Math 281A Homework 1 Solution

1. Suppose $X_{n} \sim \operatorname{Binomial}\left(n, p_{n}\right)$, and $\lim _{n \rightarrow \infty} n p_{n}=\lambda>0$. Show that $X_{n} \xrightarrow{d} \operatorname{Poisson}(\lambda)$.

Solution: Denote $\lambda_{n}=n p_{n}$, then we have

$$
\begin{aligned}
\mathbb{P}\left(X_{n}=x\right) & =\binom{n}{x}\left(\frac{\lambda_{n}}{n}\right)^{x}\left(1-\frac{\lambda_{n}}{n}\right)^{n-x} \\
& =\frac{\lambda_{n}^{x}}{x!}\left(1-\frac{\lambda_{n}}{n}\right)^{n} \frac{n!}{(n-x)!n^{x}}\left(1-\frac{\lambda_{n}}{n}\right)^{-x}
\end{aligned}
$$

where

$$
\begin{aligned}
& \left(1-\frac{\lambda_{n}}{n}\right)^{n} \rightarrow e^{-\lambda} \\
& \frac{n!}{(n-x)!n^{x}}=\frac{(n-x+1) \cdots(n-1) n}{n^{x}} \rightarrow 1 \\
& \left(1-\frac{\lambda_{n}}{n}\right)^{-x} \rightarrow 1
\end{aligned}
$$

Combining these results gives

$$
\mathbb{P}\left(X_{n}=x\right) \rightarrow e^{-\lambda} \frac{\lambda^{x}}{x!},
$$

and this shows $X_{n} \xrightarrow{d} \operatorname{Poisson}(\lambda)$.
2. Suppose $X_{n} \sim \chi_{n}^{2}$ with n degrees of freedom. Find a_{n} and b_{n} such that

$$
\frac{X_{n}-a_{n}}{b_{n}} \xrightarrow{d} N(0,1)
$$

Solution: $a_{n}=n$, and $b_{n}=\sqrt{2 n}$. The result follows from central limit theorem, since $X_{n}=\sum_{i=1}^{n} Z_{i}^{2}$, where $\left\{Z_{i}\right\}_{i=1}^{n}$ are i.i.d. standard normal variables.
3. Let Y_{1}, \ldots, Y_{n} be i.i.d. samples from Uniform $[0,1]$, and $Y_{(1)}, \ldots, Y_{(n)}$ be the order statistics. Show that $n\left(Y_{(1)}, 1-Y_{(n)}\right) \xrightarrow{d}(U, V)$, where U and V are two independent exponential random variables.

Solution: For any $(u, v) \in[0, n] \times[0, n]$, we have

$$
\begin{aligned}
\mathbb{P}\left(n Y_{(1)} \geq u, n-n Y_{(n)} \geq v\right) & =\mathbb{P}\left(Y_{(1)} \geq u / n, Y_{(n)} \leq 1-v / n\right) \\
& =\prod_{i=1}^{n} \mathbb{P}\left(u / n \leq Y_{i} \leq 1-v / n\right) \\
& =(1-(u+v) / n)^{n} \\
& \rightarrow e^{-(u+v)}=\mathbb{P}(U \geq u, V \geq v)
\end{aligned}
$$

where U and V are two independent exponential random variable with parameter 1 .
4. Let X_{1}, \ldots, X_{n} be i.i.d. samples from Uniform $[-\theta, \theta]$, and $X_{(1)}, \ldots, X_{(n)}$ be order statistics. Show that the following three statistics are asymptotically consistent estimators of θ.
(a) $X_{(n)}$;

Solution: For any $\epsilon>0$, we have

$$
\mathbb{P}\left(X_{(n)} \leq \theta-\epsilon\right)=\prod_{i=1}^{n} \mathbb{P}\left(X_{i} \leq \theta-\epsilon\right)=\left(1-\frac{\epsilon}{2 \theta}\right)^{n} \rightarrow 0 .
$$

(b) $-X_{(1)}$;

Solution: For any $\epsilon>0$, we have

$$
\mathbb{P}\left(-X_{(1)} \leq \theta-\epsilon\right)=\prod_{i=1}^{n} \mathbb{P}\left(X_{i} \geq-\theta+\epsilon\right)=\left(1-\frac{\epsilon}{2 \theta}\right)^{n} \rightarrow 0 .
$$

(c) $\left(X_{(n)}-X_{(1)}\right) / 2$.

