Math 281C Homework 5

Due: May 15, 5 pm

1. Consider the pair $\boldsymbol{z}=(\boldsymbol{x}, y) \in \mathbb{R}^{d} \times\{-1,1\}$. Recall from Math 281A that the logistic loss is

$$
m_{\boldsymbol{\theta}}(\boldsymbol{z})=\log (1+\exp (-y \cdot\langle\boldsymbol{x}, \boldsymbol{\theta}\rangle))
$$

and the population expectation is $M(\boldsymbol{\theta})=\mathbb{E}\left[m_{\boldsymbol{\theta}}(\boldsymbol{X}, Y)\right]$, for $(\boldsymbol{X}, Y) \sim P$.
(a) Show that if $\Theta \in \mathbb{R}^{d}$ is a compact set and $\mathbb{E}[\|X\|]<\infty$ for some norm $\|\cdot\|$ on \mathbb{R}^{d}, then

$$
\sup _{\boldsymbol{\theta} \in \boldsymbol{\Theta}}\left|P_{n} m_{\boldsymbol{\theta}}(\boldsymbol{X}, Y)-M(\boldsymbol{\theta})\right| \xrightarrow{p} 0 .
$$

(b) Assume that $\boldsymbol{\Theta}$ is contained in the norm ball $\left\{\boldsymbol{\theta} \in \mathbb{R}^{d}:\|\boldsymbol{\theta}\| \leq r\right\}$ and that \boldsymbol{X} is supported on the dual norm ball $\left\{\boldsymbol{x} \in \mathbb{R}^{d}:\|x\|_{*} \leq M\right\}$. Show that there is a constant $C<\infty$ such that for all $0<\delta<1$,

$$
\mathbb{P}\left(\sup _{\boldsymbol{\theta} \in \boldsymbol{\Theta}}\left|P_{n} m_{\boldsymbol{\theta}}(\boldsymbol{X}, Y)-M(\boldsymbol{\theta})\right| \geq \epsilon_{n}(\delta)\right) \leq \delta,
$$

where

$$
\epsilon_{n}(\delta)=C \sqrt{\frac{r^{2} M^{2}}{n}\left(d \log n+\log \frac{1}{\delta}\right)}
$$

2. Consider a binary classification problem with data in pair $(x, y) \in \mathbb{R}^{d} \times\{-1,1\}$, and let $\phi: \mathbb{R} \rightarrow \mathbb{R}_{+}$be a 1-Lipschitz non-increasing convex function, for example, $\phi(t)=\log \left(1+e^{-t}\right)$ or $\phi(t)=[1-t]_{+}$. Define $m_{\boldsymbol{\theta}}(\boldsymbol{x}, y)=\phi(y \cdot\langle\boldsymbol{x}, \boldsymbol{\theta}\rangle)$. Given an i.i.d. sample $\left\{\boldsymbol{X}_{i}, Y_{i}\right\}_{i=1}^{n}$ and consider the empirical risk minimization procedure

$$
\begin{equation*}
\widehat{\boldsymbol{\theta}}_{n}=\underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}}{\operatorname{argmin}} P_{n} m_{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} m_{\boldsymbol{\theta}}\left(\boldsymbol{X}_{i}, Y_{i}\right) . \tag{1}
\end{equation*}
$$

Ledoux-Talagrand contraction inequality may be useful. Let $\phi \circ \mathcal{F}=\{h: h(x)=\phi(f(x)), f \in \mathcal{F}\}$ denote the composition of $\phi(\cdot)$ with functions in \mathcal{F}. If $\phi(\cdot)$ is L-Lipschitz, then $R_{n}(\phi \circ \mathcal{F}) \leq L R_{n}(\mathcal{F})$.
(a) In one word, is the procedure (1) likely to give a reasonably good classifier?
(b) Let $\boldsymbol{\Theta} \subset\left\{\boldsymbol{\theta} \in \mathbb{R}^{d}:\|\boldsymbol{\theta}\|_{2} \leq r\right\}$ and let $\left\{\boldsymbol{X}_{i}\right\}_{i=1}^{n}$ be supported on the ℓ_{2}-ball $\left\{\boldsymbol{x} \in \mathbb{R}^{d}:\|x\|_{2} \leq M\right\}$. Give the smallest $\epsilon_{n}(\delta, d, r, M)$ you can (ignoring the constants) such that

$$
\mathbb{P}\left(\sup _{\boldsymbol{\theta} \in \boldsymbol{\Theta}}\left|P_{n} m_{\boldsymbol{\theta}}-P m_{\boldsymbol{\theta}}\right| \geq \epsilon_{n}(\delta, d, r, M)\right) \leq \delta .
$$

How does your ϵ_{n} compare with Question 1?
(c) Let $\boldsymbol{\Theta} \subset\left\{\boldsymbol{\theta} \in \mathbb{R}^{d}:\|\boldsymbol{\theta}\|_{1} \leq r\right\}$ and let $\left\{\boldsymbol{X}_{i}\right\}_{i=1}^{n}$ be supported on the ℓ_{∞}-ball $\left\{\boldsymbol{x} \in \mathbb{R}^{d}:\|x\|_{\infty} \leq M\right\}$. Give the smallest $\epsilon_{n}(\delta, d, r, M)$ you can (ignoring the constants) such that

$$
\mathbb{P}\left(\sup _{\boldsymbol{\theta} \in \boldsymbol{\Theta}}\left|P_{n} m_{\boldsymbol{\theta}}-P m_{\boldsymbol{\theta}}\right| \geq \epsilon_{n}(\delta, d, r, M)\right) \leq \delta
$$

How does your ϵ_{n} compare with Question 1?

