Math 281C Homework 5 Solutions

1. Consider the pair $\boldsymbol{z}=(\boldsymbol{x}, y) \in \mathbb{R}^{d} \times\{-1,1\}$. Recall from Math 281 A that the logistic loss is

$$
m_{\boldsymbol{\theta}}(\boldsymbol{z})=\log (1+\exp (-y \cdot\langle\boldsymbol{x}, \boldsymbol{\theta}\rangle))
$$

and the population expectation is $M(\boldsymbol{\theta})=\mathbb{E}\left[m_{\boldsymbol{\theta}}(\boldsymbol{X}, Y)\right]$, for $(\boldsymbol{X}, Y) \sim P$.
(a) Show that if $\boldsymbol{\Theta} \in \mathbb{R}^{d}$ is a compact set and $\mathbb{E}[\|\boldsymbol{X}\|]<\infty$ for some norm $\|\cdot\|$ on \mathbb{R}^{d}, then

$$
\sup _{\boldsymbol{\theta} \in \boldsymbol{\Theta}}\left|P_{n} m_{\boldsymbol{\theta}}(\boldsymbol{X}, Y)-M(\boldsymbol{\theta})\right| \xrightarrow{p} 0 .
$$

Solution: First we show that $m_{\boldsymbol{\theta}}(\boldsymbol{z})$ is $\|\boldsymbol{x}\|_{*}-$ Lipschitz in $\boldsymbol{\theta}$. For any $\boldsymbol{\theta}$ and $\boldsymbol{\theta}^{\prime}$ in $\boldsymbol{\Theta}$,

$$
\left|m_{\boldsymbol{\theta}}(\boldsymbol{x}, y)-m_{\boldsymbol{\theta}^{\prime}}(\boldsymbol{x}, y)\right| \leq\left|\left\langle\boldsymbol{\theta}-\boldsymbol{\theta}^{\prime}, \boldsymbol{x}\right\rangle\right| \leq\left\|\boldsymbol{\theta}-\boldsymbol{\theta}^{\prime}\right\| \cdot\|\boldsymbol{x}\|_{\star} .
$$

Then consider a ϵ-net $\left\{\boldsymbol{\theta}^{i}\right\}_{i=1}^{N}$ for $\boldsymbol{\Theta}$, for each $\boldsymbol{\theta}^{i}$ in the ϵ-net, construct function pairs $\left\{\ell_{i}, u_{i}\right\}$ with

$$
\ell_{i}=m_{\boldsymbol{\theta}^{i}}(\boldsymbol{x}, y)-\epsilon\|\boldsymbol{x}\|_{*} \quad \text { and } \quad u_{i}=m_{\boldsymbol{\theta}^{i}}(\boldsymbol{x}, y)+\epsilon\|\boldsymbol{x}\|_{*},
$$

such that for any $m_{\boldsymbol{\theta}}(\boldsymbol{x}, y)$, we can find a pair $\left\{\ell_{i}, u_{i}\right\}$ satisfying $\ell_{i}(\boldsymbol{x}) \leq m_{\boldsymbol{\theta}}(\boldsymbol{x}, y) \leq u_{i}(\boldsymbol{x})$ for all $\boldsymbol{x} \in \mathbb{R}^{d}$, and

$$
\mathbb{E}\left[u_{i}(\boldsymbol{x})-\ell_{i}(\boldsymbol{x})\right] \leq 2 \epsilon \mathbb{E}\|\boldsymbol{x}\|_{*}
$$

