Math 281A Homework 6

Due: Nov 21, in class

1. Let $\{X_i, Y_i\}_{i=1}^n$ be i.i.d. random vectors with $Y_i \in \{0, 1\}$, and

$$\mathbb{P}_{\alpha,\beta}(Y_i = 1 | X_i = x) = \frac{1}{1 + e^{-\alpha - \beta x}}.$$

The distribution of X_i is non-degenerate, but unknown. Do we have closed form of MLE $(\hat{\alpha}, \hat{\beta})$? Derive the asymptotic distribution of $(\hat{\alpha}, \hat{\beta})$.

- 2. Let $\{X_i\}_{i=1}^n$ be i.i.d. from Poisson $(1/\theta)$.
 - (a) Calculate the Fisher information I_{θ} in one observation;
 - (b) Derive the MLE $\hat{\theta}$ and show its asymptotic distribution.
- 3. Let $\{X_i\}_{i=1}^n$ be i.i.d. from $N(\theta, \theta)$.
 - (a) Calculate the Fisher information I_{θ} in one observation;
 - (b) Derive the MLE $\hat{\theta}$ and show its asymptotic distribution.
- 4. (a) Calculate the Kullback-Leibler divergence between two exponential distributions with different scale parameters, when is it maximal?
 - (b) Calculate the Kullback-Leibler divergence between two normal distributions with different location and scale parameters, when is it maximal?