Math 281A Homework 2 Solution

1. Let X_{1}, \ldots, X_{n} be i.i.d. from $N(0,1)$, show that \bar{X} and $\left(X_{1}-\bar{X}, \ldots, X_{n}-\bar{X}\right)$ are independent.

Solution: It's easy to see that $\left(\bar{X}, X_{1}-\bar{X}, \ldots, X_{n}-\bar{X}\right)$ is multivariate normal, so showing the desired independence is equivalent as checking $\operatorname{Cov}\left(\bar{X}, X_{i}-\bar{X}\right)=0$, for $i=1,2, \ldots, n$. Now,

$$
\operatorname{Cov}\left(\bar{X}, X_{i}-\bar{X}\right)=\operatorname{Cov}\left(\bar{X}, X_{i}\right)-\operatorname{Var}(\bar{X})=\frac{\operatorname{Var}\left(X_{i}\right)}{n}-\operatorname{Var}(\bar{X})=\frac{1}{n}-\frac{1}{n}=0
$$

2. Suppose that random vector (X, Y) has probability density function

$$
\frac{1}{\pi} e^{-\frac{x^{2}+y^{2}}{2}} I(x y>0)
$$

Does (X, Y) possess a multivariate normal distribution? Find the marginal distributions.
Solution: No, the density function is only defined on two quadrants. Marginally, when $x>0$,

$$
f_{X}(x)=\int_{0}^{\infty} \frac{1}{\pi} e^{-\frac{x^{2}+y^{2}}{2}} \mathrm{~d} y=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

and when $x<0$,

$$
f_{X}(x)=\int_{-\infty}^{0} \frac{1}{\pi} e^{-\frac{x^{2}+y^{2}}{2}} \mathrm{~d} y=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

and $f_{X}(0)=0$.
3. Suppose T_{n} and S_{n} are sequences of estimators such that

$$
\sqrt{n}\left(T_{n}-\theta\right) \xrightarrow{d} N_{k}(0, \Sigma), \text { and } S_{n} \xrightarrow{P} \Sigma
$$

for a certain vector θ and a nonsingular matrix Σ. Show that
(a) S_{n} is nonsingular with probability tending to one;

Solution 1: First notice that $S_{n} \xrightarrow{P} \Sigma$ implies $\left|S_{n}\right| \xrightarrow{P}|\Sigma|$, so for any $\epsilon>0$,

$$
\mathbb{P}\left(\left|S_{n}\right|>|\Sigma|-\epsilon\right) \rightarrow 1
$$

Since $|\Sigma|>0$, taking $\epsilon=|\Sigma| / 2$ gives us

$$
\mathbb{P}\left(\left|S_{n}\right|>|\Sigma| / 2\right) \rightarrow 1
$$

which implies $\mathbb{P}\left(S_{n}\right.$ is nonsingular $) \rightarrow 1$.
Solution 2: Denote $D_{n}=S_{n}-\Sigma$, and let $\bar{\sigma}(A)$ and $\underline{\sigma}(A)$ be the largest and smallest singular values of matrix A respectively. $S_{n} \xrightarrow{P} \Sigma$ gives us for any $\epsilon>0$,

$$
\begin{equation*}
\mathbb{P}\left(\bar{\sigma}\left(D_{n}\right)<\epsilon\right) \rightarrow 1 . \tag{1}
\end{equation*}
$$

Since $S_{n}=D_{n}+\Sigma$, we have the following inequality derived from triangle inequality,

$$
\underline{\sigma}\left(S_{n}\right) \geq \underline{\sigma}(\Sigma)-\bar{\sigma}\left(D_{n}\right)
$$

