Math 281C Homework 1 Solution

1. Let $U \in \mathbb{R}$ be a random variable such that $\mathbb{E}[U]=0$ and $a \leq U \leq b$ almost surely, for some constants $b \geq a$. Prove that for any $\lambda \geq 0$,

$$
\Psi_{U}(\lambda):=\log \mathbb{E} e^{\lambda U} \leq(b-a)^{2} \lambda^{2} / 8
$$

Solution: By Taylor expansion around 0,

$$
\Psi_{U}(\lambda)=\Psi_{U}(0)+\lambda \Psi_{U}^{\prime}(0)+\lambda^{2} \Psi_{U}^{\prime \prime}\left(\lambda^{\prime}\right) / 2
$$

for some $0 \leq \lambda^{\prime} \leq \lambda$. It can be calculated that $\Psi_{U}(0)=\Psi_{U}^{\prime}(0)=0$, and

$$
\Psi_{U}^{\prime \prime}(\lambda)=\mathbb{E}_{\lambda}\left[U^{2}\right]-\left(\mathbb{E}_{\lambda}[U]\right)^{2}
$$

where

$$
\mathbb{E}_{\lambda}[f(U)]=\mathbb{E}\left[f(U) e^{\lambda U}\right] / \mathbb{E}\left[e^{\lambda U}\right]
$$

for any $\lambda \geq 0$. This fact means that $\Psi_{U}^{\prime \prime}(\lambda)$ is the variance of another random variable that is also bounded on $[a, b]$ (see details in Lecture 3), so $\Psi_{U}^{\prime \prime}(\lambda) \leq(b-a)^{2} / 4$. This completes the proof.
Remark: Bounded random variable $X \in[a, b]$ is sub-Gaussian with parameter $(b-a) / 2$.
2. Let $Z \sim \mathcal{N}(0,1)$. Prove that for any $t>0$,

$$
\frac{t}{\sqrt{2 \pi}\left(1+t^{2}\right)} e^{-t^{2} / 2} \leq \mathbb{P}(Z \geq t) \leq \frac{1}{\sqrt{2 \pi} t} e^{-t^{2} / 2}
$$

Solution: For the upper bound, by a change of variable $x=y+t$, we have

$$
\begin{aligned}
\mathbb{P}(Z \geq t) & =\frac{1}{\sqrt{2 \pi}} \int_{t}^{\infty} e^{-x^{2} / 2} \mathrm{~d} x=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-t^{2} / 2} e^{-t y} e^{-y^{2} / 2} \mathrm{~d} y \\
& \leq \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} \int_{0}^{\infty} e^{-t y} \mathrm{~d} y=\frac{1}{\sqrt{2 \pi} t} e^{-t^{2} / 2}
\end{aligned}
$$

For the lower bound, notice that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{t}{1+t^{2}} e^{-t^{2} / 2}=\frac{1-2 t^{2}-t^{4}}{\left(1+t^{2}\right)^{2}} e^{-t^{2} / 2}
$$

So,

$$
\begin{aligned}
\frac{t}{\sqrt{2 \pi}\left(1+t^{2}\right)} e^{-t^{2} / 2} & =\frac{1}{\sqrt{2 \pi}} \int_{t}^{\infty} \frac{x^{4}+2 x^{2}-1}{\left(1+x^{2}\right)^{2}} e^{-x^{2} / 2} \mathrm{~d} x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{t}^{\infty} 1-\frac{2}{\left(1+x^{2}\right)^{2}} e^{-x^{2} / 2} \mathrm{~d} x \leq \frac{1}{\sqrt{2 \pi}} \int_{t}^{\infty} e^{-x^{2} / 2} \mathrm{~d} x=\mathbb{P}(Z \geq t)
\end{aligned}
$$

This completes the proof.
Remark: In particular, when $t \geq 1$, the tail bound of $Z \sim \mathcal{N}(0,1)$ is $\mathbb{P}(Z \geq t) \lesssim e^{-t^{2} / 2}$.
3. Consider the function

$$
h(u)=(1+u) \log (1+u)-u
$$

where $u>-1$. Prove the for any $u \geq 0$,

$$
h(u) \geq \frac{u^{2}}{2(1+u / 3)} .
$$

Solution: It's equivalent to show that

$$
f(u):=2(1+u)(1+u / 3) \log (1+u)-5 u^{2} / 3-2 u \geq 0 .
$$

It can be shown that

$$
f^{\prime}(u)=(4 u / 3+8 / 3) \log (1+u)-8 u / 3 \geq 0
$$

and $f(0)=0$. This completes the proof.
4. Assume $\left\{\xi_{i}, \mathcal{F}_{i}\right\}_{i=1}^{n}$ is a martingale difference sequence, where $\mathcal{F}_{0} \subseteq \mathcal{F}_{1} \subseteq \cdots \mathcal{F}_{n}$ are σ-fields. That is, each ξ_{i} is \mathcal{F}_{i}-measurable and $\mathbb{E}\left[\xi_{i} \mid \mathcal{F}_{i-1}\right]=0$ almost surely. Moreover, the conditional distribution of ξ_{n} given \mathcal{F}_{n-1} is supported on an interval with width bounded by R_{n}. Show that

$$
\mathbb{E}\left[e^{\lambda \xi_{n}} \mid \mathcal{F}_{n-1}\right] \leq e^{\lambda^{2} R_{n}^{2} / 8}
$$

Solution: We define

$$
\Psi_{\xi_{n}}(\lambda):=\log \mathbb{E}\left[e^{\lambda \xi_{n}} \mid \mathcal{F}_{n-1}\right]
$$

By Taylor expansion around 0 ,

$$
\Psi_{\xi_{n}}(\lambda)=\Psi_{\xi_{n}}(0)+\lambda \Psi_{\xi_{n}}^{\prime}(0)+\lambda^{2} \Psi_{\xi_{n}}^{\prime \prime}\left(\lambda^{\prime}\right) / 2
$$

for some $0 \leq \lambda^{\prime} \leq \lambda$. Using exactly the same argument as in question 1 gives the desired result.

