Math 281C Homework 7

Due: June 8, 5 pm

1. Define

$$
r_{S}(\lambda, \mu)=\mathbb{E}\left[\operatorname{soft}_{\lambda}(y)-\mu\right]^{2}
$$

where $y \sim \mathcal{N}(\mu, 1)$. Show that
(a) $\mu \rightarrow r_{S}(\lambda, \mu)$ is increasing on $[0, \infty)$;
(b) For all $\lambda>0$, we have

$$
r_{S}(\lambda, 0) \leq \sqrt{\frac{2}{\pi}} \frac{1}{\lambda} e^{-\lambda^{2} / 2}
$$

(c) When μ approaches $\pm \infty$,

$$
\lim _{\mu \rightarrow \infty} r_{S}(\lambda, \mu)=1+\lambda^{2}
$$

and

$$
\sup _{\mu \in \mathbb{R}} r_{S}(\lambda, \mu)=1+\lambda^{2}
$$

2. Consider the model

$$
Y=\theta+\sigma \varepsilon
$$

where $\varepsilon \in \mathbb{R}^{n}$ consists of independent mean-zero 1 -sub-Gaussian components, and assume θ is k-sparse:

$$
\|\theta\|_{0}=\operatorname{card}\left\{j \in[n]: \theta_{j} \neq 0\right\} \leq k .
$$

In this question, we investigate the soft-thresholding estimator

$$
\widehat{\theta}:=\underset{\theta}{\operatorname{argmin}} \frac{1}{2}\|\theta-Y\|_{2}^{2}+\lambda\|\theta\|_{1}
$$

(a) Show that if $\lambda \geq \sigma\|\varepsilon\|_{\infty}$, then

$$
\|\widehat{\theta}-\theta\|_{2}^{2} \leq 4 k \lambda^{2}
$$

(b) Show that if

$$
\lambda=2 \sqrt{\sigma^{2} \log (2 n)}
$$

then with probability at least $1-1 /(2 n)$,

$$
\|\widehat{\theta}-\theta\|_{2}^{2} \leq 16 k \sigma^{2} \log (2 n)
$$

