: $\widehat{\theta}=\operatorname{soft}_{\lambda}(Y)$, and when $\lambda \geq \sigma\|\varepsilon\|_{\infty}$,

$$
\begin{aligned}
\|\widehat{\theta}-\theta\|_{2}^{2} & =\sum_{i: \theta_{i} \neq 0}\left(\widehat{\theta}_{i}-\theta_{i}\right)^{2}+\sum_{i: \theta_{i}=0}\left(\widehat{\theta}_{i}-\theta_{i}\right)^{2} \\
& =\sum_{i: \theta_{i} \neq 0}\left(\operatorname{soft}_{\lambda}\left(Y_{i}\right)-\theta_{i}\right)^{2}+0 \\
& =\sum_{i: \theta_{i} \neq 0}\left(\operatorname{soft}_{\lambda}\left(Y_{i}\right)-\operatorname{soft}_{\lambda}\left(\theta_{i}\right)+\operatorname{soft}_{\lambda}\left(\theta_{i}\right)-\theta_{i}\right)^{2} \\
& \leq 2 \sum_{i: \theta_{i} \neq 0}\left(\operatorname{soft}_{\lambda}\left(\theta_{i}+\sigma \varepsilon_{i}\right)-\operatorname{soft}_{\lambda}\left(\theta_{i}\right)\right)^{2}+2 \sum_{i: \theta_{i} \neq 0}\left(\operatorname{soft}_{\lambda}\left(\theta_{i}\right)-\theta_{i}\right)^{2} \\
& \leq 2 k \lambda^{2}+2 k \lambda^{2}=4 k \lambda^{2} .
\end{aligned}
$$

In the above derivation, we use the facts that $\operatorname{soft}_{\lambda}(\cdot)$ is 1-Lipschitz continuous, $\left|\operatorname{soft}_{\lambda}(y)-y\right| \leq \lambda$, $\lambda \geq \sigma\|\varepsilon\|_{\infty}$, and $\|\theta\|_{0} \leq k$.
(b) Show that if

$$
\lambda=2 \sqrt{\sigma^{2} \log (2 n)}
$$

then with probability at least $1-1 /(2 n)$,

$$
\|\widehat{\theta}-\theta\|_{2}^{2} \leq 16 k \sigma^{2} \log (2 n)
$$

Solution: By the sub-Gaussianities of components of ε, we have the tail bound

$$
\mathbb{P}\left(\sigma\|\varepsilon\|_{\infty} \geq \lambda\right) \leq n \mathbb{P}\left(\left|\sigma \epsilon_{i}\right| \geq \lambda\right) \leq 2 n \exp \left(-\frac{\lambda^{2}}{2 \sigma^{2}}\right)=\frac{1}{2 n},
$$

which completes the proof.

