Math 281C Homework 6 Solutions

1. Let $R_{n}: \Theta \rightarrow \mathbb{R}$ be a sequence of random functions and $R(\theta)=\mathbb{E} R_{n}(\theta)$. Let $d: \Theta \times \Theta$ be some distance on Θ. Denote $\theta_{0}=\operatorname{argmin}_{\theta} R(\theta)$, and for $0<\delta<\infty$, define $\Theta_{\delta}=\left\{\theta: d\left(\theta, \theta_{0}\right) \leq \delta\right\}$. For $\alpha \in(0,2), \sigma<\infty$, and $D>0$, assume we have the continuity bound

$$
\mathbb{E}\left[\sup _{\theta \in \Theta_{\delta}}\left|\left(R_{n}(\theta)-R(\theta)\right)-\left(R_{n}\left(\theta_{0}\right)-R\left(\theta_{0}\right)\right)\right|\right] \leq \frac{\sigma \delta^{\alpha}}{\sqrt{n}}
$$

for all $\delta \leq D$. Assume in addition that for some parameters $\beta \in[1, \infty]$ and $v>0$, we have

$$
R(\theta) \geq R\left(\theta_{0}\right)+v d\left(\theta, \theta_{0}\right)^{\beta}
$$

for $d\left(\theta, \theta_{0}\right) \leq D$. Let $\widehat{\theta}_{n}=\operatorname{argmin}_{\theta} R_{n}(\theta)$ and assume that $\widehat{\theta}_{n}$ is consistent for θ_{0}. Give the largest rate r_{n} you can for which

$$
r_{n} d\left(\widehat{\theta}_{n}, \theta_{0}\right)=O_{P}(1) \quad \text { as } \quad n \rightarrow \infty .
$$

Solution: If $\beta \leq \alpha$, we can't find the largest convergence rate, and if $\beta>\alpha, r_{n}=n^{1 /(2(\beta-\alpha))}$. The proof can be done following the peeling argument in Lecture 11.
2. Suppose that we have $X_{i} \in \mathbb{R}^{d}$ and observe

$$
Y_{i}=\left\langle X_{i}, \theta_{0}\right\rangle+\epsilon_{i}, \quad \text { where } \quad \epsilon_{i}=B_{i} Z_{i}
$$

for $i=1, \ldots, n$. Here $B_{i} \in\{0,1\}$ is independent of Z_{i} and X_{i}, and $\mathbb{P}\left(B_{i}=0\right)=p>1 / 2$. The variable Z_{i} has arbitrary distribution, independent of X_{i} and $\mathbb{E}\left[\left|Z_{i}\right|\right]<\infty$. We decide to estimate θ_{0} using the absolute loss $\ell(\theta ; x, y)=|y-\langle x, \theta\rangle|$. In other words,

$$
\widehat{\theta}_{n}=\underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\theta ; X_{i}, Y_{i}\right) .
$$

Let $R_{n}(\theta)$ and $R(\theta)$ denote the empirical risk and population risk respectively.
(a) Show that for any $\theta \in \mathbb{R}^{d}$, we have

$$
R(\theta)-R\left(\theta_{0}\right) \geq(2 p-1) \mathbb{E}\left[\left|\left\langle X, \theta-\theta_{0}\right\rangle\right|\right]
$$

Solution: By the tower property, we have

$$
\begin{aligned}
R(\theta) & =p \mathbb{E}\left|\left\langle X, \theta_{0}-\theta\right\rangle\right|+(1-p) \mathbb{E}\left|\left\langle X, \theta_{0}-\theta\right\rangle+Z\right|, \\
R\left(\theta_{0}\right) & =(1-p) \mathbb{E}|Z|
\end{aligned}
$$

Thus, it's equivalent to show

$$
\mathbb{E}\left|\left\langle X, \theta_{0}-\theta\right\rangle+Z\right|+\mathbb{E}\left|\left\langle X, \theta_{0}-\theta\right\rangle\right| \geq \mathbb{E}|Z|,
$$

which is a consequence of triangle inequality.
Now for $v \in \mathbb{S}^{d-1}$, denote $\sigma_{v}^{2}=\mathbb{E}\left[(\langle v, X\rangle)^{2}\right]$, and assume there exist two constants c_{1} and c_{2} such that

$$
\mathbb{P}\left(|\langle v, X\rangle| \geq c_{1} \sigma_{v}\right) \geq c_{2}>0 .
$$