This means $\left\{\ell_{i}, u_{i}\right\}_{i=1}^{N}$ form a $2 \epsilon \mathbb{E}\|\boldsymbol{x}\|_{*}$-bracketing of $\left\{m_{\boldsymbol{\theta}}(\cdot) \mid \boldsymbol{\theta} \in \boldsymbol{\Theta}\right\}$ with respect to ℓ_{1}-norm, and by construction, we have

$$
N_{[]}\left(\left\{m_{\boldsymbol{\theta}}\right\}, \ell_{1}, 2 \epsilon \mathbb{E}\|\boldsymbol{x}\|_{*}\right) \leq N(\boldsymbol{\Theta},\|\cdot\|, \epsilon)<\infty
$$

which implies the uniform consistency.
(b) Assume that $\boldsymbol{\Theta}$ is contained in the norm ball $\left\{\boldsymbol{\theta} \in \mathbb{R}^{d}:\|\boldsymbol{\theta}\| \leq r\right\}$ and that \boldsymbol{X} is supported on the dual norm ball $\left\{\boldsymbol{x} \in \mathbb{R}^{d}:\|\boldsymbol{x}\|_{*} \leq M\right\}$. Show that there is a constant $C<\infty$ such that for all $0<\delta<1$,

$$
\mathbb{P}\left(\sup _{\boldsymbol{\theta} \in \boldsymbol{\Theta}}\left|P_{n} m_{\boldsymbol{\theta}}(\boldsymbol{X}, Y)-M(\boldsymbol{\theta})\right| \geq \epsilon_{n}(\delta)\right) \leq \delta,
$$

where

$$
\epsilon_{n}(\delta)=C \sqrt{\frac{r^{2} M^{2}}{n}\left(d \log n+\log \frac{1}{\delta}\right)}
$$

Solution: First we have

$$
\log (1+\exp (-M r)) \leq m_{\boldsymbol{\theta}}(\boldsymbol{x}, y) \leq \log (1+\exp (M r))
$$

which means $m_{\boldsymbol{\theta}}(\boldsymbol{x}, y)-\log (2) \in[-M r, M r]$. Thus, for any fixed $\boldsymbol{\theta} \in \boldsymbol{\Theta}$ and $t>0$, applying Hoeffding's inequality gives

$$
\begin{equation*}
\mathbb{P}\left(\left|P_{n} m_{\boldsymbol{\theta}}(\boldsymbol{X}, Y)-M(\boldsymbol{\theta})\right| \geq t\right) \leq 2 \exp \left(-\frac{n t^{2}}{2 M^{2} r^{2}}\right) \tag{1}
\end{equation*}
$$

Then consider a minimal ϵ-net $\left\{\boldsymbol{\theta}^{i}\right\}_{i=1}^{N}$ for $\boldsymbol{\Theta}$ satisfying $N \leq(1+2 r / \epsilon)^{d}$. For any $\boldsymbol{\theta} \in \boldsymbol{\Theta}$, there is $\boldsymbol{\theta}^{i}$ such that $\left\|\boldsymbol{\theta}-\boldsymbol{\theta}^{i}\right\| \leq \epsilon$, and

$$
\begin{aligned}
\sup _{\boldsymbol{\theta} \in \boldsymbol{\Theta}}\left|P_{n} m_{\boldsymbol{\theta}}-M(\boldsymbol{\theta})\right| & \leq \sup _{\boldsymbol{\theta} \in \boldsymbol{\Theta}}\left|P_{n} m_{\boldsymbol{\theta}}-P_{n} m_{\boldsymbol{\theta}^{i}}\right|+\max _{i=1, \ldots, N}\left|P_{n} m_{\boldsymbol{\theta}^{i}}-P m_{\boldsymbol{\theta}^{i}}\right|+\sup _{\boldsymbol{\theta} \in \boldsymbol{\Theta}}\left|P m_{\boldsymbol{\theta}^{i}}-P m_{\boldsymbol{\theta}}\right| \\
& \leq 2 M \epsilon+\max _{i=1, \ldots, N}\left|P_{n} m_{\boldsymbol{\theta}^{i}}-P m_{\boldsymbol{\theta}^{i}}\right|
\end{aligned}
$$

