
Math 281A Homework 2 Solution

1. Let X1, . . . ,Xn be i.i.d. from N(0,1), show that X̄ and (X1 − X̄, . . . ,Xn − X̄) are independent.

Solution: It’s easy to see that (X̄,X1 − X̄, . . . ,Xn − X̄) is multivariate normal, so showing the desired
independence is equivalent as checking Cov(X̄,Xi − X̄) = 0, for i = 1,2, . . . , n. Now,

Cov(X̄,Xi − X̄) = Cov(X̄,Xi) −Var(X̄) =
Var(Xi)

n
−Var(X̄) =

1

n
−

1

n
= 0.

2. Suppose that random vector (X,Y ) has probability density function

1

π
e−

x2
+y2

2 I(xy > 0).

Does (X,Y ) possess a multivariate normal distribution? Find the marginal distributions.

Solution: No, the density function is only defined on two quadrants. Marginally, when x > 0,

fX(x) = ∫
∞

0

1

π
e−

x2
+y2

2 dy =
1
√

2π
e−

x2

2 ,

and when x < 0,

fX(x) = ∫
0

−∞

1

π
e−

x2
+y2

2 dy =
1
√

2π
e−

x2

2 ,

and fX(0) = 0.

3. Suppose Tn and Sn are sequences of estimators such that

√
n(Tn − θ)

d
Ð→ Nk(0,Σ), and Sn

P
Ð→ Σ,

for a certain vector θ and a nonsingular matrix Σ. Show that

(a) Sn is nonsingular with probability tending to one;

Solution 1: First notice that Sn
P
Ð→ Σ implies ∣Sn∣

P
Ð→ ∣Σ∣, so for any ε > 0,

P(∣Sn∣ > ∣Σ∣ − ε)→ 1.

Since ∣Σ∣ > 0, taking ε = ∣Σ∣/2 gives us

P(∣Sn∣ > ∣Σ∣/2)→ 1,

which implies P(Sn is nonsingular)→ 1.

Solution 2: Denote Dn = Sn − Σ, and let σ̄(A) and σ(A) be the largest and smallest singular

values of matrix A respectively. Sn
P
Ð→ Σ gives us for any ε > 0,

P(σ̄(Dn) < ε)→ 1. (1)

Since Sn =Dn +Σ, we have the following inequality derived from triangle inequality,

σ(Sn) ≥ σ(Σ) − σ̄(Dn).

Then, because Σ is nonsingular, σ(Σ) > 0, we consider

P(σ(Sn) > σ(Σ)/2) ≥ P(σ(Σ) − σ̄(Dn) > σ(Σ)/2)

= P(σ̄(Dn) < σ(Σ)/2)→ 1,

where the last step comes from (1). This implies

P(Sn is nonsingular)→ 1.



(b) {θ ∶ n(Tn − θ)
⊺S−1n (Tn − θ) ≤ χ

2
k,α} is a confidence ellipsoid of asymptotic confidence level 1 − α.

Solution: The set {θ ∶ n(Tn − θ)
⊺S−1n (Tn − θ) ≤ χ

2
k,α} is only defined when S−1n exists, and from

(a) we know that P(S−1n exists) → 1. Now conditional on the event that S−1n exists, Sn
P
Ð→ Σ

implies n(Tn − θ)S
−1
n (Tn − θ) − n(Tn − θ)Σ

−1(Tn − θ)
P
Ð→ 0, and

√
n(Tn − θ)

d
Ð→ Nk(0,Σ) implies

n(Tn − θ)Σ
−1(Tn − θ)

d
Ð→ χ2

k. It follows from Slutsky’s theorem that

n(Tn − θ)S
−1
n (Tn − θ)

d
Ð→ χ2

k,

which completes the proof.

4. Suppose that Xm ∼ Binomial(m,p1), Yn ∼ Binomial(n, p2) and they are independent. To test H0 ∶ p1 =
p2 = a, we consider the test statistic

C2
m,n =

(Xm −ma)2

ma(1 − a)
+
(Yn − na)

2

na(1 − a)
.

(a) Find the limit distribution of C2
m,n as m,n→∞;

Solution: We can write Xm and Yn as

Xm =
m

∑
i=1

X̃i, and Yn =
n

∑
i=1

Ỹi,

where X̃i ∼ Bernoulli(p1) and Ỹi ∼ Bernoulli(p2). Under null hypothesis p1 = p2 = a, we have

Xm −ma
√
ma(1 − a)

d
Ð→ N(0,1), and

Yn − na
√
na(1 − a)

d
Ð→ N(0,1)

from central limit theorem. This leads us to the conclusion

C2
m,n

d
Ð→ χ2

2.

(b) How would you modify the test statistic if a were unknown? What’s the limit distribution after
modification? You don’t need to rigorously prove this question.

Solution: If a were unknown, then we replace it with its MLE

â =
Xm + Yn
m + n

in the test statistic. By doing this, we add one more restriction so that one degree of freedom is
sacrificed, and the limit distribution becomes χ2

1.


