Math 281C Homework 5 Solutions

1. Consider the pair $\mathbf{z} = (\mathbf{x}, y) \in \mathbb{R}^d \times \{-1, 1\}$. Recall from Math 281A that the logistic loss is

$$m_{\boldsymbol{\theta}}(\boldsymbol{z}) = \log(1 + \exp(-y \cdot \langle \boldsymbol{x}, \boldsymbol{\theta} \rangle)),$$

and the population expectation is $M(\boldsymbol{\theta}) = \mathbb{E}[m_{\boldsymbol{\theta}}(\boldsymbol{X}, \boldsymbol{Y})]$, for $(\boldsymbol{X}, \boldsymbol{Y}) \sim P$.

(a) Show that if $\Theta \in \mathbb{R}^d$ is a compact set and $\mathbb{E}[||\mathbf{X}||] < \infty$ for some norm $|| \cdot ||$ on \mathbb{R}^d , then

$$\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} |P_n m_{\boldsymbol{\theta}}(\boldsymbol{X}, \boldsymbol{Y}) - M(\boldsymbol{\theta})| \stackrel{p}{\to} 0.$$

Solution: First we show that $m_{\theta}(z)$ is $||x||_*$ -Lipschitz in θ . For any θ and θ' in Θ ,

$$|m_{\boldsymbol{\theta}}(\boldsymbol{x}, y) - m_{\boldsymbol{\theta}'}(\boldsymbol{x}, y)| \leq |\langle \boldsymbol{\theta} - \boldsymbol{\theta}', \boldsymbol{x} \rangle| \leq ||\boldsymbol{\theta} - \boldsymbol{\theta}'|| \cdot ||\boldsymbol{x}||_{*}$$

Then consider a ϵ -net $\{\boldsymbol{\theta}^i\}_{i=1}^N$ for $\boldsymbol{\Theta}$, for each $\boldsymbol{\theta}^i$ in the ϵ -net, construct function pairs $\{\ell_i, u_i\}$ with

$$\ell_i = m_{\theta^i}(\boldsymbol{x}, y) - \epsilon ||\boldsymbol{x}||_*$$
 and $u_i = m_{\theta^i}(\boldsymbol{x}, y) + \epsilon ||\boldsymbol{x}||_*$

such that for any $m_{\theta}(x, y)$, we can find a pair $\{\ell_i, u_i\}$ satisfying $\ell_i(x) \le m_{\theta}(x, y) \le u_i(x)$ for all $x \in \mathbb{R}^d$, and

$$\mathbb{E}[u_i(\boldsymbol{x}) - \ell_i(\boldsymbol{x})] \leq 2\epsilon \mathbb{E} \|\boldsymbol{x}\|_*.$$

This means $\{\ell_i, u_i\}_{i=1}^N$ form a $2\epsilon \mathbb{E}||\boldsymbol{x}||_*$ -bracketing of $\{m_{\boldsymbol{\theta}}(\cdot)|\boldsymbol{\theta} \in \boldsymbol{\Theta}\}$ with respect to ℓ_1 -norm, and by construction, we have

$$N_{[]}(\{m_{\boldsymbol{\theta}}\}, \ell_1, 2\epsilon \mathbb{E} ||\boldsymbol{x}||_*) \leq N(\boldsymbol{\Theta}, ||\cdot||, \epsilon) < \infty,$$

which implies the uniform consistency.

(b) Assume that Θ is contained in the norm ball $\{\boldsymbol{\theta} \in \mathbb{R}^d : ||\boldsymbol{\theta}|| \leq r\}$ and that \boldsymbol{X} is supported on the dual norm ball $\{\boldsymbol{x} \in \mathbb{R}^d : ||\boldsymbol{x}||_* \leq M\}$. Show that there is a constant $C < \infty$ such that for all $0 < \delta < 1$,

$$\mathbb{P}\left(\sup_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}|P_n m_{\boldsymbol{\theta}}(\boldsymbol{X}, Y) - M(\boldsymbol{\theta})| \ge \epsilon_n(\delta)\right) \le \delta$$

where

$$\epsilon_n(\delta) = C \sqrt{\frac{r^2 M^2}{n} \left(d \log n + \log \frac{1}{\delta} \right)}.$$

