PROJECTION THEOREMS AND ISOMETRIES OF
HYPERBOLIC SPACES

K. W. OHM

ABSTRACT. We prove a restricted projection theorem for an n — 2 di-
mensional family of projections from R" to R.

The family we consider arises naturally in the context of the adjoint
representation of the maximal unipotent subgroup of SO(n — 1,1) on
the Lie algebra of SO(n, 1).
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1. INTRODUCTION

The classical Marstrand projection theorem states that for a compact
subset K C R” and for a.e. v € S*!

(1.1) dim py(K) = min(1, dim K),

where py(X) = X - v is the orthogonal projection in the direction of v
and here and in what follows dim denotes the Hausdorff dimension. Anal-
ogous statements hold more generally for orthogonal projection into a.e.
m-dimensional subspace, with respect to the Lebesgue measure on Gr(m,n).

The question of obtaining similar results as in (1.1) where v is confined
to a proper Borel subset B C S"! has also been much studied, e.g., by
Mattila, Falconer, Bourgain and others. Note, however, that without further
restrictions on B, (1.1) fails: e.g., if

B = {(cost,sint,0): 0 <t <27}

is the great circle in S? and K is the z-axis, then py (K) = 0 for every v € B.
It was conjectured by Féassler and Orponen [FO14] that these are essen-

tially the only type of obstructions; more precisely, they conjecture that if
1



2 K. W. OHM
v :10,1] — S? is a curve so that for all {y(t),7'(t),7"(t)} span R3 for all ¢,
then for a.e. t € [0,1],

dim p, ;) (K) = min(1, dim K).

This conjecture was recently proved by [PYZ22]; see also the earlier work
[KOV17] which relies on similar techniques as [PYZ22], and the more recent
work [GGW22] which uses different techniques — a major difficulty here is
the failure of transversality in sense of [PS00].

In this paper we consider a restricted projection problem in the same vein,
which is motivated by recent applications in homogeneous dynamics, see §4
for more details.

Let us fix some notation in order to state the main results. Let n > 3.
We use the following coordinates for R"”

R™ = {(r;,w,r2) : 1, € R,w € R"2}.

Let L : R"2 — R"2 be an isomorphism, and let ¢ : R”~2 — R be a positive
definite quadratic form. For every t € R"2, define 7y = Trgt : R" — R by

me(r1, w,r2) =711+ w - L(t) + r2q(t)
where w - L(t) is the usual inner product on R"~2.
In this paper, we prove the following theorem.

1.1. Theorem. Let K C R" be a compact subset. Then for almost every
t € R"™2 (with resepect to the Lebesgue measure), we have

dim(7¢(K)) = min(1, dim K)

Indeed for most applications a discretized version of Theorem 1.1 is re-
quired. This is the content of the following theorem.

1.2. Theorem. Let 0 < a <1, and let 0 < §9 < 1. Let F C Bgn(0,1) be a
finite set satisfying the following:

#(Brn(X,0)NF) < C-0%-(#F) forall X € F and all § > 0

where C' > 1.
Let 0 < e < «/100. For every 6 > dg, there exists a subset Bs C B :=
{t e R*2:1 < ||t]| < 2} with

|B\ Bs| < e~ 46°
so that the following holds. Let t € Bs, then there exists Fsy C I with
H#(F\ Fsi) < e 0% - (#F)
such that for all X € Fjy, we have
#({X' € Fyp: m(X) = m(X)] < 6}) < C8 1% - 6% - (#F),

where A is absolute and the implied constants depend on L and q.
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Remark. Throughout the paper, the notation ¢ < b means a < Db for a
positive constant D whose dependence varies and is explicated in different
statements.

Also, for a Borel subset B C R? we denote the Lebesgue measure of B
by |B].

The most difficult case of the above theorem is arguably the case n = 3,
which was studied in [KOV17, PYZ22] using fundamental works of Wolff
and Schlag [Wol00, Sch03] — see also [GGW22] for a different approach
to a more general problem in the same vein. Indeed when n > 3, it is
plausible that one may deduce the Theorem 1.2 using techniques of [PS00]
more directly; we, however, take a slightly different route which is a hybrid
of these two methods.

Acknowledgment. We would like to thank Amir Mohammadi for suggest-
ing the problem and for helpful conversations.

2. PROOF OoF THEOREM 1.1

Theorem 1.1 can be proved using the finitary version Theorem 1.2. How-
ever, for the convenience of the reader, we present a self contained proof of
Theorem 1.1 in this brief section. This will also help explain the main idea
of the proof of Theorem 1.2.

