Math 281C Homework 3

Due: May 1, 5 pm

1. Let \mathcal{H}_{k} denote the indicators of all closed half-spaces in \mathbb{R}^{k}, i.e. $\mathcal{H}_{k}=\left\{x \mapsto I(\langle a, x\rangle+b \leq 0): a \in \mathbb{R}^{k}, b \in\right.$ $\mathbb{R}\}$. Show that the VC dimension of \mathcal{H}_{k} is exactly equal to $k+1$.
2. Consider the sphere $S_{a, b}=\left\{x \in \mathbb{R}^{k}:\|x-a\|_{2} \leq b\right\}$, where $(a, b) \in \mathbb{R}^{k} \times \mathbb{R}_{+}$specify its center and radius, respectively. Define the function $f_{a, b}(x)=\|x\|_{2}^{2}-2 \sum_{j=1}^{k} a_{j} x_{j}+\|a\|_{2}^{2}-b^{2}$, so that $S_{a, b}=\left\{x \in \mathbb{R}^{k}: f_{a, b}(x) \leq\right.$ $0\}$. Let $\mathcal{S}_{k}=\left\{x \mapsto I\left\{f_{a, b}(x) \leq 0\right\}: a \in \mathbb{R}^{k}, b \geq 0\right\}$. Show that the VC dimension of \mathcal{S}_{k} is at most $k+2$.
3. Consider the class of all spheres in $\mathbb{R}^{2}: \mathcal{S}_{2}$, where \mathcal{S}_{k} is defined in question 2 .
(a) Show that \mathcal{S}_{2} can shatter any subset of three points that are not collinear.
(b) Conclude that the VC dimension of \mathcal{S}_{2} is 3 .
