Math 281A Homework 2

Due: Oct 17, in class

1. Let X_{1}, \ldots, X_{n} be i.i.d. from $N(0,1)$, show that \bar{X} and $\left(X_{1}-\bar{X}, \ldots, X_{n}-\bar{X}\right)$ are independent.
2. Suppose that random vector (X, Y) has probability density function

$$
\frac{1}{\pi} e^{-\frac{x^{2}+y^{2}}{2}} I(x y>0)
$$

Does (X, Y) possess a multivariate normal distribution? Find the marginal distributions.
3. Suppose T_{n} and S_{n} are sequences of estimators such that

$$
\sqrt{n}\left(T_{n}-\theta\right) \xrightarrow{d} N_{k}(0, \Sigma), \text { and } S_{n} \xrightarrow{P} \Sigma,
$$

for a certain vector θ and a nonsingular matrix Σ. Show that
(a) S_{n} is nonsingular with probability tending to one;
(b) $\left\{\theta: n\left(T_{n}-\theta\right)^{\top} S_{n}^{-1}\left(T_{n}-\theta\right) \leq \chi_{k, \alpha}^{2}\right\}$ is a confidence ellipsoid of asymptotic confidence level $1-\alpha$.
4. Suppose that $X_{m} \sim \operatorname{Binomial}\left(m, p_{1}\right), Y_{n} \sim \operatorname{Binomial}\left(n, p_{2}\right)$ and they are independent. To test $H_{0}: p_{1}=$ $p_{2}=a$, we consider the test statistic

$$
C_{m, n}^{2}=\frac{\left(X_{m}-m a\right)^{2}}{m a(1-a)}+\frac{\left(Y_{n}-n a\right)^{2}}{n a(1-a)}
$$

(a) Find the limit distribution of $C_{m, n}^{2}$ as $m, n \rightarrow \infty$;
(b) How would you modify the test statistic if a were unknown? What's the limit distribution after modification? You don't need to rigorously prove this question.

