Math 281A Homework 2 Solution

1. Let X_1, \ldots, X_n be i.i.d. from N(0,1), show that \overline{X} and $(X_1 - \overline{X}, \ldots, X_n - \overline{X})$ are independent.

Solution: It's easy to see that $(\bar{X}, X_1 - \bar{X}, \dots, X_n - \bar{X})$ is multivariate normal, so showing the desired independence is equivalent as checking $\text{Cov}(\bar{X}, X_i - \bar{X}) = 0$, for $i = 1, 2, \dots, n$. Now,

$$\operatorname{Cov}(\bar{X}, X_i - \bar{X}) = \operatorname{Cov}(\bar{X}, X_i) - \operatorname{Var}(\bar{X}) = \frac{\operatorname{Var}(X_i)}{n} - \operatorname{Var}(\bar{X}) = \frac{1}{n} - \frac{1}{n} = 0$$

2. Suppose that random vector (X, Y) has probability density function

$$\frac{1}{\pi}e^{-\frac{x^2+y^2}{2}}I(xy>0).$$

Does (X, Y) possess a multivariate normal distribution? Find the marginal distributions.

Solution: No, the density function is only defined on two quadrants. Marginally, when x > 0,

$$f_X(x) = \int_0^\infty \frac{1}{\pi} e^{-\frac{x^2 + y^2}{2}} dy = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},$$

and when x < 0,

$$f_X(x) = \int_{-\infty}^0 \frac{1}{\pi} e^{-\frac{x^2 + y^2}{2}} dy = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},$$

and $f_X(0) = 0$.

3. Suppose T_n and S_n are sequences of estimators such that

$$\sqrt{n}(T_n - \theta) \xrightarrow{d} N_k(0, \Sigma)$$
, and $S_n \xrightarrow{P} \Sigma$,

for a certain vector θ and a nonsingular matrix Σ . Show that

(a) S_n is nonsingular with probability tending to one;

Solution 1: First notice that $S_n \xrightarrow{P} \Sigma$ implies $|S_n| \xrightarrow{P} |\Sigma|$, so for any $\epsilon > 0$, $\mathbb{P}(|S_n| > |\Sigma| - \epsilon) \to 1.$

Since $|\Sigma| > 0$, taking $\epsilon = |\Sigma|/2$ gives us

$$\mathbb{P}(|S_n| > |\Sigma|/2) \to 1,$$

which implies $\mathbb{P}(S_n \text{ is nonsingular}) \to 1$.

Solution 2: Denote $D_n = S_n - \Sigma$, and let $\bar{\sigma}(A)$ and $\underline{\sigma}(A)$ be the largest and smallest singular values of matrix A respectively. $S_n \xrightarrow{P} \Sigma$ gives us for any $\epsilon > 0$,

$$\mathbb{P}(\bar{\sigma}(D_n) < \epsilon) \to 1. \tag{1}$$

Since $S_n = D_n + \Sigma$, we have the following inequality derived from triangle inequality,

$$\underline{\sigma}(S_n) \ge \underline{\sigma}(\Sigma) - \overline{\sigma}(D_n).$$

Then, because Σ is nonsingular, $\underline{\sigma}(\Sigma) > 0$, we consider

$$\mathbb{P}(\underline{\sigma}(S_n) > \underline{\sigma}(\Sigma)/2) \ge \mathbb{P}(\underline{\sigma}(\Sigma) - \overline{\sigma}(D_n) > \underline{\sigma}(\Sigma)/2) = \mathbb{P}(\overline{\sigma}(D_n) < \underline{\sigma}(\Sigma)/2) \to 1,$$

where the last step comes from (1). This implies

$$\mathbb{P}(S_n \text{ is nonsingular}) \to 1.$$

(b) $\{\theta : n(T_n - \theta)^{\mathsf{T}} S_n^{-1}(T_n - \theta) \le \chi_{k,\alpha}^2\}$ is a confidence ellipsoid of asymptotic confidence level $1 - \alpha$.

Solution: The set $\{\theta : n(T_n - \theta)^{\mathsf{T}} S_n^{-1}(T_n - \theta) \le \chi_{k,\alpha}^2\}$ is only defined when S_n^{-1} exists, and from (a) we know that $\mathbb{P}(S_n^{-1} \text{ exists}) \to 1$. Now conditional on the event that S_n^{-1} exists, $S_n \xrightarrow{P} \Sigma$ implies $n(T_n - \theta)S_n^{-1}(T_n - \theta) - n(T_n - \theta)\Sigma^{-1}(T_n - \theta) \xrightarrow{P} 0$, and $\sqrt{n}(T_n - \theta) \xrightarrow{d} N_k(0, \Sigma)$ implies $n(T_n - \theta)\Sigma^{-1}(T_n - \theta) \xrightarrow{d} \chi_k^2$. It follows from Slutsky's theorem that

$$n(T_n - \theta)S_n^{-1}(T_n - \theta) \xrightarrow{d} \chi_k^2,$$

which completes the proof.

4. Suppose that $X_m \sim \text{Binomial}(m, p_1), Y_n \sim \text{Binomial}(n, p_2)$ and they are independent. To test $H_0: p_1 = p_2 = a$, we consider the test statistic

$$C_{m,n}^{2} = \frac{(X_{m} - ma)^{2}}{ma(1 - a)} + \frac{(Y_{n} - na)^{2}}{na(1 - a)}.$$

(a) Find the limit distribution of $C_{m,n}^2$ as $m, n \to \infty$;

Solution: We can write X_m and Y_n as

$$X_m = \sum_{i=1}^m \tilde{X}_i$$
, and $Y_n = \sum_{i=1}^n \tilde{Y}_i$,

where $\tilde{X}_i \sim \text{Bernoulli}(p_1)$ and $\tilde{Y}_i \sim \text{Bernoulli}(p_2)$. Under null hypothesis $p_1 = p_2 = a$, we have

$$\frac{X_m - ma}{\sqrt{ma(1-a)}} \xrightarrow{d} N(0,1), \text{ and } \frac{Y_n - na}{\sqrt{na(1-a)}} \xrightarrow{d} N(0,1)$$

from central limit theorem. This leads us to the conclusion

$$C_{m,n}^2 \xrightarrow{d} \chi_2^2$$

(b) How would you modify the test statistic if *a* were unknown? What's the limit distribution after modification? You don't need to rigorously prove this question.

Solution: If a were unknown, then we replace it with its MLE

$$\hat{a} = \frac{X_m + Y_n}{m+n}$$

in the test statistic. By doing this, we add one more restriction so that one degree of freedom is sacrificed, and the limit distribution becomes χ_1^2 .