
Math 281C Homework 1 Solution

1. Let U ∈ R be a random variable such that E[U] = 0 and a ≤ U ≤ b almost surely, for some constants
b ≥ a. Prove that for any λ ≥ 0,

ΨU(λ) ∶= logEeλU ≤ (b − a)2λ2/8.

Solution: By Taylor expansion around 0,

ΨU(λ) = ΨU(0) + λΨ′

U(0) + λ2Ψ′′

U(λ′)/2,

for some 0 ≤ λ′ ≤ λ. It can be calculated that ΨU(0) = Ψ′

U(0) = 0, and

Ψ′′

U(λ) = Eλ[U2] − (Eλ[U])2,

where
Eλ[f(U)] = E[f(U)eλU ]/E[eλU ],

for any λ ≥ 0. This fact means that Ψ′′

U(λ) is the variance of another random variable that is also
bounded on [a, b] (see details in Lecture 3), so Ψ′′

U(λ) ≤ (b − a)2/4. This completes the proof.

Remark: Bounded random variable X ∈ [a, b] is sub-Gaussian with parameter (b − a)/2.

2. Let Z ∼ N(0,1). Prove that for any t > 0,

t√
2π(1 + t2)

e−t
2
/2 ≤ P(Z ≥ t) ≤ 1√

2πt
e−t

2
/2.

Solution: For the upper bound, by a change of variable x = y + t, we have
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For the lower bound, notice that
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So,
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This completes the proof.

Remark: In particular, when t ≥ 1, the tail bound of Z ∼ N(0,1) is P(Z ≥ t) ≲ e−t2/2.

3. Consider the function
h(u) = (1 + u) log(1 + u) − u,

where u > −1. Prove the for any u ≥ 0,

h(u) ≥ u2

2(1 + u/3) .



Solution: It’s equivalent to show that

f(u) ∶= 2(1 + u)(1 + u/3) log(1 + u) − 5u2/3 − 2u ≥ 0.

It can be shown that
f ′(u) = (4u/3 + 8/3) log(1 + u) − 8u/3 ≥ 0,

and f(0) = 0. This completes the proof.

4. Assume {ξi,Fi}ni=1 is a martingale difference sequence, where F0 ⊆ F1 ⊆ ⋯Fn are σ-fields. That is,
each ξi is Fi-measurable and E[ξi∣Fi−1] = 0 almost surely. Moreover, the conditional distribution of ξn
given Fn−1 is supported on an interval with width bounded by Rn. Show that

E[eλξn ∣Fn−1] ≤ eλ
2R2

n/8.

Solution: We define
Ψξn(λ) ∶= logE[eλξn ∣Fn−1].

By Taylor expansion around 0,

Ψξn(λ) = Ψξn(0) + λΨ′

ξn(0) + λ
2Ψ′′

ξn(λ
′)/2,

for some 0 ≤ λ′ ≤ λ. Using exactly the same argument as in question 1 gives the desired result.