Solution: First we have

$$\log(1 + \exp(-Mr)) \le m_{\theta}(\boldsymbol{x}, y) \le \log(1 + \exp(Mr)),$$

which means $m_{\theta}(x, y) - \log(2) \in [-Mr, Mr]$. Thus, for any fixed $\theta \in \Theta$ and t > 0, applying Hoeffding's inequality gives

$$\mathbb{P}(|P_n m_{\boldsymbol{\theta}}(\boldsymbol{X}, \boldsymbol{Y}) - \boldsymbol{M}(\boldsymbol{\theta})| \ge t) \le 2 \exp\left(-\frac{nt^2}{2M^2r^2}\right).$$
(1)

Then consider a minimal ϵ -net $\{\boldsymbol{\theta}^i\}_{i=1}^N$ for $\boldsymbol{\Theta}$ satisfying $N \leq (1 + 2r/\epsilon)^d$. For any $\boldsymbol{\theta} \in \boldsymbol{\Theta}$, there is $\boldsymbol{\theta}^i$ such that $\|\boldsymbol{\theta} - \boldsymbol{\theta}^i\| \leq \epsilon$, and

$$\begin{split} \sup_{\boldsymbol{\theta}\in\boldsymbol{\Theta}} |P_n m_{\boldsymbol{\theta}} - M(\boldsymbol{\theta})| &\leq \sup_{\boldsymbol{\theta}\in\boldsymbol{\Theta}} |P_n m_{\boldsymbol{\theta}} - P_n m_{\boldsymbol{\theta}^i}| + \max_{i=1,\dots,N} |P_n m_{\boldsymbol{\theta}^i} - P m_{\boldsymbol{\theta}^i}| + \sup_{\boldsymbol{\theta}\in\boldsymbol{\Theta}} |P m_{\boldsymbol{\theta}^i} - P m_{\boldsymbol{\theta}}| \\ &\leq 2M\epsilon + \max_{i=1,\dots,N} |P_n m_{\boldsymbol{\theta}^i} - P m_{\boldsymbol{\theta}^i}|. \end{split}$$

Therefore, combining (1) with union bound, we have

$$\mathbb{P}\left(\sup_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}|P_{n}m_{\boldsymbol{\theta}}-M(\boldsymbol{\theta})|\geq 2M\epsilon+t\right)\leq \mathbb{P}\left(\max_{i=1,\ldots,N}|P_{n}m_{\boldsymbol{\theta}^{i}}-Pm_{\boldsymbol{\theta}^{i}}|\geq t\right)$$
$$\leq \left(1+\frac{2r}{\epsilon}\right)^{d}2\exp\left(-\frac{nt^{2}}{2M^{2}r^{2}}\right).$$

Finally, choosing

$$t = \sqrt{\frac{2M^2r^2(d\log(1+2r/\epsilon) + \log(2/\delta))}{n}}$$

and $\epsilon = r/n$ gives the desired bound.

2. Consider a binary classification problem with data in pair $(\boldsymbol{x}, y) \in \mathbb{R}^d \times \{-1, 1\}$, and let $\phi : \mathbb{R} \to \mathbb{R}_+$ be a 1-Lipschitz non-increasing convex function, for example, $\phi(t) = \log(1 + e^{-t})$ or $\phi(t) = [1 - t]_+$. Define $m_{\boldsymbol{\theta}}(\boldsymbol{x}, y) = \phi(y \cdot \langle \boldsymbol{x}, \boldsymbol{\theta} \rangle)$. Given an i.i.d. sample $\{\boldsymbol{X}_i, Y_i\}_{i=1}^n$ and consider the empirical risk minimization procedure

$$\widehat{\boldsymbol{\theta}}_n = \operatorname*{argmin}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} P_n m_{\boldsymbol{\theta}} = \operatorname*{argmin}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \frac{1}{n} \sum_{i=1}^n m_{\boldsymbol{\theta}}(\boldsymbol{X}_i, Y_i).$$
(2)

Ledoux-Talagrand contraction inequality may be useful. Let $\phi \circ \mathcal{F} = \{h : h(x) = \phi(f(x)), f \in \mathcal{F}\}$ denote the composition of $\phi(\cdot)$ with functions in \mathcal{F} . If $\phi(\cdot)$ is *L*-Lipschitz, then $\mathcal{R}_n(\phi \circ \mathcal{F}) \leq L\mathcal{R}_n(\mathcal{F})$.