Solution: From (a) and (b), we have

$$
X_{(n)} / 2 \xrightarrow{P} \theta / 2, \text { and }-X_{(1)} / 2 \xrightarrow{P} \theta / 2 .
$$

Hence,

$$
\left(X_{(n)}-X_{(1)}\right) / 2 \xrightarrow{P} \theta .
$$

5. A random variable X_{n} is said to follow a t-distribution with n degrees of freedom, if $X_{n} \sim \sqrt{n} Z / \sqrt{Z_{1}^{2}+\ldots, Z_{n}^{2}}$, where Z, Z_{1}, \ldots, Z_{n} are i.i.d. from $N(0,1)$. Show that $X_{n} \xrightarrow{d} N(0,1)$.

Solution: Denote $\tilde{Z}=Z_{1}^{2}+\ldots, Z_{n}^{2}$ and we know that $\mathbb{E}\left[Z_{i}^{2}\right]=1$, so $\tilde{Z} / n \xrightarrow{P} 1$ by weak law of large numbers. Hence,

$$
\sqrt{\frac{\tilde{Z}}{n}}=\sqrt{\frac{Z_{1}^{2}+\ldots, Z_{n}^{2}}{n}} \xrightarrow{P} 1 .
$$

Then by Slutsky theorem, we have

$$
Z / \sqrt{\frac{\tilde{Z}}{n}} \xrightarrow{d} N(0,1) .
$$

6. Let X_{1}, \ldots, X_{n} be i.i.d. from density $f_{\lambda, a}(x)=\lambda e^{-\lambda(x-a)} I(x \geq a)$, where $\lambda \geq 0$ and $a \in \mathbb{R}$ are unknown parameters. Find the MLE $\left(\hat{\lambda}_{n}, \hat{a}_{n}\right)$ of (λ, a), and show that $\left(\hat{\lambda}_{n}, \hat{a}_{n}\right) \xrightarrow{P}(\lambda, a)$.

Solution: We omit some details when we calculate MLE,

$$
\ell(\lambda, a)=\left(n \log \lambda-\lambda \sum_{i=1}^{n}\left(X_{i}-a\right)\right) I\left(a \leq X_{(1)}\right) .
$$

Taking partial derivatives with respect to λ and a gives us

$$
\hat{\lambda}=\frac{1}{\bar{X}-X_{(1)}}, \text { and } \hat{a}=X_{(1)} .
$$

Then we show $\hat{\lambda} \xrightarrow{P} \lambda$ and $\hat{a} \xrightarrow{P} a$ separately. From the density function $f_{\lambda, a}(x)$, we can check that for any $\epsilon>0$,

$$
\begin{aligned}
\mathbb{P}(\hat{a} \geq a+\epsilon) & =\prod_{i=1}^{n} \mathbb{P}\left(X_{i} \geq a+\epsilon\right) \\
& =\left(\int_{a+\epsilon}^{\infty} \lambda e^{-\lambda(x-a)} \mathrm{d} x\right)^{n} \\
& =e^{-n \lambda \epsilon} \rightarrow 0 .
\end{aligned}
$$

So $\hat{a} \xrightarrow{P} a$. Then from the density function again, we can calculate the expectation

$$
\mathbb{E}[X]=\int_{a}^{\infty} \lambda x e^{-\lambda(x-a)} \mathrm{d} x=a+\frac{1}{\lambda} .
$$

Applying weak law of large numbers yields

$$
\bar{X} \xrightarrow{P} a+\frac{1}{\lambda} .
$$

Then we have

$$
\begin{gathered}
\bar{X}-X_{(1)} \xrightarrow{P} \frac{1}{\lambda} \\
\hat{\lambda} \xrightarrow{P} \lambda
\end{gathered}
$$

Combining the previous results gives us $(\hat{\lambda}, \hat{a}) \xrightarrow{P}(\lambda, a)$.

