Math 281C Homework 7 Solutions

1. Define

$$r_S(\lambda,\mu) = \mathbb{E}[\operatorname{soft}_{\lambda}(y) - \mu]^2,$$

where $y \sim \mathcal{N}(\mu, 1)$. Show that

(a) $\mu \to r_S(\lambda, \mu)$ is increasing on $[0, \infty)$;

Solution: It can be calculated that

$$r_{S}(\lambda,\mu) = \underbrace{\int_{-\infty}^{-\lambda-\mu} (x+\lambda)^{2} \phi(x) \mathrm{d}x}_{\mathrm{I}} + \underbrace{\mu^{2} \int_{-\lambda-\mu}^{\lambda-\mu} \phi(x) \mathrm{d}x}_{\mathrm{II}} + \underbrace{\int_{\lambda-\mu}^{\infty} (x-\lambda)^{2} \phi(x) \mathrm{d}x}_{\mathrm{III}}, \tag{1}$$

and

$$\frac{\partial}{\partial \mu} r_S(\lambda, \mu) = 2\mu (\Phi(\lambda - \mu) - \Phi(-\lambda - \mu)) > 0$$

for $\mu > 0$.

(b) For all $\lambda > 0$, we have

$$r_S(\lambda, 0) \leq \sqrt{\frac{2}{\pi}} \frac{1}{\lambda} e^{-\lambda^2/2};$$

Solution: When $\mu = 0$, by the symmetric property,

$$r_{S}(\lambda,0) = 2 \int_{\lambda}^{\infty} (x-\lambda)^{2} \phi(x) dx$$
$$= 2 \left[\int_{\lambda}^{\infty} x^{2} \phi(x) dx - 2\lambda \int_{\lambda}^{\infty} x \phi(x) dx + \lambda^{2} \int_{\lambda}^{\infty} \phi(x) dx \right]$$
$$= 2(1+\lambda^{2})(1-\Phi(\lambda)) - 2\lambda \phi(\lambda).$$

Using the Gaussian tail bound from Homework 1

$$1 - \Phi(\lambda) \le \frac{\phi(\lambda)}{\lambda}$$

gives us the desired result.

(c) When μ approaches $\pm \infty$,

$$\lim_{\mu \to \infty} r_S(\lambda, \mu) = 1 + \lambda^2,$$

and

$$\sup_{\mu \in \mathbb{R}} r_S(\lambda, \mu) = 1 + \lambda^2.$$

Solution: We only need to show the case for $\mu \to \infty$ by the symmetry. In the equation (1), $I \to 0$ since $(x + \lambda)^2 \phi(x)$ is integrable, $II = \mu^2 (\Phi(\lambda - \mu) - \Phi(-\lambda - \mu)) \to 0$, and $III \to \mathbb{E}(x - \lambda)^2 = 1 + \lambda^2$ where $x \sim \mathcal{N}(0, 1)$. The second result is trivial.

2. Consider the model

$$Y = \theta + \sigma \varepsilon_{s}$$

where $\varepsilon \in \mathbb{R}^n$ consists of independent mean-zero 1-sub-Gaussian components, and assume θ is k-sparse:

$$\|\theta\|_0 = \operatorname{card}\{j \in [n] : \theta_j \neq 0\} \le k.$$

In this question, we investigate the soft-thresholding estimator

$$\widehat{\theta} \coloneqq \operatorname*{argmin}_{\theta} \frac{1}{2} ||\theta - Y||_2^2 + \lambda ||\theta||_1.$$

(a) Show that if $\lambda \geq \sigma ||\varepsilon||_{\infty}$, then

$$\|\widehat{\theta} - \theta\|_2^2 \le 4k\lambda^2;$$

Solution: $\widehat{\theta} = \operatorname{soft}_{\lambda}(Y)$, and when $\lambda \ge \sigma \|\varepsilon\|_{\infty}$,

$$\begin{split} |\widehat{\theta} - \theta||_{2}^{2} &= \sum_{i:\theta_{i}\neq 0} (\widehat{\theta}_{i} - \theta_{i})^{2} + \sum_{i:\theta_{i}=0} (\widehat{\theta}_{i} - \theta_{i})^{2} \\ &= \sum_{i:\theta_{i}\neq 0} (\operatorname{soft}_{\lambda}(Y_{i}) - \theta_{i})^{2} + 0 \\ &= \sum_{i:\theta_{i}\neq 0} (\operatorname{soft}_{\lambda}(Y_{i}) - \operatorname{soft}_{\lambda}(\theta_{i}) + \operatorname{soft}_{\lambda}(\theta_{i}) - \theta_{i})^{2} \\ &\leq 2 \sum_{i:\theta_{i}\neq 0} (\operatorname{soft}_{\lambda}(\theta_{i} + \sigma\varepsilon_{i}) - \operatorname{soft}_{\lambda}(\theta_{i}))^{2} + 2 \sum_{i:\theta_{i}\neq 0} (\operatorname{soft}_{\lambda}(\theta_{i}) - \theta_{i})^{2} \\ &\leq 2k\lambda^{2} + 2k\lambda^{2} = 4k\lambda^{2}. \end{split}$$

In the above derivation, we use the facts that $\operatorname{soft}_{\lambda}(\cdot)$ is 1-Lipschitz continuous, $|\operatorname{soft}_{\lambda}(y) - y| \leq \lambda$, $\lambda \geq \sigma ||\varepsilon||_{\infty}$, and $||\theta||_0 \leq k$.

(b) Show that if

$$\lambda = 2\sqrt{\sigma^2 \log(2n)},$$

then with probability at least 1 - 1/(2n),

$$\|\widehat{\theta} - \theta\|_2^2 \le 16k\sigma^2 \log(2n).$$

Solution: By the sub-Gaussianities of components of ε , we have the tail bound

$$\mathbb{P}(\sigma ||\varepsilon||_{\infty} \ge \lambda) \le n \mathbb{P}(|\sigma \epsilon_i| \ge \lambda) \le 2n \exp\left(-\frac{\lambda^2}{2\sigma^2}\right) = \frac{1}{2n},$$

which completes the proof.