Math 281A Homework 1

Due: Oct 10, in class

- 1. Suppose $X_n \sim \operatorname{Binomial}(n, p_n)$, and $\lim_{n \to \infty} np_n = \lambda > 0$. Show that $X_n \xrightarrow{d} \operatorname{Poisson}(\lambda)$.
- 2. Suppose $X_n \sim \chi_n^2$ with n degrees of freedom. Find a_n and b_n such that

$$\frac{X_n - a_n}{b_n} \xrightarrow{d} N(0, 1).$$

- 3. Let Y_1, \ldots, Y_n be i.i.d. samples from Uniform[0,1], and $Y_{(1)}, \ldots, Y_{(n)}$ be the order statistics. Show that $n(Y_{(1)}, 1 - Y_{(n)}) \stackrel{d}{\to} (U, V)$, where U and V are two independent exponential random variables.
- 4. Let X_1, \ldots, X_n be i.i.d. samples from Uniform $[-\theta, \theta]$, and $X_{(1)}, \ldots, X_{(n)}$ be order statistics. Show that the following three statistics are asymptotically consistent estimators of θ .

 - (b) $-X_{(1)}$; (c) $(X_{(n)} X_{(1)})/2$.
- 5. A random variable X_n is said to follow a t-distribution with n degrees of freedom, if $X_n \sim \sqrt{n}Z/\sqrt{Z_1^2 + \dots, Z_n^2}$; where Z, Z_1, \ldots, Z_n are i.i.d. from N(0,1). Show that $X_n \xrightarrow{d} N(0,1)$.
- 6. Let X_1, \ldots, X_n be i.i.d. from density $f_{\lambda,a}(x) = \lambda e^{-\lambda(x-a)}$, when $x \geq a$, where $\lambda > 0$ and $a \in \mathbb{R}$ are unknown parameters. Find the MLE $(\hat{\lambda}_n, \hat{a}_n)$ of (λ, a) , and show that $(\hat{\lambda}_n, \hat{a}_n) \stackrel{P}{\longrightarrow} (\lambda, a)$.