Therefore, combining (1) with union bound, we have

$$
\begin{aligned}
\mathbb{P}\left(\sup _{\boldsymbol{\theta} \in \boldsymbol{\Theta}}\left|P_{n} m_{\boldsymbol{\theta}}-M(\boldsymbol{\theta})\right| \geq 2 M \epsilon+t\right) & \leq \mathbb{P}\left(\max _{i=1, \ldots, N}\left|P_{n} m_{\boldsymbol{\theta}^{i}}-P m_{\boldsymbol{\theta}^{i}}\right| \geq t\right) \\
& \leq\left(1+\frac{2 r}{\epsilon}\right)^{d} 2 \exp \left(-\frac{n t^{2}}{2 M^{2} r^{2}}\right)
\end{aligned}
$$

Finally, choosing

$$
t=\sqrt{\frac{2 M^{2} r^{2}(d \log (1+2 r / \epsilon)+\log (2 / \delta))}{n}}
$$

and $\epsilon=r / n$ gives the desired bound.
2. Consider a binary classification problem with data in pair $(\boldsymbol{x}, y) \in \mathbb{R}^{d} \times\{-1,1\}$, and let $\phi: \mathbb{R} \rightarrow \mathbb{R}_{+}$be a 1-Lipschitz non-increasing convex function, for example, $\phi(t)=\log \left(1+e^{-t}\right)$ or $\phi(t)=[1-t]_{+}$. Define $m_{\boldsymbol{\theta}}(\boldsymbol{x}, y)=\phi(y \cdot\langle\boldsymbol{x}, \boldsymbol{\theta}\rangle)$. Given an i.i.d. sample $\left\{\boldsymbol{X}_{i}, Y_{i}\right\}_{i=1}^{n}$ and consider the empirical risk minimization procedure

$$
\begin{equation*}
\widehat{\boldsymbol{\theta}}_{n}=\underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}}{\operatorname{argmin}} P_{n} m_{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} m_{\boldsymbol{\theta}}\left(\boldsymbol{X}_{i}, Y_{i}\right) . \tag{2}
\end{equation*}
$$

Ledoux-Talagrand contraction inequality may be useful. Let $\phi \circ \mathcal{F}=\{h: h(x)=\phi(f(x)), f \in \mathcal{F}\}$ denote the composition of $\phi(\cdot)$ with functions in \mathcal{F}. If $\phi(\cdot)$ is L-Lipschitz, then $\mathcal{R}_{n}(\phi \circ \mathcal{F}) \leq L \mathcal{R}_{n}(\mathcal{F})$.
(a) In one word, is the procedure (2) likely to give a reasonably good classifier?

Solution: Yes. Intuitively, we will pick $\widehat{\boldsymbol{\theta}}_{n}$ such that $Y_{i} \cdot\left\langle\boldsymbol{X}_{i}, \widehat{\boldsymbol{\theta}}_{n}\right\rangle>0$ for most cases.
Before we proceed to parts (b) and (c), let us prove some general results. Let $\|\cdot\|$ be an arbitrary norm and define $\mathcal{F}=\{f(x)=\langle\boldsymbol{x}, \boldsymbol{\theta}\rangle \mid\|\boldsymbol{\theta}\| \leq r\}$, then

$$
\begin{equation*}
\mathcal{R}_{n}(\mathcal{F})=\frac{1}{n} \mathbb{E}\left[\sup _{\|\boldsymbol{\theta}\| \leq r} \sum_{i=1}^{n} \epsilon_{i}\left\langle\boldsymbol{X}_{i}, \boldsymbol{\theta}\right\rangle\right] \leq \frac{r}{n} \mathbb{E}\left[\left\|\sum_{i=1}^{n} \epsilon_{i} \boldsymbol{X}_{i}\right\|_{*}\right] . \tag{3}
\end{equation*}
$$

Moreover, suppose a function class \mathcal{F} is b-uniformly bounded, then for any $t>0$, we have

$$
\begin{equation*}
\mathbb{P}\left(\left\|P_{n}-P\right\|_{\mathcal{F}} \geq 2 \mathcal{R}_{n}(\mathcal{F})+t\right) \leq \exp \left(-\frac{n t^{2}}{2 b^{2}}\right) \tag{4}
\end{equation*}
$$

