Math 281C Homework 4 Solutions

1. A random variable X with mean μ is called sub-Gaussian if there is a positive parameter σ such that

$$
\mathbb{E} e^{\lambda(X-\mu)} \leq e^{\sigma^{2} \lambda^{2} / 2}
$$

for any $\lambda \in \mathbb{R} . \sigma$ is referred to as the sub-Gaussian parameter. Suppose $\left\{X_{i}\right\}_{i=1}^{n}$ are independent with means $\left\{\mu_{i}\right\}_{i=1}^{n}$ and sub-Gaussian parameters $\left\{\sigma_{i}\right\}_{i=1}^{n}$. Show that for any $t \geq 0$,

$$
\mathbb{P}\left(\sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right) \geq t\right) \leq \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} \sigma_{i}^{2}}\right) .
$$

Solution: Denote $S_{n}=\sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right)$, and for any $\lambda \geq 0$, by Markov inequality and the independence, we have

$$
\mathbb{P}\left(S_{n} \geq t\right)=\mathbb{P}\left(e^{\lambda S_{n}} \geq e^{\lambda t}\right) \leq e^{-\lambda t} \mathbb{E}\left[e^{\lambda S_{n}}\right] \leq \exp \left\{-\lambda t+\lambda^{2} \sum_{i=1}^{n} \sigma_{i}^{2} / 2\right\}
$$

Taking $\lambda=t / \sum_{i=1}^{n} \sigma_{i}^{2}$ completes the proof.
2. Define the class of matrices

$$
\mathbb{M}_{(1)}^{n, d}:=\left\{\Theta \in \mathbb{R}^{n \times d}: \operatorname{rank}(\Theta)=1,\|\Theta\|_{\mathrm{F}}=1\right\}
$$

where $\|\cdot\|_{F}$ denotes the Frobenius norm. Prove that for any $0<\epsilon<1$,

$$
\log N\left(\epsilon, \mathbb{M}_{(1)}^{n, d},\|\cdot\|_{\mathrm{F}}\right) \leq(n+d) \log (1+4 / \epsilon)
$$

Solution: The definition of $\mathbb{M}_{(1)}^{n, d}$ is equivalent as

$$
\mathbb{M}_{(1)}^{n, d}:=\left\{u \cdot v^{\top}: u \in \mathbb{S}^{n-1}, v \in \mathbb{S}^{d-1}\right\}
$$

where \mathbb{S}^{n-1} and \mathbb{S}^{d-1} are unit spheres in \mathbb{R}^{n} and \mathbb{R}^{d} respectively. Suppose $\left\{u^{1}, \ldots, u^{N_{1}}\right\}$ is a $(\epsilon / 2)$-net of \mathbb{S}^{n-1} and $\left\{v^{1}, \ldots, v^{N_{2}}\right\}$ is a $(\epsilon / 2)$-net of \mathbb{S}^{d-1}, both with respect to $\|\cdot\|_{2}$. For any $\Theta \in \mathbb{M}_{(1)}^{n, d}$, there are $u \in \mathbb{S}^{n-1}$ and $v \in \mathbb{S}^{d-1}$ such that $\Theta=u \cdot v^{\top}$, and for u and v, there are u^{i} and v^{j} in the aforementioned $(\epsilon / 2)$-nets such that

$$
\left\|u-u^{i}\right\|_{2} \leq \epsilon / 2 \quad \text { and } \quad\left\|v-v^{j}\right\|_{2} \leq \epsilon / 2 .
$$

This implies that for any $\Theta \in \mathbb{M}_{(1)}^{n, d}$, there exist u^{i} and v^{j} such that

$$
\begin{aligned}
\left\|\Theta-u^{i} \cdot\left(v^{j}\right)^{\top}\right\|_{\mathrm{F}} & =\left\|u \cdot v^{\top}-u^{i} \cdot v^{\top}+u^{i} \cdot v^{\top}-u^{i} \cdot\left(v^{j}\right)^{\top}\right\|_{\mathrm{F}} \\
& =\left\|\left(u-u^{i}\right) \cdot v^{\top}+u^{i} \cdot\left(v-v^{j}\right)^{\top}\right\|_{\mathrm{F}} \\
& \leq\left\|u-u^{i}\right\|_{2}+\left\|v-v^{j}\right\|_{2} \leq \epsilon,
\end{aligned}
$$

which means $\left\{u^{i} \cdot\left(v^{j}\right)^{\top}\right\}_{i=1, \ldots, N_{1}, j=1, \ldots, N_{2}}$ is a ϵ-net of $\mathbb{M}_{(1)}^{n, d}$. By Proposition 2.1 of Lecture 6 , we have

$$
N_{1} \leq(1+4 / \epsilon)^{n} \quad \text { and } \quad N_{2} \leq(1+4 / \epsilon)^{d}
$$

Combining all the results gives us

$$
\log N\left(\epsilon, \mathbb{M}_{(1)}^{n, d},\|\cdot\|_{\mathrm{F}}\right) \leq \log N_{1}+\log N_{2} \leq(n+d) \log (1+4 / \epsilon)
$$