Let L and ¢ be as in §1. For every t € R"2, define
(21)  fo=frgt R*" =R by fi(ri,w,re) = (ri,w- L(t), r2q(t));
recall our coordinates R™ = {(ry, w,73) : 7; € R,w € R" 72},

2.1. Lemma. There exists g = €o(q, L) < 0.01 so that the following holds.
Let 0 < e < eg. Let X, X' € R" satisfy that | X — X'|| = 1. Then

[{t € B: || fu(X) - fei(X)] <€} <&

where B = {t € R"~2: 1 < ||t|| < 2} and the implied constant depend on L
and q.

Proof. Let us write X = (r1,w,re) and X’ = (], w’,7}). Let us denote the
set in the lemma by S. If S # (), then there exists some t € B so that

[(r1 =71, (W = w') - L(t), (r2 = r5)a(t))[| < e.
Thus |y — 7], |re — 75| g(t) < e < 1/10. This and || X — X'|| = 1 imply
-] > 1

where the implied constant depends on min¢)—; [g(t)]-
Altogether, either S = () in which case the proof is complete, or we may
assume |lw — w'[| > 1 and

Sc{teB:|(w-w)-Lt)|| < e}

Since ||w — w'|| > 1, the measure of the set on the right side of the above
is < e, where the implied constant depends on L and gq.
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The proof is complete. O

Given a compactly supported probability measure p on R, we let

o= [
X = X"
denote the a-dimensional energy of p.

2.2. Lemma. Let 0 < o < 1. Let p be a probability measure supported on
Bgrn(0,1) which satisfies
Ealp) <C
for some C > 1. Then for every R > 0, we have
{t e R"2:1 < |t <2,&(fen) > RY < C'/R
where C' < & In particular, E,(fep) < oo for (Lebesgue) a.e. t.

Proof. We recall the standard argument which is based on Lemma 2.1.
Put puy = fep. Using the definition of a-dimensional energy and the
Fubini’s theorem, we have

/Bga(/f«t)dt:/ /Rn /R Hf:iM(Xidnggna ”
/R"/"/B Ife(X ft e ) dpu(X')

Renormalizing with the factor | X — X’ H , we conclude that

at dp(X) du(x)
2.2 &y dt = - s
22) /B (he) ///B RGO [* X = X
X=X

Since a < 1, applying Lemma 2.1, we conclude that
/ fo(X) — XD ]|
il IX=X|
This, (2.2), and &, (p) < C imply that

Ea c
/ Ealuy) dt < () <

1—a 1—a’

1
dt —_—
<<1_

The claim in the lemma follows from this and the Chebyshev’s inequality. [

Proof of Theorem 1.1. Let s € R and t € R"2. Then
Trst(rh w, TQ) =r+w: L(St) + qu(St)
=(L,5,8) - fe(ri, w,r2).

Let K C Bgn(0,1) be a compact subset, and let x = min(1,dim K). Let
0 < a < k. By Frostman’s lemma, there exists a probability measure pu
supported on K and satisfying the following

w(B(X,0)) <d¢¢ forall X € K.

(2.3)



PROJECTION THEOREMS AND ISOMETRIES OF HYPERBOLIC SPACES 5

Then by Lemma 2.2, applied with sz, there exists a conull subset Z, C R?~2
so that dim(fy(K)) > « for all t € Z,. Applying this with a,, = k — 2 for
all n € N, we obtain a conull subset = C R”2 so that

dim(fe(K)) > K, forallte=.

Let t € =, and set Kt = ft(K). Then by [PYZ22, Thm. 1.3], see
also [GGW22], for a.e. s € R, we have

{931 + 295 + x35° 1 (T1, 22, 73) € Kt} CR

has dimension . This and (2.3) complete the proof. O

3. PROOF OF THEOREM 1.2

We now turn to the proof of Theorem 1.2, the argument is a discretized
version of the argument in §2 as we now explicate.

Let F C R"™ be a finite, and let p be the uniform measure on F. Our
standing assumption is that for some 0 < a < 1 and some C' > 1, we have

(3.1) w(Bgrn (X, 0)) < C6° for all X € F and all § > dp.

Without loss of generality, we will assume 6y = 2750 for some kg € N; we
will also assume that diam(F') < 1.
For a finitely supported probability measure p on R?, define

EF RIS R by E,(X) = / X = X" dp(X7)
where || X — X’|| . = max(||X — X'||,d) for all X, X" € R? — this definition
is motivated by the fact that we are only concerned with scales > dy,
We recall the following standard lemma.

3.1. Lemma. Let p be a finitely supported probability measure on R?. As-
sume that for some X € R* we have

ap(X) < R.
Then for all 6 > g, we have
p(Bra(X,6)) < R6“.

