Math 281C Homework 5 Solutions

1. Consider the pair z = (x,) € R% x {~1,1}. Recall from Math 281A that the logistic loss is

me(z) =log(1+exp(-y-(x,8))),

and the population expectation is M(0) = E[mg(X,Y)], for (X,Y) ~ P.

(a)

Show that if ® € R? is a compact set and E[||X||] < co for some norm ||-|| on R?, then

sup |P,mg(X,Y) - M(0)| 5 0.
6c®

Solution: First we show that mg(z) is ||x||+-Lipschitz in . For any 6 and 6’ in ©,
me(,y) - me(z,y)| < (0 -6, )| <[|6 - &' - [|]].

Then consider a e-net {8°}Y, for @, for each 8° in the e-net, construct function pairs {£;,u;} with
ti=mgi(x,y) —€llzlls and u; =me:(@,y) + el

such that for any mg(x,y), we can find a pair {¢;,u;} satisfying £;(x) < mg(x,y) < u;(x) for all
x eR%, and
Elu;(x) — £;(x)] < 2€E||||..

This means {£;,u;}Y, form a 2¢E||z||.-bracketing of {mg(-)|@ € ®} with respect to £;-norm, and
by construction, we have

N[]({m9}7£1a2€E||mH*) < N(@7|| : ||7€) < 00,

which implies the uniform consistency.

Assume that @ is contained in the norm ball {8 € R? : ||@]| < v} and that X is supported on
the dual norm ball {x € R?: ||z||, < M}. Show that there is a constant C < co such that for all
0<d<1,

P( sup|P,mg(X,Y) - M(0)| > en(é)) <4,
0c®

where

2072
€n(9) :C’\j ! 2/[ (dlogn+log(15).

Solution: First we have
log(1 +exp(-Mr)) < mg(x,y) <log(1 +exp(Mr)),

which means mg(x,y) — log(2) € [-Mr, Mr]. Thus, for any fixed @ € ® and ¢ > 0, applying
Hoeffding’s inequality gives

n 2
P(|Pyme(X,Y) = M(8)| 2 1) < Qexp(— 2Mt27~2) (1)

Then consider a minimal e-net {0}, for O satisfying N < (1+2r/e)?. For any 6 € ©, there is
6° such that ||@ — 0']| < ¢, and

sup |P,mg — M (0)| < sup|P,mg — Pymgi| + max_|P,mgi — Pmg:| + sup |Pmg: — Pmg|
6c© 6c© @ N 6c©

=1,...,

<2Me+ max |P,mgi — Pmgil.
i=1,...,N



Therefore, combining (1) with union bound, we have

]P( sup |P,mg — M (0)| > 2Me + t) < IP’( max, |P,ymegi — Pmg:| > t)
0c® =

d
2r nt?
1+—) 2 .
( e) ep( 2M2r2)

‘o \/2M2r2(dlog(l +2r/e) +1og(2/6))

n

Finally, choosing

and € = r/n gives the desired bound.

2. Consider a binary classification problem with data in pair (z,y) e RY x {~1,1}, and let ¢ : R - R, be
a 1-Lipschitz non-increasing convex function, for example, ¢(t) =log(1+e™") or ¢(t) = [1 —t],. Define
me(x,y) = ¢(y-(x,0)). Given an i.i.d. sample {X;,Y;}7, and consider the empirical risk minimization
procedure

8,, = argmin P,y mg = argmin — Z me(X;,Y;). (2)
0<® 6@ M

Ledoux-Talagrand contraction inequality may be useful. Let ¢po F = {h:h(z) = ¢(f(x)),f e F}
denote the composition of ¢(-) with functions in F. If ¢(-) is L-Lipschitz, then R, (¢ o F) < LR, (F).

(a) In one word, is the procedure (2) likely to give a reasonably good classifier?
Solution: Yes. Intuitively, we will pick 8,, such that Y; - (X, §n) > 0 for most cases.

Before we proceed to parts (b) and (c), let us prove some general results. Let ||-|| be an arbitrary
norm and define F = {f(x) = (x, 0)| ||6|| < r}, then
x| | ®

Moreover, suppose a function class F is b-uniformly bounded, then for any ¢ > 0, we have

R (.7-')—IE|: sup 261 Xl,B]S; [

o Llellsri=1

2
B(IP, - Pllr > 2R (F) +1) Sexp(— ’;;) )

To prove (4), first we show concentration around mean. If we define

i::(f(z Ef(X))‘

1
n

G(z1,...,2pn): —sup

then it can be checked that

|G(z1,... 2.y wp) = G(21, ..., 2, xn)|<2—b
n

Therefore, by bounded difference inequality, we have

nt2
P(|[P, - Pllr > E|[P, - Pz +1) gexp(_ %)

Furthermore, by Theorem 1.1 of Lecture 5, E||P, — P||z < 2R, (F). Combining this with the
above display completes the proof of (4).

(b) Let ® c {# e R¥: ||| <7} and let {X;}", be supported on the fy-ball {x € R?: |||y < M}. Give
the smallest €, (9, d,r, M) you can (ignoring the constants) such that

IP’( sup |P,mg — Pmgl| > €,(4,d, r,M)) < 4.
0c®

How does your €, compare with Question 1?7



Solution: The dual norm of fe-norm is fo-norm. Consider F = {f(z) = (x,0)|0 € ®}. By the
independence of Rademacher variables and Jensen’s inequality,

E[ N Z \‘ ;||X||2<IM

which, together with (3), implies
Rn(F) <

\/_

Applying Ledoux-Talagrand contraction inequality ylelds

Rn({me}eco) < \/—

Now, by the Lipschitz continuity of ¢(-),
sup |6(y - {2, 0)) - 6(0)| < Mr,

0eO ||x||2<M,ye{-1,1}

and it follows by (4) that for any ¢ > 0,

o2Mr nt?
?{sugiPuma - Pmal= 7 +t) s - g )

. [2M2r210g(1/6)
n

M
en = —L (2 +1/210g(1/9)).
vn
This bound is apparently sharper than the bound in Question 1, since it’s independent of d.

(c) Let ©® c {6 e R?:[|0||; <7} and let {X;}™, be supported on the fo-ball {z € R?:||z|| < M}.
Give the smallest €,(d,d,r, M) you can (ignoring the constants) such that

Finally, setting

gives

P( sup |P,mg — Pmg| > €, (4, d, r,M)) <.
0c®

How does your ¢,, compare with Question 1?7

Solution: Let {X;}7; be a sequence of centered sub-Gaussian random variables with parameter
o, then

]E|:Z=I{1axn|Xz|] <ov/2log(2n) (5)

To prove (5), by the definition of sub-Gaussian and Jensen’s inequality, for any A > 0,
1
E[ max | X |] X]Elogexp ()\ Inax |Xi|)

1
)\logIEexp()\ max |X|)

1 )\2 2
SAlog[Qnexp( 20 )]

log2n \o?
= +—.
A 2
Taking A = y/2log(2n)/o completes the proof of (5).

Now notice that the dual norm of £;-norm is fe-norm, and the j-th coordinate of I, ;X is

sub-Gaussian with parameter /Y X7 < My/n. By (5), we have

1

n

z GiXi

i=1

] < M+/2nlog(2d).



Applying this to (3) gives

R, (F) < Mry2log(2d) Vf/lgg(w).

The remaining arguments are the same as part (b), and we can achieve

€n = %(2\/2 log(2d) ++/21log(1/4)).

This bound is also sharper than the one in Question 1.



