Math 281A Homework 6 Solution

1. Let $\left\{X_{i}, Y_{i}\right\}_{i=1}^{n}$ be i.i.d. random vectors with $Y_{i} \in\{0,1\}$, and

$$
\mathbb{P}_{\alpha, \beta}\left(Y_{i}=1 \mid X_{i}=x\right)=\frac{1}{1+e^{-\alpha-\beta x}}
$$

The distribution of X_{i} is non-degenerate, but unknown. Do we have closed form of MLE $(\hat{\alpha}, \hat{\beta})$? Derive the asymptotic distribution of $(\hat{\alpha}, \hat{\beta})$.

Solution: Denote

$$
\Psi(u)=\frac{1}{1+e^{-u}}
$$

then the log likelihood function is

$$
\ell(\alpha, \beta)=\sum_{i=1}^{n}\left[Y_{i} \log \left(\Psi\left(\alpha+\beta X_{i}\right)\right)+\left(1-Y_{i}\right) \log \left(1-\Psi\left(\alpha+\beta X_{i}\right)\right)\right]
$$

and

$$
\nabla \ell(\alpha, \beta)=\sum_{i=1}^{n} \frac{\left(Y_{i}-\Psi\left(\alpha+\beta X_{i}\right)\right) \Psi^{\prime}\left(\alpha+\beta X_{i}\right)}{\Psi\left(\alpha+\beta X_{i}\right)\left(1-\Psi\left(\alpha+\beta X_{i}\right)\right)}\left[\begin{array}{c}
1 \\
X_{i}
\end{array}\right] .
$$

The MLE $(\hat{\alpha}, \hat{\beta})$ is the root of the above display, which doesn't have closed form. For the asymptotic distribution of $(\hat{\alpha}, \hat{\beta})$, we calculate the Fisher information,

$$
I_{\alpha, \beta}=\mathbb{E} \frac{\left(\Psi^{\prime}(\alpha+\beta X)\right)^{2}}{\Psi(\alpha+\beta X)(1-\Psi(\alpha+\beta X))}\left[\begin{array}{cc}
1 & X \\
X & X^{2}
\end{array}\right]
$$

which is invertible when the distribution of X is non-degenerate. Hence,

$$
\sqrt{n}\left(\left[\begin{array}{l}
\hat{\alpha} \\
\hat{\beta}
\end{array}\right]-\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]\right) \xrightarrow{d} N\left(0, I_{\alpha, \beta}^{-1}\right)
$$

2. Let $\left\{X_{i}\right\}_{i=1}^{n}$ be i.i.d. from Poisson(1/ $\left.\theta\right)$.
(a) Calculate the Fisher information I_{θ} in one observation;

Solution: Log likelihood function is

$$
\ell(\theta)=-\frac{1}{\theta}-x \log \theta-\log x!
$$

It can be calculated that

$$
I_{\theta}=\frac{1}{\theta^{3}} .
$$

(b) Derive the MLE $\hat{\theta}$ and show its asymptotic distribution.

Solution: The MLE is

$$
\hat{\theta}=\frac{1}{\bar{X}}
$$

and we have

$$
\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{d} N\left(0, \theta^{3}\right) .
$$

3. Let $\left\{X_{i}\right\}_{i=1}^{n}$ be i.i.d. from $N(\theta, \theta)$.
(a) Calculate the Fisher information I_{θ} in one observation;

Solution: Log likelihood function is

$$
\ell(\theta)=-\frac{x^{2}}{2 \theta}-\frac{\theta}{2}-\frac{1}{2} \log \theta+x-\frac{1}{2} \log (2 \pi),
$$

and the Fisher information is

$$
I_{\theta}=\frac{2 \theta+1}{2 \theta^{2}} .
$$

(b) Derive the MLE $\hat{\theta}$ and show its asymptotic distribution.

Solution: The MLE is

$$
\hat{\theta}=\frac{\sqrt{4 \overline{X^{2}}+1}-1}{2},
$$

and we have

$$
\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{d} N\left(0, \frac{2 \theta^{2}}{2 \theta+1}\right) .
$$

4. (a) Calculate the Kullback-Leibler divergence between two exponential distributions with different scale parameters, when is it maximal?

Solution: The Kullback-Leibler divergence is

$$
M(\lambda)=\mathbb{E}_{\lambda_{0}} \log \frac{f_{\lambda}(X)}{f_{\lambda_{0}}(X)}=1-\frac{\lambda}{\lambda_{0}}+\log \frac{\lambda}{\lambda_{0}} .
$$

It's maximal when $\lambda=\lambda_{0}$.
(b) Calculate the Kullback-Leibler divergence between two normal distributions with different location and scale parameters, when is it maximal?

Solution: The Kullback-Leibler divergence is

$$
M(\mu, \sigma)=\mathbb{E}_{\mu_{0}, \sigma_{0}} \log \frac{f_{\mu, \sigma}(X)}{f_{\mu_{0}, \sigma_{0}}(X)}=\frac{1}{2}-\frac{\left(\mu_{0}-\mu\right)^{2}+\sigma_{0}^{2}}{2 \sigma^{2}}+\log \frac{\sigma_{0}}{\sigma} .
$$

It's maximal when $\mu=\mu_{0}$ and $\sigma=\sigma_{0}$.