(a) In one word, is the procedure (2) likely to give a reasonably good classifier?

Solution: Yes. Intuitively, we will pick $\widehat{\theta}_n$ such that $Y_i \cdot \langle X_i, \widehat{\theta}_n \rangle > 0$ for most cases.

Before we proceed to parts (b) and (c), let us prove some general results. Let $\|\cdot\|$ be an arbitrary norm and define $\mathcal{F} = \{f(x) = \langle x, \theta \rangle | \|\theta\| \le r\}$, then

$$\mathcal{R}_{n}(\mathcal{F}) = \frac{1}{n} \mathbb{E} \bigg[\sup_{\|\boldsymbol{\theta}\| \le r} \sum_{i=1}^{n} \epsilon_{i} \langle \boldsymbol{X}_{i}, \boldsymbol{\theta} \rangle \bigg] \le \frac{r}{n} \mathbb{E} \bigg[\bigg\| \sum_{i=1}^{n} \epsilon_{i} \boldsymbol{X}_{i} \bigg\|_{*} \bigg].$$
(3)

Moreover, suppose a function class \mathcal{F} is *b*-uniformly bounded, then for any t > 0, we have

$$\mathbb{P}(\|P_n - P\|_{\mathcal{F}} \ge 2\mathcal{R}_n(\mathcal{F}) + t) \le \exp\left(-\frac{nt^2}{2b^2}\right).$$
(4)

To prove (4), first we show concentration around mean. If we define

$$G(x_1,\ldots,x_n) \coloneqq \sup_{f\in\mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n (f(x_i) - \mathbb{E}f(X)) \right|,$$

then it can be checked that

$$|G(x_1,\ldots,x_i,\ldots,x_n)-G(x_1,\ldots,x'_i,\ldots,x_n)|\leq \frac{2b}{n}.$$

Therefore, by bounded difference inequality, we have

$$\mathbb{P}(||P_n - P||_{\mathcal{F}} \ge \mathbb{E}||P_n - P||_{\mathcal{F}} + t) \le \exp\left(-\frac{nt^2}{2b^2}\right).$$

Furthermore, by Theorem 1.1 of Lecture 5, $\mathbb{E}||P_n - P||_{\mathcal{F}} \leq 2\mathcal{R}_n(\mathcal{F})$. Combining this with the above display completes the proof of (4).

(b) Let $\Theta \subset \{\theta \in \mathbb{R}^d : \|\theta\|_2 \leq r\}$ and let $\{X_i\}_{i=1}^n$ be supported on the ℓ_2 -ball $\{x \in \mathbb{R}^d : \|x\|_2 \leq M\}$. Give the smallest $\epsilon_n(\delta, d, r, M)$ you can (ignoring the constants) such that

$$\mathbb{P}\left(\sup_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}|P_nm_{\boldsymbol{\theta}}-Pm_{\boldsymbol{\theta}}|\geq\epsilon_n(\delta,d,r,M)\right)\leq\delta.$$

How does your ϵ_n compare with Question 1?

Solution: The dual norm of ℓ_2 -norm is ℓ_2 -norm. Consider $\mathcal{F} = \{f(x) = \langle x, \theta \rangle | \theta \in \Theta\}$. By the independence of Rademacher variables and Jensen's inequality,

$$\mathbb{E}\left[\left\|\sum_{i=1}^{n} \epsilon_{i} \boldsymbol{X}_{i}\right\|_{2}\right] \leq \sqrt{\mathbb{E}\left[\left\|\sum_{i=1}^{n} \epsilon_{i} \boldsymbol{X}_{i}\right\|_{2}^{2}\right]} = \sqrt{\mathbb{E}\left[\sum_{i=1}^{n} \|\boldsymbol{X}_{i}\|_{2}^{2}\right]} \leq \sqrt{n}M,$$

which, together with (3), implies

$$\mathcal{R}_n(\mathcal{F}) \leq \frac{Mr}{\sqrt{n}}.$$

- -

Applying Ledoux-Talagrand contraction inequality yields

$$\mathcal{R}_n(\{m_{\boldsymbol{\theta}}\}_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}) \leq \frac{Mr}{\sqrt{n}}$$

