
Math 281C Homework 5 Solutions

1. Consider the pair z = (x, y) ∈ Rd × {−1,1}. Recall from Math 281A that the logistic loss is

mθ(z) = log(1 + exp(−y ⋅ ⟨x,θ⟩)),

and the population expectation is M(θ) = E[mθ(X, Y )], for (X, Y ) ∼ P .

(a) Show that if Θ ∈ Rd is a compact set and E[∣∣X ∣∣] < ∞ for some norm ∣∣ ⋅ ∣∣ on Rd, then

sup
θ∈Θ

∣Pnmθ(X, Y ) −M(θ)∣ p→ 0.

Solution: First we show that mθ(z) is ∣∣x∣∣∗-Lipschitz in θ. For any θ and θ′ in Θ,

∣mθ(x, y) −mθ′(x, y)∣ ≤ ∣⟨θ − θ′,x⟩∣ ≤ ∣∣θ − θ′∣∣ ⋅ ∣∣x∣∣∗.

Then consider a ε-net {θi}Ni=1 for Θ, for each θi in the ε-net, construct function pairs {`i, ui} with

`i =mθi(x, y) − ε∣∣x∣∣∗ and ui =mθi(x, y) + ε∣∣x∣∣∗,

such that for any mθ(x, y), we can find a pair {`i, ui} satisfying `i(x) ≤mθ(x, y) ≤ ui(x) for all
x ∈ Rd, and

E[ui(x) − `i(x)] ≤ 2εE∣∣x∣∣∗.

This means {`i, ui}Ni=1 form a 2εE∣∣x∣∣∗-bracketing of {mθ(⋅)∣θ ∈ Θ} with respect to `1-norm, and
by construction, we have

N[]({mθ}, `1,2εE∣∣x∣∣∗) ≤ N(Θ, ∣∣ ⋅ ∣∣, ε) < ∞,

which implies the uniform consistency.
(b) Assume that Θ is contained in the norm ball {θ ∈ Rd ∶ ∣∣θ∣∣ ≤ r} and that X is supported on

the dual norm ball {x ∈ Rd ∶ ∣∣x∣∣∗ ≤ M}. Show that there is a constant C < ∞ such that for all
0 < δ < 1,

P( sup
θ∈Θ

∣Pnmθ(X, Y ) −M(θ)∣ ≥ εn(δ)) ≤ δ,

where

εn(δ) = C

¿
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Solution: First we have

log(1 + exp(−Mr)) ≤mθ(x, y) ≤ log(1 + exp(Mr)),

which means mθ(x, y) − log(2) ∈ [−Mr,Mr]. Thus, for any fixed θ ∈ Θ and t > 0, applying
Hoeffding’s inequality gives

P(∣Pnmθ(X, Y ) −M(θ)∣ ≥ t) ≤ 2 exp( − nt2

2M2r2
). (1)

Then consider a minimal ε-net {θi}Ni=1 for Θ satisfying N ≤ (1 + 2r/ε)d. For any θ ∈ Θ, there is
θi such that ∣∣θ − θi∣∣ ≤ ε, and

sup
θ∈Θ

∣Pnmθ −M(θ)∣ ≤ sup
θ∈Θ

∣Pnmθ − Pnmθi ∣ + max
i=1,...,N

∣Pnmθi − Pmθi ∣ + sup
θ∈Θ

∣Pmθi − Pmθ ∣

≤ 2Mε + max
i=1,...,N

∣Pnmθi − Pmθi ∣.



Therefore, combining (1) with union bound, we have

P( sup
θ∈Θ

∣Pnmθ −M(θ)∣ ≥ 2Mε + t) ≤ P( max
i=1,...,N

∣Pnmθi − Pmθi ∣ ≥ t)

≤ (1 + 2r

ε
)
d

2 exp( − nt2

2M2r2
).

Finally, choosing

t =
√

2M2r2(d log(1 + 2r/ε) + log(2/δ))
n

and ε = r/n gives the desired bound.

2. Consider a binary classification problem with data in pair (x, y) ∈ Rd × {−1,1}, and let φ ∶ R → R+ be
a 1-Lipschitz non-increasing convex function, for example, φ(t) = log(1+ e−t) or φ(t) = [1− t]+. Define
mθ(x, y) = φ(y ⋅⟨x,θ⟩). Given an i.i.d. sample {Xi, Yi}ni=1 and consider the empirical risk minimization
procedure

θ̂n = argmin
θ∈Θ

Pnmθ = argmin
θ∈Θ

1

n

n

∑
i=1
mθ(Xi, Yi). (2)

Ledoux-Talagrand contraction inequality may be useful. Let φ ○ F = {h ∶ h(x) = φ(f(x)), f ∈ F}
denote the composition of φ(⋅) with functions in F . If φ(⋅) is L-Lipschitz, then Rn(φ ○ F) ≤ LRn(F).

(a) In one word, is the procedure (2) likely to give a reasonably good classifier?

Solution: Yes. Intuitively, we will pick θ̂n such that Yi ⋅ ⟨Xi, θ̂n⟩ > 0 for most cases.