To prove (4), first we show concentration around mean. If we define

$$
G\left(x_{1}, \ldots, x_{n}\right):=\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-\mathbb{E} f(X)\right)\right|
$$

then it can be checked that

$$
\left|G\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)-G\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{n}\right)\right| \leq \frac{2 b}{n}
$$

Therefore, by bounded difference inequality, we have

$$
\mathbb{P}\left(\left\|P_{n}-P\right\|_{\mathcal{F}} \geq \mathbb{E}\left\|P_{n}-P\right\|_{\mathcal{F}}+t\right) \leq \exp \left(-\frac{n t^{2}}{2 b^{2}}\right)
$$

Furthermore, by Theorem 1.1 of Lecture $5, \mathbb{E}\left\|P_{n}-P\right\|_{\mathcal{F}} \leq 2 \mathcal{R}_{n}(\mathcal{F})$. Combining this with the above display completes the proof of (4).
(b) Let $\boldsymbol{\Theta} \subset\left\{\boldsymbol{\theta} \in \mathbb{R}^{d}:\|\boldsymbol{\theta}\|_{2} \leq r\right\}$ and let $\left\{\boldsymbol{X}_{i}\right\}_{i=1}^{n}$ be supported on the ℓ_{2}-ball $\left\{\boldsymbol{x} \in \mathbb{R}^{d}:\|\boldsymbol{x}\|_{2} \leq M\right\}$. Give the smallest $\epsilon_{n}(\delta, d, r, M)$ you can (ignoring the constants) such that

$$
\mathbb{P}\left(\sup _{\boldsymbol{\theta} \in \boldsymbol{\Theta}}\left|P_{n} m_{\boldsymbol{\theta}}-P m_{\boldsymbol{\theta}}\right| \geq \epsilon_{n}(\delta, d, r, M)\right) \leq \delta
$$

How does your ϵ_{n} compare with Question 1?

Solution: The dual norm of ℓ_{2}-norm is ℓ_{2}-norm. Consider $\mathcal{F}=\{f(x)=\langle\boldsymbol{x}, \boldsymbol{\theta}\rangle \mid \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$. By the independence of Rademacher variables and Jensen's inequality,

$$
\mathbb{E}\left[\left\|\sum_{i=1}^{n} \epsilon_{i} \boldsymbol{X}_{i}\right\|_{2}\right] \leq \sqrt{\mathbb{E}\left[\left\|\sum_{i=1}^{n} \epsilon_{i} \boldsymbol{X}_{i}\right\|_{2}^{2}\right]}=\sqrt{\mathbb{E}\left[\sum_{i=1}^{n}\left\|\boldsymbol{X}_{i}\right\|_{2}^{2}\right]} \leq \sqrt{n} M
$$

which, together with (3), implies

$$
\mathcal{R}_{n}(\mathcal{F}) \leq \frac{M r}{\sqrt{n}}
$$

Applying Ledoux-Talagrand contraction inequality yields

$$
\mathcal{R}_{n}\left(\left\{m_{\boldsymbol{\theta}}\right\}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}}\right) \leq \frac{M r}{\sqrt{n}}
$$

Now, by the Lipschitz continuity of $\phi(\cdot)$,

$$
\sup _{\boldsymbol{\theta} \in \boldsymbol{\Theta},\|\boldsymbol{x}\|_{2} \leq M, y \in\{-1,1\}}|\phi(y \cdot\langle\boldsymbol{x}, \boldsymbol{\theta}\rangle)-\phi(0)| \leq M r,
$$

and it follows by (4) that for any $t>0$,

$$
\mathbb{P}\left(\sup _{\boldsymbol{\theta} \in \boldsymbol{\Theta}}\left|P_{n} m_{\boldsymbol{\theta}}-P m_{\boldsymbol{\theta}}\right| \geq \frac{2 M r}{\sqrt{n}}+t\right) \leq \exp \left(-\frac{n t^{2}}{2 M^{2} r^{2}}\right) .
$$

