Math 281A Homework 1

Due: Oct 10, in class

1. Suppose $X_{n} \sim \operatorname{Binomial}\left(n, p_{n}\right)$, and $\lim _{n \rightarrow \infty} n p_{n}=\lambda>0$. Show that $X_{n} \xrightarrow{d} \operatorname{Poisson}(\lambda)$.
2. Suppose $X_{n} \sim \chi_{n}^{2}$ with n degrees of freedom. Find a_{n} and b_{n} such that

$$
\frac{X_{n}-a_{n}}{b_{n}} \xrightarrow{d} N(0,1) .
$$

3. Let Y_{1}, \ldots, Y_{n} be i.i.d. samples from Uniform $[0,1]$, and $Y_{(1)}, \ldots, Y_{(n)}$ be the order statistics. Show that $n\left(Y_{(1)}, 1-Y_{(n)}\right) \xrightarrow{d}(U, V)$, where U and V are two independent exponential random variables.
4. Let X_{1}, \ldots, X_{n} be i.i.d. samples from Uniform $[-\theta, \theta]$, and $X_{(1)}, \ldots, X_{(n)}$ be order statistics. Show that the following three statistics are asymptotically consistent estimators of θ.
(a) $X_{(n)}$;
(b) $-X_{(1)}$;
(c) $\left(X_{(n)}-X_{(1)}\right) / 2$.
5. A random variable X_{n} is said to follow a t-distribution with n degrees of freedom, if $X_{n} \sim \sqrt{n} Z / \sqrt{Z_{1}^{2}+\ldots, Z_{n}^{2}}$, where Z, Z_{1}, \ldots, Z_{n} are i.i.d. from $N(0,1)$. Show that $X_{n} \xrightarrow{d} N(0,1)$.
6. Let X_{1}, \ldots, X_{n} be i.i.d. from density $f_{\lambda, a}(x)=\lambda e^{-\lambda(x-a)}$, when $x \geq a$, where $\lambda>0$ and $a \in \mathbb{R}$ are unknown parameters. Find the $\operatorname{MLE}\left(\hat{\lambda}_{n}, \hat{a}_{n}\right)$ of (λ, a), and show that $\left(\hat{\lambda}_{n}, \hat{a}_{n}\right) \xrightarrow{P}(\lambda, a)$.
