Math 281C Homework 3 Solutions

1. Let \mathcal{H}_k denote the indicators of all closed half-spaces in \mathbb{R}^k , i.e. $\mathcal{H}_k = \{x \mapsto I(\langle a, x \rangle + b \leq 0) : a \in \mathbb{R}^k, b \in \mathbb{R}\}$. Show that the VC dimension of \mathcal{H}_k is exactly equal to k + 1.

Solution: First we show that $\mathcal{V}(\mathcal{H}_k) \geq k+1$. Consider the set $\{x_1, \ldots, x_{k+1}\}$ with $x_i = e_i$, for $i = 1, \ldots, k$, and $x_{k+1} = 0$. For any binary labels $\{y_1, \ldots, y_{k+1}\} \in \{0, 1\}^{k+1}$, let $a_i = y_{k+1} - y_i$, for $i = 1, \ldots, k$, and $b = -y_{k+1} + 1/2$, then the classifier $I(\langle a, x \rangle + b \leq 0)$ realizes the labels. This shows that the set $\{x_1, \ldots, x_{k+1}\}$ is shattered by \mathcal{H}_k .

Then we show that $\mathcal{V}(\mathcal{H}_k) \leq k+1$. In the following proof, we denote $f_{a,b}(x) = \langle a, x \rangle + b$.

<u>Method 1</u>: The function class $\{f_{a,b} | a \in \mathbb{R}^k, b \in \mathbb{R}\}$ is a vector space of dimension k + 1, then the result follows by Example 2.2 in Lecture 5.

<u>Method 2</u>: Suppose there is a set $\{x_1, \ldots, x_{k+2}\}$ that is shattered by \mathcal{H}_k . By Radon theorem, the set can be partitioned into two disjoint subsets A and B such that $\operatorname{conv}(A) \cap \operatorname{conv}(B) \neq \emptyset$. Since $\{x_1, \ldots, x_{k+2}\}$ is shattered by \mathcal{H}_k , there are $a \in \mathbb{R}^k$ and $b \in \mathbb{R}$ such that for any $x \in A, f_{a,b}(x) \leq 0$ and for any $x \in B, f_{a,b}(x) > 0$. This further means that for any $x \in \operatorname{conv}(A), f_{a,b}(x) \leq 0$, and for any $x \in \operatorname{conv}(B), f_{a,b}(x) > 0$, which is contradictory with $\operatorname{conv}(A) \cap \operatorname{conv}(B) \neq \emptyset$.

2. Consider the sphere $S_{a,b} = \{x \in \mathbb{R}^k : \|x - a\|_2 \leq b\}$, where $(a, b) \in \mathbb{R}^k \times \mathbb{R}_+$ specify its center and radius, respectively. Define the function $f_{a,b}(x) = \|x\|_2^2 - 2\sum_{j=1}^k a_j x_j + \|a\|_2^2 - b^2$, so that $S_{a,b} = \{x \in \mathbb{R}^k : f_{a,b}(x) \leq 0\}$. Let $\mathcal{S}_k = \{x \mapsto I\{f_{a,b}(x) \leq 0\} : a \in \mathbb{R}^k, b \geq 0\}$. Show that the VC dimension of \mathcal{S}_k is at most k + 2.

Solution: For any $x \in \mathbb{R}^k$, define $\phi(x) = (x_1, \ldots, x_k, ||x||_2^2)^\top : \mathbb{R}^k \to \mathbb{R}^{k+1}$. Then $f_{a,b}(x) = \langle u, \phi(x) \rangle + v$, with $u = (-2a_1, \ldots, -2a_k, 1)^\top$ and $v = ||a||_2^2 - b$. In the following proof, we denote $g_{u,v}(x) = \langle u, \phi(x) \rangle + v$.

<u>Method 1</u>: The function class $\{g_{u,v}|u \in \mathbb{R}^{k+1}, v \in \mathbb{R}\}$ is a vector space with dimension k + 2, and it contains the function class $\{f_{a,b}|a \in \mathbb{R}^k, b \in \mathbb{R}_+\}$. Applying Example 2.2 in Lecture 5 to this larger vector space completes the proof.

<u>Method 2</u>: Suppose there is a set $\{x_1, \ldots, x_{k+3}\}$ that is shattered by \mathcal{S}_k , then $\{\phi(x_1), \ldots, \phi(x_{k+3})\}$ is shattered by \mathcal{H}_{k+1} , where \mathcal{H}_{k+1} is defined in Question 1. This is a contradiction with $\mathcal{V}(\mathcal{H}_{k+1}) \leq k+2$.

- 3. Consider the class of all spheres in \mathbb{R}^2 : \mathcal{S}_2 , where \mathcal{S}_k is defined in question 2.
 - (a) Show that S_2 can shatter any subset of three points that are not collinear.

Solution: There are $2^3 = 8$ possible ways to label 3 points that are not collinear. We omit the graphs but it's easy to see that circular classifiers can realize these labels.

(b) Conclude that the VC dimension of S_2 is 3.

Solution: We prove the general result that $\mathcal{V}(\mathcal{S}_k) = k + 1$.

First we show that $\mathcal{V}(\mathcal{S}_k) \ge k+1$. Consider the set $\{x_1, \ldots, x_{k+1}\}$ with $x_i = e_i$, for $i = 1, \ldots, k$, and $x_{k+1} = 0$ as in Question 1. For any binary labels, suppose the subset A contains the points labeled as 1. The result is trivial if $A = \emptyset$. If $A \neq \emptyset$, we consider the sphere with the center $a = \sum_{i:e_i \in A} e_i$ and the radius $b = \sqrt{|A| - 1}$. Then the classifier $I\{f_{a,b}(x) \le 0\}$ realizes the labels. This means that the set $\{x_1, \ldots, x_{k+1}\}$ is shattered by \mathcal{S}_k .

Then we show that $\mathcal{V}(\mathcal{S}_k) \leq k+1$. If there is a set $V = \{x_1, \ldots, x_{k+2}\}$ shattered by \mathcal{S}_k . Then there is a Radon partition $V = A \cup B$, such that we have a sphere S_A that contains A but not B, and another sphere S_B that contains B but not A. Whether $S_A \cap S_B = \emptyset$ or not, we can find a hyperplane that separates A and B. This is a contradiction, with the argument in Question 1.