Math 281C Homework 3

Due: May 1, 5 pm

- 1. Let \mathcal{H}_k denote the indicators of all closed half-spaces in \mathbb{R}^k , i.e. $\mathcal{H}_k = \{x \mapsto I(\langle a, x \rangle + b \leq 0) : a \in \mathbb{R}^k, b \in \mathbb{R}\}$. Show that the VC dimension of \mathcal{H}_k is exactly equal to k + 1.
- 2. Consider the sphere $S_{a,b} = \{x \in \mathbb{R}^k : \|x a\|_2 \le b\}$, where $(a,b) \in \mathbb{R}^k \times \mathbb{R}_+$ specify its center and radius, respectively. Define the function $f_{a,b}(x) = \|x\|_2^2 2\sum_{j=1}^k a_j x_j + \|a\|_2^2 b^2$, so that $S_{a,b} = \{x \in \mathbb{R}^k : f_{a,b}(x) \le 0\}$. Let $\mathcal{S}_k = \{x \mapsto I\{f_{a,b}(x) \le 0\} : a \in \mathbb{R}^k, b \ge 0\}$. Show that the VC dimension of \mathcal{S}_k is at most k + 2.
- 3. Consider the class of all spheres in \mathbb{R}^2 : \mathcal{S}_2 , where \mathcal{S}_k is defined in question 2.
 - (a) Show that S_2 can shatter any subset of three points that are not collinear.
 - (b) Conclude that the VC dimension of S_2 is 3.