Now, by the Lipschitz continuity of $\phi(\cdot)$,

$$\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}, \|\boldsymbol{x}\|_{2} \le M, y \in \{-1, 1\}} |\phi(y \cdot \langle \boldsymbol{x}, \boldsymbol{\theta} \rangle) - \phi(0)| \le Mr,$$

and it follows by (4) that for any t > 0,

$$\mathbb{P}\left(\sup_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}|P_nm_{\boldsymbol{\theta}}-Pm_{\boldsymbol{\theta}}|\geq\frac{2Mr}{\sqrt{n}}+t\right)\leq\exp\left(-\frac{nt^2}{2M^2r^2}\right).$$

Finally, setting

$$t = \sqrt{\frac{2M^2r^2\log(1/\delta)}{n}}$$

gives

$$\epsilon_n = \frac{Mr}{\sqrt{n}} \left(2 + \sqrt{2\log(1/\delta)} \right).$$

This bound is apparently sharper than the bound in Question 1, since it's independent of d.

(c) Let $\Theta \subset \{\theta \in \mathbb{R}^d : \|\theta\|_1 \leq r\}$ and let $\{X_i\}_{i=1}^n$ be supported on the ℓ_{∞} -ball $\{x \in \mathbb{R}^d : \|x\|_{\infty} \leq M\}$. Give the smallest $\epsilon_n(\delta, d, r, M)$ you can (ignoring the constants) such that

$$\mathbb{P}\left(\sup_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}|P_nm_{\boldsymbol{\theta}}-Pm_{\boldsymbol{\theta}}|\geq\epsilon_n(\delta,d,r,M)\right)\leq\delta.$$

How does your ϵ_n compare with Question 1?

Solution: Let $\{X_i\}_{i=1}^n$ be a sequence of centered sub-Gaussian random variables with parameter σ , then

$$\mathbb{E}\left[\max_{i=1,\dots,n} |X_i|\right] \le \sigma \sqrt{2\log(2n)} \tag{5}$$

To prove (5), by the definition of sub-Gaussian and Jensen's inequality, for any $\lambda > 0$,

$$\mathbb{E}\left[\max_{i=1,\dots,n} |X_i|\right] = \frac{1}{\lambda} \mathbb{E}\log \exp\left(\lambda \max_{i=1,\dots,n} |X_i|\right)$$
$$\leq \frac{1}{\lambda}\log \mathbb{E}\exp\left(\lambda \max_{i=1,\dots,n} |X_i|\right)$$
$$\leq \frac{1}{\lambda}\log\left[2n\exp\left(\frac{\lambda^2\sigma^2}{2}\right)\right]$$
$$= \frac{\log 2n}{\lambda} + \frac{\lambda\sigma^2}{2}.$$

Taking $\lambda = \sqrt{2\log(2n)}/\sigma$ completes the proof of (5).

Now notice that the dual norm of ℓ_1 -norm is ℓ_{∞} -norm, and the *j*-th coordinate of $\sum_{i=1}^{n} \epsilon_i \mathbf{X}_i$ is sub-Gaussian with parameter $\sqrt{\sum_{i=1}^{n} \mathbf{X}_{ij}^2} \leq M\sqrt{n}$. By (5), we have

$$\mathbb{E}\left[\left\|\left|\sum_{i=1}^{n} \epsilon_{i} \boldsymbol{X}_{i}\right\|\right|_{\infty}\right] \leq M\sqrt{2n \log(2d)}$$

Applying this to (3) gives

$$R_n(\mathcal{F}) \leq \frac{Mr\sqrt{2\log(2d)}}{\sqrt{n}}.$$

The remaining arguments are the same as part (b), and we can achieve

$$\epsilon_n = \frac{Mr}{\sqrt{n}} (2\sqrt{2\log(2d)} + \sqrt{2\log(1/\delta)}).$$

This bound is also sharper than the one in Question 1.