Math 281C Homework 3 Solutions

1. Let \mathcal{H}_{k} denote the indicators of all closed half-spaces in \mathbb{R}^{k}, i.e. $\mathcal{H}_{k}=\left\{x \mapsto I(\langle a, x\rangle+b \leq 0): a \in \mathbb{R}^{k}, b \in\right.$ $\mathbb{R}\}$. Show that the VC dimension of \mathcal{H}_{k} is exactly equal to $k+1$.
Solution: First we show that $\mathcal{V}\left(\mathcal{H}_{k}\right) \geq k+1$. Consider the set $\left\{x_{1}, \ldots, x_{k+1}\right\}$ with $x_{i}=e_{i}$, for $i=1, \ldots, k$, and $x_{k+1}=0$. For any binary labels $\left\{y_{1}, \ldots, y_{k+1}\right\} \in\{0,1\}^{k+1}$, let $a_{i}=y_{k+1}-y_{i}$, for $i=1, \ldots, k$, and $b=-y_{k+1}+1 / 2$, then the classifier $I(\langle a, x\rangle+b \leq 0)$ realizes the labels. This shows that the set $\left\{x_{1}, \ldots, x_{k+1}\right\}$ is shattered by \mathcal{H}_{k}.
Then we show that $\mathcal{V}\left(\mathcal{H}_{k}\right) \leq k+1$. In the following proof, we denote $f_{a, b}(x)=\langle a, x\rangle+b$.
Method 1: The function class $\left\{f_{a, b} \mid a \in \mathbb{R}^{k}, b \in \mathbb{R}\right\}$ is a vector space of dimension $k+1$, then the result follows by Example 2.2 in Lecture 5 .

Method 2: Suppose there is a set $\left\{x_{1}, \ldots, x_{k+2}\right\}$ that is shattered by \mathcal{H}_{k}. By Radon theorem, the set can be partitioned into two disjoint subsets A and B such that $\operatorname{conv}(A) \cap \operatorname{conv}(B) \neq \varnothing$. Since $\left\{x_{1}, \ldots, x_{k+2}\right\}$ is shattered by \mathcal{H}_{k}, there are $a \in \mathbb{R}^{k}$ and $b \in \mathbb{R}$ such that for any $x \in A, f_{a, b}(x) \leq 0$ and for any $x \in B, f_{a, b}(x)>0$. This further means that for any $x \in \operatorname{conv}(A), f_{a, b}(x) \leq 0$, and for any $x \in \operatorname{conv}(B), f_{a, b}(x)>0$, which is contradictory with $\operatorname{conv}(A) \cap \operatorname{conv}(B) \neq \varnothing$.
2. Consider the sphere $S_{a, b}=\left\{x \in \mathbb{R}^{k}:\|x-a\|_{2} \leq b\right\}$, where $(a, b) \in \mathbb{R}^{k} \times \mathbb{R}_{+}$specify its center and radius, respectively. Define the function $f_{a, b}(x)=\|x\|_{2}^{2}-2 \sum_{j=1}^{k} a_{j} x_{j}+\|a\|_{2}^{2}-b^{2}$, so that $S_{a, b}=\left\{x \in \mathbb{R}^{k}: f_{a, b}(x) \leq\right.$ $0\}$. Let $\mathcal{S}_{k}=\left\{x \mapsto I\left\{f_{a, b}(x) \leq 0\right\}: a \in \mathbb{R}^{k}, b \geq 0\right\}$. Show that the VC dimension of \mathcal{S}_{k} is at most $k+2$.

Solution: For any $x \in \mathbb{R}^{k}$, define $\phi(x)=\left(x_{1}, \ldots, x_{k},\|x\|_{2}^{2}\right)^{\top}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k+1}$. Then $f_{a, b}(x)=\langle u, \phi(x)\rangle+v$, with $u=\left(-2 a_{1}, \ldots,-2 a_{k}, 1\right)^{\top}$ and $v=\|a\|_{2}^{2}-b$. In the following proof, we denote $g_{u, v}(x)=\langle u, \phi(x)\rangle+v$.
Method 1: The function class $\left\{g_{u, v} \mid u \in \mathbb{R}^{k+1}, v \in \mathbb{R}\right\}$ is a vector space with dimension $k+2$, and it contains the function class $\left\{f_{a, b} \mid a \in \mathbb{R}^{k}, b \in \mathbb{R}_{+}\right\}$. Applying Example 2.2 in Lecture 5 to this larger vector space completes the proof.

Method 2: Suppose there is a set $\left\{x_{1}, \ldots, x_{k+3}\right\}$ that is shattered by \mathcal{S}_{k}, then $\left\{\phi\left(x_{1}\right), \ldots, \phi\left(x_{k+3}\right)\right\}$ is shattered by \mathcal{H}_{k+1}, where \mathcal{H}_{k+1} is defined in Question 1. This is a contradiction with $\mathcal{V}\left(\mathcal{H}_{k+1}\right) \leq k+2$.
3. Consider the class of all spheres in $\mathbb{R}^{2}: \mathcal{S}_{2}$, where \mathcal{S}_{k} is defined in question 2 .
(a) Show that \mathcal{S}_{2} can shatter any subset of three points that are not collinear.

Solution: There are $2^{3}=8$ possible ways to label 3 points that are not collinear. We omit the graphs but it's easy to see that circular classifiers can realize these labels.
(b) Conclude that the VC dimension of \mathcal{S}_{2} is 3 .

Solution: We prove the general result that $\mathcal{V}\left(\mathcal{S}_{k}\right)=k+1$.
First we show that $\mathcal{V}\left(\mathcal{S}_{k}\right) \geq k+1$. Consider the set $\left\{x_{1}, \ldots, x_{k+1}\right\}$ with $x_{i}=e_{i}$, for $i=1, \ldots, k$, and $x_{k+1}=0$ as in Question 1. For any binary labels, suppose the subset A contains the points labeled as 1. The result is trivial if $A=\varnothing$. If $A \neq \varnothing$, we consider the sphere with the center $a=\sum_{i: e_{i} \in A} e_{i}$ and the radius $b=\sqrt{|A|-1}$. Then the classifier $I\left\{f_{a, b}(x) \leq 0\right\}$ realizes the labels. This means that the set $\left\{x_{1}, \ldots, x_{k+1}\right\}$ is shattered by \mathcal{S}_{k}.

Then we show that $\mathcal{V}\left(\mathcal{S}_{k}\right) \leq k+1$. If there is a set $V=\left\{x_{1}, \ldots, x_{k+2}\right\}$ shattered by \mathcal{S}_{k}. Then there is a Radon partition $V=A \cup B$, such that we have a sphere S_{A} that contains A but not B, and another sphere S_{B} that contains B but not A. Whether $S_{A} \cap S_{B}=\varnothing$ or not, we can find a hyperplane that separates A and B. This is a contradiction, with the argument in Question 1.

