Name: PID:

Do not turn the page until told to do so.

- 1. No calculators, tablets, phones, or other electronic devices are allowed during this exam.
- 2. Read each question carefully and answer each question completely.
- 3. Show all of your work. No credit will be given for unsupported answers, even if correct.
- 4. Please answer questions within the spaces provided. If you do need some more room, use the back side of the same piece of paper and clearly label the question.
- 5. If you are unsure of what a question is asking for, do not hesitate to ask an instructor or course assistant for clarification.
- 6. This exam has 6 pages.

Question	Points Available	Points Earned
1	10	
2	10	
3	10	
4	10	
5	15	
6	15	
TOTAL	70	-

1. [10 points] Let X_n be the maximum of a random sample Y_1, \ldots, Y_n from the density $p(x) = 2(1-x)I(0 \le x \le 1)$. Find constants a_n and b_n such that $b_n(X_n-a_n)$ converges in distribution to a non-degenerate limit.

2. [10 points] Let Z_1, \ldots, Z_n be independent standard normal variables. Show that the vector $U = (Z_1, \ldots, Z_n)^{\intercal}/N$, where $N^2 = \sum_{i=1}^n Z_i^2$, is uniformly distributed over the unit sphere \mathbb{S}^{n-1} in \mathbb{R}^n in the sense that U and OU are identically distributed for every orthogonal transformation O of \mathbb{R}^n .

3. [10 points] Suppose X_1, X_2, \ldots, X_n are independent and identically distributed with mean μ and finite variance σ^2 . Find the asymptotic distribution of \bar{X}_n^2 (after it is properly normalized), where $\bar{X}_n = (1/n) \sum_{i=1}^n X_i$.

4. [10 points] Suppose $X_n \sim \text{binomial}(n,p)$, where $0 . (a). Find the asymptotic distribution of <math>g(X_n/n) - g(p)$, where $g(x) = \min\{x, 1-x\}$. (b) Show that $h(x) = \sin^{-1}(\sqrt{x})$ is a variance-stabilizing transformation for X_n/n . This is called the arcsine transformation of a sample proportion. **Hint**: $\frac{d}{du}\sin^{-1}(u) = 1/\sqrt{1-u^2}$.

- 5. [15 points] Suppose that we observe data in pairs $(X,Y) \in \mathbb{R}^d \times \{\pm 1\}$, where the data come from a logistic model with $X \sim P_0$ and $p_{Y|X}(y|x) = 1/(1 + e^{-y \cdot x^\intercal \theta_0})$. Define the log-loss function $\ell_{\theta}(y|x) = \log(1 + e^{-y \cdot x^\intercal \theta})$. Let $\hat{\theta}_n$ minimize the empirical logistic loss $L_n(\theta) = (1/n) \sum_{i=1}^n \ell_{\theta}(Y_i|X_i) = (1/n) \sum_{i=1}^n \log(1 + e^{-Y_i X_i^\intercal \theta})$ from pairs (X_i, Y_i) drawn from the logistic model with parameter θ_0 . Assume that the covaraites $X_i \in \mathbb{R}^d$ are i.i.d. and satisfy $\mathbb{E}(X_i X_i^\intercal) = \Sigma > 0$ and $\mathbb{E}||X_i||_2^4 < \infty$.
 - (a) Let $L(\theta) = \mathbb{E}_{\theta_0}\{\ell_{\theta}(Y|X)\}$ be the population logistic loss. Show that the second order derivative evaluated at θ_0 is positive definite.
 - (b) Under these assumptions show that $\hat{\theta}_n$ is consistent estimator of θ_0 as $n \to \infty$. Provide details of your work.
 - (c) Find the asymptotic distribution of $\sqrt{n}(\hat{\theta}_n \theta_0)$, provided that it is consistent. You may assume d = 1.

6. [15 points] Let X_1, \ldots, X_n be a data sample of a continuous random variable X with distribution function F and density f. From the kernel density estimator $\hat{f}_h(x) = (1/n) \sum_{i=1}^n K_h(x - X_i)$, where $K_h(u) = K(u/h)/h$, one can construct a kernel estimator for the distribution function as $\hat{F}_h(x) = \int_{-\infty}^x \hat{f}_h(t) dt$. Equivalently, we have

$$\hat{F}_h(x) = \frac{1}{n} \sum_{i=1}^n H\left(\frac{x - X_i}{h}\right), \text{ where } H(x) = \int_{-\infty}^x K(t) dt.$$

Assume K is non-negative, symmetric around 0 and integrates to 1. Under smoothness conditions, find the leading term of the mean integrated square error (MISE) of \hat{F}_h , that is, $\text{MISE}(\hat{F}_h) = \int_{-\infty}^{\infty} \{\hat{F}_h(x) - F(x)\}^2 \mathrm{d}x$. What is the order of the optimal bandwidth?