
Math 281C Homework 6 Solutions

1. Let Rn ∶ Θ→ R be a sequence of random functions and R(θ) = ERn(θ). Let d ∶ Θ×Θ be some distance
on Θ. Denote θ0 = argminθR(θ), and for 0 < δ <∞, define Θδ = {θ ∶ d(θ, θ0) ≤ δ}. For α ∈ (0,2), σ <∞,
and D > 0, assume we have the continuity bound

E[ sup
θ∈Θδ

∣(Rn(θ) −R(θ)) − (Rn(θ0) −R(θ0))∣] ≤
σδα√
n

for all δ ≤D. Assume in addition that for some parameters β ∈ [1,∞] and v > 0, we have

R(θ) ≥ R(θ0) + vd(θ, θ0)β

for d(θ, θ0) ≤D. Let θ̂n = argminθRn(θ) and assume that θ̂n is consistent for θ0. Give the largest rate
rn you can for which

rnd(θ̂n, θ0) = OP (1) as n→∞.
Solution: If β ≤ α, we can’t find the largest convergence rate, and if β > α, rn = n1/(2(β−α)). The proof
can be done following the peeling argument in Lecture 11.

2. Suppose that we have Xi ∈ Rd and observe

Yi = ⟨Xi, θ0⟩ + εi, where εi = BiZi

for i = 1, . . . , n. Here Bi ∈ {0,1} is independent of Zi and Xi, and P(Bi = 0) = p > 1/2. The variable
Zi has arbitrary distribution, independent of Xi and E[∣Zi∣] <∞. We decide to estimate θ0 using the
absolute loss `(θ;x, y) = ∣y − ⟨x, θ⟩∣. In other words,

θ̂n = argmin
θ∈Rd

1

n

n

∑
i=1

`(θ;Xi, Yi).

Let Rn(θ) and R(θ) denote the empirical risk and population risk respectively.

(a) Show that for any θ ∈ Rd, we have

R(θ) −R(θ0) ≥ (2p − 1)E[∣⟨X,θ − θ0⟩∣].

Solution: By the tower property, we have

R(θ) = pE∣⟨X,θ0 − θ⟩∣ + (1 − p)E∣⟨X,θ0 − θ⟩ +Z ∣,
R(θ0) = (1 − p)E∣Z ∣.

Thus, it’s equivalent to show

E∣⟨X,θ0 − θ⟩ +Z ∣ +E∣⟨X,θ0 − θ⟩∣ ≥ E∣Z ∣,

which is a consequence of triangle inequality.

Now for v ∈ Sd−1, denote σ2
v = E[(⟨v,X⟩)2], and assume there exist two constants c1 and c2 such that

P(∣⟨v,X⟩∣ ≥ c1σv) ≥ c2 > 0.

Moreover, assume there is a constant D < ∞ such that ∣∣X ∣∣2 ≤ D with probability 1, and E[XX⊺] =
Σ ≻ 0.



(b) Show that for any v ∈ Rd,
E[∣⟨v,X⟩∣] ≥ ρ∣∣v∣∣2,

where ρ is a constant that depends on the distribution of X but is independent of v.

Solution: For any v ∈ Rd, denote w = v/∣∣v∣∣2,

E[∣⟨w,X⟩∣] = ∫
∞

0
P(∣⟨w,X⟩∣ ≥ t)dt

≥ ∫
σwc1

0
P(∣⟨w,X⟩∣ ≥ t)dt

≥ ∫
σwc1

0
P(∣⟨w,X⟩∣ ≥ σwc1)dt

≥ c1c2σw ≥ c1c2
√
λ,

where λ > 0 is the minimal eigenvalue of Σ.

(c) Show that there exists a constant σ <∞ which may depend on (D,d) such that for any δ > 0,

E[ sup
θ∶∣∣θ−θ0∣∣2≤δ

∣(Rn(θ) −R(θ)) − (Rn(θ0) −R(θ0))∣] ≤
σδ√
n
.

Solution: Denote

∆(θ) = (`(θ;x, y) −R(θ)) − (`(θ0;x, y) −R(θ0));
∆n(θ) = (Rn(θ) −R(θ)) − (Rn(θ0) −R(θ0)).

First, it can be found that for any θ and θ′,

∣`(θ;x, y) − `(θ′;x, y)∣ ≤ ∣∣x∣∣2∣∣θ − θ′∣∣2,

so `(⋅) is ∣∣x∣∣2-Lipschitz continuous in θ. For any λ ∈ R, we have

E[exp(λ(∆(θ) −∆(θ′))] ≤ exp
⎛
⎝
λ2D2∣∣θ − θ′∣∣22

2

⎞
⎠
,

where the sub-Gaussian-type bound comes from the boundedness of ∣∣x∣∣2, and it further implies

E exp
⎛
⎝
λ

√
n

D
(∆n(θ) −∆n(θ′))) ≤ exp(λ

2

2
∣∣θ − θ′∣∣22),

which means
√
n∆n(θ)/D is a sub-Gaussian process. Denote Θδ = {θ ∶ ∣∣θ − θ0∣∣2 ≤ δ} as the local

ball, and let N(Θδ, ∣∣ ⋅ ∣∣2, ε) be the minimal covering number of Θδ, we have

logN(Θδ, ∣∣ ⋅ ∣∣2, ε) ≤ d log(1 + 2δ/ε).

Combining these results with Dudley’s entropy bound (materials before Section 1 of Lecture 8),
there is a constant c such that

E[ sup
θ∈Θδ

∣∆n(θ)∣] ≤ c
D√
n
∫

δ

0

√
logN(Θδ, ∣∣ ⋅ ∣∣2, ε)dε

≤ cD
√
d√
n
∫

δ

0

√
log(1 + 2δ/ε)dε ≤ c

D
√

d√
n
δ.

(d) At what rate does θ̂n converge to θ0? You may assume that θ̂n is consistent for θ0.

Solution: Combining parts (a)–(c), conditions in Question 1 are satisfied with α = β = 1. For
any 0 < ε < 1, since

σδ√
n
≤ σδ

ε

√
n
,

we can prove convergence with rate rn = n1/(2(1−ε)) using peeling argument.


