
Math 281A Homework 2

Due: Oct 17, in class

1. Let X1, . . . ,Xn be i.i.d. from N(0,1), show that X̄ and (X1 − X̄, . . . ,Xn − X̄) are independent.

2. Suppose that random vector (X,Y ) has probability density function
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Does (X,Y ) possess a multivariate normal distribution? Find the marginal distributions.

3. Suppose Tn and Sn are sequences of estimators such that
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for a certain vector θ and a nonsingular matrix Σ. Show that

(a) Sn is nonsingular with probability tending to one;

(b) {θ ∶ n(Tn − θ)
⊺S−1n (Tn − θ) ≤ χ

2
k,α} is a confidence ellipsoid of asymptotic confidence level 1 − α.

4. Suppose that Xm ∼ Binomial(m,p1), Yn ∼ Binomial(n, p2) and they are independent. To test H0 ∶ p1 =
p2 = a, we consider the test statistic
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(a) Find the limit distribution of C2
m,n as m,n→∞;

(b) How would you modify the test statistic if a were unknown? What’s the limit distribution after
modification? You don’t need to rigorously prove this question.