Before we proceed to parts (b) and (c), let us prove some general results. Let ∣∣ ⋅ ∣∣ be an arbitrary
norm and define F = {f(x) = ⟨x,θ⟩∣ ∣∣θ∣∣ ≤ r}, then

Rn(F) = 1

n
E[ sup

∣∣θ∣∣≤r

n

∑
i=1
εi⟨Xi,θ⟩] ≤

r

n
E[∣∣

n

∑
i=1
εiXi∣∣

∗
]. (3)

Moreover, suppose a function class F is b-uniformly bounded, then for any t > 0, we have

P(∣∣Pn − P ∣∣F ≥ 2Rn(F) + t) ≤ exp( − nt
2

2b2
). (4)

To prove (4), first we show concentration around mean. If we define

G(x1, . . . , xn) ∶= sup
f∈F

∣ 1

n

n

∑
i=1

(f(xi) −Ef(X))∣,

then it can be checked that

∣G(x1, . . . , xi, . . . , xn) −G(x1, . . . , x′i, . . . , xn)∣ ≤
2b

n
.

Therefore, by bounded difference inequality, we have

P(∣∣Pn − P ∣∣F ≥ E∣∣Pn − P ∣∣F + t) ≤ exp( − nt
2

2b2
).

Furthermore, by Theorem 1.1 of Lecture 5, E∣∣Pn − P ∣∣F ≤ 2Rn(F). Combining this with the
above display completes the proof of (4).

(b) Let Θ ⊂ {θ ∈ Rd ∶ ∣∣θ∣∣2 ≤ r} and let {Xi}ni=1 be supported on the `2-ball {x ∈ Rd ∶ ∣∣x∣∣2 ≤M}. Give
the smallest εn(δ, d, r,M) you can (ignoring the constants) such that

P( sup
θ∈Θ

∣Pnmθ − Pmθ ∣ ≥ εn(δ, d, r,M)) ≤ δ.

How does your εn compare with Question 1?



Solution: The dual norm of `2-norm is `2-norm. Consider F = {f(x) = ⟨x,θ⟩∣θ ∈ Θ}. By the
independence of Rademacher variables and Jensen’s inequality,

E[∣∣
n

∑
i=1
εiXi∣∣

2

] ≤
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] =
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∑
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∣∣Xi∣∣22] ≤
√
nM,

which, together with (3), implies

Rn(F) ≤ Mr√
n
.

Applying Ledoux-Talagrand contraction inequality yields

Rn({mθ}θ∈Θ) ≤ Mr√
n
.

Now, by the Lipschitz continuity of φ(⋅),

sup
θ∈Θ,∣∣x∣∣2≤M,y∈{−1,1}

∣φ(y ⋅ ⟨x,θ⟩) − φ(0)∣ ≤Mr,

and it follows by (4) that for any t > 0,

P( sup
θ∈Θ

∣Pnmθ − Pmθ ∣ ≥
2Mr√
n

+ t) ≤ exp( − nt2

2M2r2
).

Finally, setting

t =
√

2M2r2 log(1/δ)
n

gives

εn = Mr√
n
(2 +

√
2 log(1/δ)).

This bound is apparently sharper than the bound in Question 1, since it’s independent of d.

(c) Let Θ ⊂ {θ ∈ Rd ∶ ∣∣θ∣∣1 ≤ r} and let {Xi}ni=1 be supported on the `∞-ball {x ∈ Rd ∶ ∣∣x∣∣∞ ≤ M}.
Give the smallest εn(δ, d, r,M) you can (ignoring the constants) such that

P( sup
θ∈Θ

∣Pnmθ − Pmθ ∣ ≥ εn(δ, d, r,M)) ≤ δ.

How does your εn compare with Question 1?

Solution: Let {Xi}ni=1 be a sequence of centered sub-Gaussian random variables with parameter
σ, then

E[ max
i=1,...,n

∣Xi∣] ≤ σ
√

2 log(2n) (5)

To prove (5), by the definition of sub-Gaussian and Jensen’s inequality, for any λ > 0,

E[ max
i=1,...,n

∣Xi∣] =
1

λ
E log exp(λ max

i=1,...,n
∣Xi∣)

≤ 1

λ
logE exp(λ max

i=1,...,n
∣Xi∣)

≤ 1

λ
log [2n exp(λ

2σ2

2
)]

= log 2n

λ
+ λσ

2

2
.

Taking λ =
√

2 log(2n)/σ completes the proof of (5).

Now notice that the dual norm of `1-norm is `∞-norm, and the j-th coordinate of ∑n
i=1 εiXi is

sub-Gaussian with parameter
√
∑n

i=1X
2
ij ≤M

√
n. By (5), we have

E[∣∣
n

∑
i=1
εiXi∣∣

∞
] ≤M

√
2n log(2d).



Applying this to (3) gives

Rn(F) ≤
Mr

√
2 log(2d)
√
n

.

The remaining arguments are the same as part (b), and we can achieve

εn = Mr√
n
(2

√
2 log(2d) +

√
2 log(1/δ)).

This bound is also sharper than the one in Question 1.


