Math 281 A Homework 6 Solution

1. Let {X;,Y;}~, be ii.d. random vectors with ¥; € {0,1}, and
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The distribution of X; is non-degenerate, but unknown. Do we have closed form of MLE (&, ¢ )? Derive
the asymptotic distribution of (&, 3).

Solution: Denote

1

() = 1+ew’

then the log likelihood function is

(e B) = S [Yilog(W(a+ BX,)) + (1- Vi) log(1 - T(a + BX,))],

i=1

and

V(e 8) = 3 ¢

Y; - U(a+ X))V (a+ BX;) [ 1 ]
o V(a+BX;)(1-V(a+pX;)) .
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The MLE (&, B) is the root of the above display, which doesn’t have closed form. For the asymptotic
distribution of (&, ), we calculate the Fisher information,

(V' (o + BX))? 1 X
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which is invertible when the distribution of X is non-degenerate. Hence,
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2. Let {X;}, be ii.d. from Poisson(1/6).
(a) Calculate the Fisher information Iy in one observation;
Solution: Log likelihood function is
1
£(0) = i xlogf - log x!.
It can be calculated that
Ig = 9*3
(b) Derive the MLE 6 and show its asymptotic distribution.

Solution: The MLE is

>
1}
i =

and we have
V(6 -0) % N(0,6%).

3. Let {X;}™, be iid. from N(6,6).



(a)

Calculate the Fisher information Iy in one observation;

Solution: Log likelihood function is

29 1 1
0(0) = —;—0 = 510g9 +x— 510g(27r),
and the Fisher information is
B 20+ 1
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Derive the MLE 6 and show its asymptotic distribution.

Solution: The MLE is
4X2+1-1
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and we have
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Calculate the Kullback-Leibler divergence between two exponential distributions with different
scale parameters, when is it maximal?

Solution: The Kullback-Leibler divergence is

Sr(X) =1—A+logi

M(X) =Ey, lo .
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It’s maximal when A = Ag.
Calculate the Kullback-Leibler divergence between two normal distributions with different location
and scale parameters, when is it maximal?

Solution: The Kullback-Leibler divergence is
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It’s maximal when p = pp and o = 0.