Finally, setting

$$
t=\sqrt{\frac{2 M^{2} r^{2} \log (1 / \delta)}{n}}
$$

gives

$$
\epsilon_{n}=\frac{M r}{\sqrt{n}}(2+\sqrt{2 \log (1 / \delta)}) .
$$

This bound is apparently sharper than the bound in Question 1, since it's independent of d.
(c) Let $\boldsymbol{\Theta} \subset\left\{\boldsymbol{\theta} \in \mathbb{R}^{d}:\|\boldsymbol{\theta}\|_{1} \leq r\right\}$ and let $\left\{\boldsymbol{X}_{i}\right\}_{i=1}^{n}$ be supported on the ℓ_{∞}-ball $\left\{\boldsymbol{x} \in \mathbb{R}^{d}:\|\boldsymbol{x}\|_{\infty} \leq M\right\}$. Give the smallest $\epsilon_{n}(\delta, d, r, M)$ you can (ignoring the constants) such that

$$
\mathbb{P}\left(\sup _{\boldsymbol{\theta} \in \boldsymbol{\Theta}}\left|P_{n} m_{\boldsymbol{\theta}}-P m_{\boldsymbol{\theta}}\right| \geq \epsilon_{n}(\delta, d, r, M)\right) \leq \delta .
$$

How does your ϵ_{n} compare with Question 1?
Solution: Let $\left\{X_{i}\right\}_{i=1}^{n}$ be a sequence of centered sub-Gaussian random variables with parameter σ, then

$$
\begin{equation*}
\mathbb{E}\left[\max _{i=1, \ldots, n}\left|X_{i}\right|\right] \leq \sigma \sqrt{2 \log (2 n)} \tag{5}
\end{equation*}
$$

To prove (5), by the definition of sub-Gaussian and Jensen's inequality, for any $\lambda>0$,

$$
\begin{aligned}
\mathbb{E}\left[\max _{i=1, \ldots, n}\left|X_{i}\right|\right] & =\frac{1}{\lambda} \mathbb{E} \log \exp \left(\lambda \max _{i=1, \ldots, n}\left|X_{i}\right|\right) \\
& \leq \frac{1}{\lambda} \log \mathbb{E} \exp \left(\lambda \max _{i=1, \ldots, n}\left|X_{i}\right|\right) \\
& \leq \frac{1}{\lambda} \log \left[2 n \exp \left(\frac{\lambda^{2} \sigma^{2}}{2}\right)\right] \\
& =\frac{\log 2 n}{\lambda}+\frac{\lambda \sigma^{2}}{2}
\end{aligned}
$$

Taking $\lambda=\sqrt{2 \log (2 n)} / \sigma$ completes the proof of (5).
Now notice that the dual norm of ℓ_{1}-norm is ℓ_{∞}-norm, and the j-th coordinate of $\sum_{i=1}^{n} \epsilon_{i} \boldsymbol{X}_{i}$ is sub-Gaussian with parameter $\sqrt{\sum_{i=1}^{n} \boldsymbol{X}_{i j}^{2}} \leq M \sqrt{n}$. By (5), we have

$$
\mathbb{E}\left[\left\|\sum_{i=1}^{n} \epsilon_{i} \boldsymbol{X}_{i}\right\|_{\infty}\right] \leq M \sqrt{2 n \log (2 d)}
$$

Applying this to (3) gives

$$
R_{n}(\mathcal{F}) \leq \frac{M r \sqrt{2 \log (2 d)}}{\sqrt{n}}
$$

The remaining arguments are the same as part (b), and we can achieve

$$
\epsilon_{n}=\frac{M r}{\sqrt{n}}(2 \sqrt{2 \log (2 d)}+\sqrt{2 \log (1 / \delta)})
$$

This bound is also sharper than the one in Question 1.

