Math 281C Homework 5

Due: May 15, 5 pm

1. Consider the pair $\mathbf{z} = (\mathbf{x}, y) \in \mathbb{R}^d \times \{-1, 1\}$. Recall from Math 281A that the logistic loss is

$$m_{\boldsymbol{\theta}}(\boldsymbol{z}) = \log(1 + \exp(-y \cdot \langle \boldsymbol{x}, \boldsymbol{\theta} \rangle))$$

and the population expectation is $M(\theta) = \mathbb{E}[m_{\theta}(X, Y)]$, for $(X, Y) \sim P$.

(a) Show that if $\Theta \in \mathbb{R}^d$ is a compact set and $\mathbb{E}[||X||] < \infty$ for some norm $|| \cdot ||$ on \mathbb{R}^d , then

$$\sup_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}|P_nm_{\boldsymbol{\theta}}(\boldsymbol{X},\boldsymbol{Y})-\boldsymbol{M}(\boldsymbol{\theta})| \stackrel{p}{\to} 0.$$

(b) Assume that Θ is contained in the norm ball $\{ \boldsymbol{\theta} \in \mathbb{R}^d : ||\boldsymbol{\theta}|| \leq r \}$ and that \boldsymbol{X} is supported on the dual norm ball $\{ \boldsymbol{x} \in \mathbb{R}^d : ||\boldsymbol{x}||_* \leq M \}$. Show that there is a constant $C < \infty$ such that for all $0 < \delta < 1$,

$$\mathbb{P}\left(\sup_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}|P_nm_{\boldsymbol{\theta}}(\boldsymbol{X},\boldsymbol{Y})-M(\boldsymbol{\theta})|\geq\epsilon_n(\boldsymbol{\delta})\right)\leq\delta,$$

where

$$\epsilon_n(\delta) = C \sqrt{\frac{r^2 M^2}{n} \left(d \log n + \log \frac{1}{\delta} \right)}.$$

2. Consider a binary classification problem with data in pair $(\boldsymbol{x}, y) \in \mathbb{R}^d \times \{-1, 1\}$, and let $\phi : \mathbb{R} \to \mathbb{R}_+$ be a 1-Lipschitz non-increasing convex function, for example, $\phi(t) = \log(1 + e^{-t})$ or $\phi(t) = [1 - t]_+$. Define $m_{\theta}(\boldsymbol{x}, y) = \phi(y \cdot \langle \boldsymbol{x}, \theta \rangle)$. Given an i.i.d. sample $\{\boldsymbol{X}_i, Y_i\}_{i=1}^n$ and consider the empirical risk minimization procedure

$$\widehat{\theta}_n = \operatorname*{argmin}_{\theta \in \Theta} P_n m_{\theta} = \operatorname*{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n m_{\theta}(X_i, Y_i).$$
(1)

Ledoux-Talagrand contraction inequality may be useful. Let $\phi \circ \mathcal{F} = \{h : h(x) = \phi(f(x)), f \in \mathcal{F}\}$ denote the composition of $\phi(\cdot)$ with functions in \mathcal{F} . If $\phi(\cdot)$ is *L*-Lipschitz, then $R_n(\phi \circ \mathcal{F}) \leq LR_n(\mathcal{F})$.

- (a) In one word, is the procedure (1) likely to give a reasonably good classifier?
- (b) Let $\Theta \subset \{\theta \in \mathbb{R}^d : \|\theta\|_2 \leq r\}$ and let $\{X_i\}_{i=1}^n$ be supported on the ℓ_2 -ball $\{x \in \mathbb{R}^d : \|x\|_2 \leq M\}$. Give the smallest $\epsilon_n(\delta, d, r, M)$ you can (ignoring the constants) such that

$$\mathbb{P}\left(\sup_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}|P_nm_{\boldsymbol{\theta}}-Pm_{\boldsymbol{\theta}}|\geq\epsilon_n(\delta,d,r,M)\right)\leq\delta$$

How does your ϵ_n compare with Question 1?

(c) Let $\Theta \subset \{\theta \in \mathbb{R}^d : \|\theta\|_1 \leq r\}$ and let $\{X_i\}_{i=1}^n$ be supported on the ℓ_{∞} -ball $\{x \in \mathbb{R}^d : \|x\|_{\infty} \leq M\}$. Give the smallest $\epsilon_n(\delta, d, r, M)$ you can (ignoring the constants) such that

$$\mathbb{P}\left(\sup_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}|P_nm_{\boldsymbol{\theta}}-Pm_{\boldsymbol{\theta}}|\geq\epsilon_n(\delta,d,r,M)\right)\leq\delta.$$

How does your ϵ_n compare with Question 1?