Then, because Σ is nonsingular, $\underline{\sigma}(\Sigma)>0$, we consider

$$
\begin{aligned}
\mathbb{P}\left(\underline{\sigma}\left(S_{n}\right)>\underline{\sigma}(\Sigma) / 2\right) & \geq \mathbb{P}\left(\underline{\sigma}(\Sigma)-\bar{\sigma}\left(D_{n}\right)>\underline{\sigma}(\Sigma) / 2\right) \\
& =\mathbb{P}\left(\bar{\sigma}\left(D_{n}\right)<\underline{\sigma}(\Sigma) / 2\right) \rightarrow 1
\end{aligned}
$$

where the last step comes from (1). This implies

$$
\mathbb{P}\left(S_{n} \text { is nonsingular }\right) \rightarrow 1
$$

(b) $\left\{\theta: n\left(T_{n}-\theta\right)^{\top} S_{n}^{-1}\left(T_{n}-\theta\right) \leq \chi_{k, \alpha}^{2}\right\}$ is a confidence ellipsoid of asymptotic confidence level $1-\alpha$.

Solution: The set $\left\{\theta: n\left(T_{n}-\theta\right)^{\top} S_{n}^{-1}\left(T_{n}-\theta\right) \leq \chi_{k, \alpha}^{2}\right\}$ is only defined when S_{n}^{-1} exists, and from (a) we know that $\mathbb{P}\left(S_{n}^{-1}\right.$ exists $) \rightarrow 1$. Now conditional on the event that S_{n}^{-1} exists, $S_{n} \xrightarrow{P} \Sigma$ implies $n\left(T_{n}-\theta\right) S_{n}^{-1}\left(T_{n}-\theta\right)-n\left(T_{n}-\theta\right) \Sigma^{-1}\left(T_{n}-\theta\right) \xrightarrow{P} 0$, and $\sqrt{n}\left(T_{n}-\theta\right) \xrightarrow{d} N_{k}(0, \Sigma)$ implies $n\left(T_{n}-\theta\right) \Sigma^{-1}\left(T_{n}-\theta\right) \xrightarrow{d} \chi_{k}^{2}$. It follows from Slutsky's theorem that

$$
n\left(T_{n}-\theta\right) S_{n}^{-1}\left(T_{n}-\theta\right) \xrightarrow{d} \chi_{k}^{2},
$$

which completes the proof.
4. Suppose that $X_{m} \sim \operatorname{Binomial}\left(m, p_{1}\right), Y_{n} \sim \operatorname{Binomial}\left(n, p_{2}\right)$ and they are independent. To test $H_{0}: p_{1}=$ $p_{2}=a$, we consider the test statistic

$$
C_{m, n}^{2}=\frac{\left(X_{m}-m a\right)^{2}}{m a(1-a)}+\frac{\left(Y_{n}-n a\right)^{2}}{n a(1-a)} .
$$

(a) Find the limit distribution of $C_{m, n}^{2}$ as $m, n \rightarrow \infty$;

Solution: We can write X_{m} and Y_{n} as

$$
X_{m}=\sum_{i=1}^{m} \tilde{X}_{i}, \text { and } Y_{n}=\sum_{i=1}^{n} \tilde{Y}_{i}
$$

where $\tilde{X}_{i} \sim \operatorname{Bernoulli}\left(p_{1}\right)$ and $\tilde{Y}_{i} \sim \operatorname{Bernoulli}\left(p_{2}\right)$. Under null hypothesis $p_{1}=p_{2}=a$, we have

$$
\frac{X_{m}-m a}{\sqrt{m a(1-a)}} \stackrel{d}{\rightarrow} N(0,1), \text { and } \frac{Y_{n}-n a}{\sqrt{n a(1-a)}} \xrightarrow{d} N(0,1)
$$

from central limit theorem. This leads us to the conclusion

$$
C_{m, n}^{2} \xrightarrow{d} \chi_{2}^{2} .
$$

(b) How would you modify the test statistic if a were unknown? What's the limit distribution after modification? You don't need to rigorously prove this question.

Solution: If a were unknown, then we replace it with its MLE

$$
\hat{a}=\frac{X_{m}+Y_{n}}{m+n}
$$

in the test statistic. By doing this, we add one more restriction so that one degree of freedom is sacrificed, and the limit distribution becomes χ_{1}^{2}.