Moreover, assume there is a constant $D<\infty$ such that $\|X\|_{2} \leq D$ with probability 1 , and $\mathbb{E}\left[X X^{\top}\right]=$ $\Sigma>0$.
(b) Show that for any $v \in \mathbb{R}^{d}$,

$$
\mathbb{E}[|\langle v, X\rangle|] \geq \rho\|v\|_{2}
$$

where ρ is a constant that depends on the distribution of X but is independent of v.
Solution: For any $v \in \mathbb{R}^{d}$, denote $w=v /\|v\|_{2}$,

$$
\begin{aligned}
\mathbb{E}[|\langle w, X\rangle|] & =\int_{0}^{\infty} \mathbb{P}(|\langle w, X\rangle| \geq t) \mathrm{dt} \\
& \geq \int_{0}^{\sigma_{w} c_{1}} \mathbb{P}(|\langle w, X\rangle| \geq t) \mathrm{dt} \\
& \geq \int_{0}^{\sigma_{w} c_{1}} \mathbb{P}\left(|\langle w, X\rangle| \geq \sigma_{w} c_{1}\right) \mathrm{dt} \\
& \geq c_{1} c_{2} \sigma_{w} \geq c_{1} c_{2} \sqrt{\lambda}
\end{aligned}
$$

where $\lambda>0$ is the minimal eigenvalue of Σ.
(c) Show that there exists a constant $\sigma<\infty$ which may depend on (D, d) such that for any $\delta>0$,

$$
\mathbb{E}\left[\sup _{\theta:\left\|\theta-\theta_{0}\right\|_{2} \leq \delta}\left|\left(R_{n}(\theta)-R(\theta)\right)-\left(R_{n}\left(\theta_{0}\right)-R\left(\theta_{0}\right)\right)\right|\right] \leq \frac{\sigma \delta}{\sqrt{n}}
$$

Solution: Denote

$$
\begin{aligned}
\Delta(\theta) & =(\ell(\theta ; x, y)-R(\theta))-\left(\ell\left(\theta_{0} ; x, y\right)-R\left(\theta_{0}\right)\right) \\
\Delta_{n}(\theta) & =\left(R_{n}(\theta)-R(\theta)\right)-\left(R_{n}\left(\theta_{0}\right)-R\left(\theta_{0}\right)\right)
\end{aligned}
$$

First, it can be found that for any θ and θ^{\prime},

$$
\left|\ell(\theta ; x, y)-\ell\left(\theta^{\prime} ; x, y\right)\right| \leq\|x\|_{2}\left\|\theta-\theta^{\prime}\right\|_{2}
$$

so $\ell(\cdot)$ is $\|x\|_{2}$-Lipschitz continuous in θ. For any $\lambda \in \mathbb{R}$, we have

$$
\mathbb{E}\left[\exp \left(\lambda\left(\Delta(\theta)-\Delta\left(\theta^{\prime}\right)\right)\right] \leq \exp \left(\frac{\lambda^{2} D^{2}\left\|\theta-\theta^{\prime}\right\|_{2}^{2}}{2}\right)\right.
$$

where the sub-Gaussian-type bound comes from the boundedness of $\|x\|_{2}$, and it further implies

$$
\mathbb{E} \exp \left(\lambda \frac{\sqrt{n}}{D}\left(\Delta_{n}(\theta)-\Delta_{n}\left(\theta^{\prime}\right)\right)\right) \leq \exp \left(\frac{\lambda^{2}}{2}\left\|\theta-\theta^{\prime}\right\|_{2}^{2}\right)
$$

which means $\sqrt{n} \Delta_{n}(\theta) / D$ is a sub-Gaussian process. Denote $\Theta_{\delta}=\left\{\theta:\left\|\theta-\theta_{0}\right\|_{2} \leq \delta\right\}$ as the local ball, and let $N\left(\Theta_{\delta},\|\cdot\|_{2}, \epsilon\right)$ be the minimal covering number of Θ_{δ}, we have

$$
\log N\left(\Theta_{\delta},\|\cdot\|_{2}, \epsilon\right) \leq d \log (1+2 \delta / \epsilon)
$$

Combining these results with Dudley's entropy bound (materials before Section 1 of Lecture 8), there is a constant c such that

$$
\begin{aligned}
\mathbb{E}\left[\sup _{\theta \in \Theta_{\delta}}\left|\Delta_{n}(\theta)\right|\right] & \leq c \frac{D}{\sqrt{n}} \int_{0}^{\delta} \sqrt{\log N\left(\Theta_{\delta},\|\cdot\|_{2}, \epsilon\right)} \mathrm{d} \epsilon \\
& \leq c \frac{D \sqrt{d}}{\sqrt{n}} \int_{0}^{\delta} \sqrt{\log (1+2 \delta / \epsilon)} \mathrm{d} \epsilon \leq \mathrm{c} \frac{\mathrm{D} \sqrt{\mathrm{~d}}}{\sqrt{\mathrm{n}}} \delta .
\end{aligned}
$$

(d) At what rate does $\widehat{\theta}_{n}$ converge to θ_{0} ? You may assume that $\widehat{\theta}_{n}$ is consistent for θ_{0}.

Solution: Combining parts (a)-(c), conditions in Question 1 are satisfied with $\alpha=\beta=1$. For any $0<\epsilon<1$, since

$$
\frac{\sigma \delta}{\sqrt{n}} \leq \frac{\sigma \delta^{\epsilon}}{\sqrt{n}}
$$

we can prove convergence with rate $r_{n}=n^{1 /(2(1-\epsilon))}$ using peeling argument.