Proof. We include the proof for completeness. Let § > dg, then

S pBra(X0) < [l X" dplx)
Bya(X,0)

< / X = X' dp(X") = £ p(X) < R,

as it was claimed. O
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Recall our notation B = {t € R"2:1 <t < 2}. For every t € B, let
= fep where fi : R™ — R is defined as in (2.1):

(32> f(rla w, TQ) = (Tlv W L(t)a TQQ(t))a
and R = {(r;,w,r9) : 1; € R, w € R" 2},

3.2. Lemma. For every X € F,

/ Enn(JeX) db < C [logy(60)|
B

where the implied constant is absolute.

Proof. Let X € F. By the definitions, we have

/Bé‘a,ut(ftX)dt:/B/HftX—ftX’Hj‘d

Renormalizing with || X — X'||7* and using Fubini’s theorem, we have

[ antixai= [ [ ot anx - x

IX— X'||a
For every 0 < k < kg — 1, let
H(X)={X'eF: 27" <||x - X'| <27%},
and let i (X) = {X' € F: | X — X'|| < 27k},

For all X’ € Fj,, we have 1 < % < 10. Thus,

koo
& / /ftX Fooe 46X = X7 du(X) < ()25 < C.
X=XTT

We now turn to the contribution of Fj to the above integral for k < kq. If

X" € Fy, for some k < ko, then | X — X'|| . = [|[X — X'|| and we have

(3.4) //”ftx X dt || X - x'||."d —

X=X
//Wdt“X X7 dp(x).

X=X

By Lemma 2.1, we have

1
/ TFX—AXTT ftX'||+ de / i r <l
XX ped

where the implied constant is absolute. Thus

(3.4) < p(Fp)2k < C
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This and (3.3) imply that

LL&Mmaw&<c%:cm@%n

as we claimed. O
3.3. Proposition. Let 0 < & < 1. There exists B' C B with
1B\ B'| < e "5
so that the following holds. For every t € B’, there exists Fy C F with
W(F\ R) <= o;
so that for every X € Fy and every § > dy we have
p1s (Bgs (fo(X),0)) < e~ Vo5 62
where A’ is absolute and the implied constant depends on C.

Proof. The proof is based on Lemma 3.2 and Chebychev’s inequality as we
now explicate. First note that we may assume &y is small enough (polyno-
mially in €) so that

55 =1 > |log 6o
otherwise the statement follows trivially.
By Lemma 3.2, we have

(3.5) é&mmawasdm@m»

where ¢’ <« C. Averaging (3.5), with respect to u, and using Fubini’s
theorem we have

(3.6) A/&MmMWMMMSUWMML

Let B' = {t € B : [Eapu(ft(X))du(X) < C'6;%}. Then by (3.6) and
Chebychev’s inequality we have

W(B\B) <.
Let now t € B, then
(3.7) /&mmuwmmmsdﬁ%
For every t € B’ set

Fo={X € F: &, (fo(X)) < C'6;%}

Then (3.7) and Chebychev’s inequality again imply that p(F \ Fi) < d5.
Altogether, for every t € B’ and X € Fi, we have

&Mmaw:/wum—ﬁmmuwmuﬂs0%%

This and Lemma 3.1 imply that for every t € B’ and X € F;, we have
pig (Bgs (fo(X),6)) < C'65% - 6% for all § > do.
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The proof is complete. U

Proof of Theorem 1.2. We now turn to the proof of Theorem 1.2. As it
was done in the proof of Theorem 1.1, we will use the following observation:
for all s € R and t € R"2, we have

Tt (11, W, r2) = 71 + W - L(st) + r2q(st)
=(1,s,8%) - fo(ri, w,ro).
Apply Proposition 3.3 with ¢ as in the statement of Theorem 1.2. Let

B’ C B be as in that proposition, and for every t € B’, let Fy be as in that
proposition. Then we have

(3.9)  pe(Brs(fe(X),0)) < C'e™55% - 6% for all X € F, and § > &.

Let K¢ = fe(Fy) C R3 and let p; be the restriction of y; to K¢ normalized
to be a probability measure. Then (3.9) and the fact that u(F \ Fy) < 6§
imply that

(3.10)  pt(Brs(Y,0)) < 204553 . 6% forall Y € Ky and 6 > dp.

This in particular implies that K¢ and py satisfy the conditions in [LM21,
Thm. BJ, see also [PYZ22] and [GGW22, Thm. 2.1]. Apply [LM21, Thm. B|
with e; thus, there there exists Js¢ C [0,2] with

1[0,2] \ J5¢| < CePse
and for all s € J5¢ there is a subset K54, C Ky with
pe(Ki \ Kst,s) < CePoe
so that for all Y € Ks¢ ¢, we have
pe({Y' € Kyt |(1,5,8%) - (Y —=Y')| < 6}) < Ce Do 3. 5o,

Let A = max{A’, D}. In view of the definition of p; and (3.8), we have
the following. For every t € B’ and s € Js, put Fse = F N ft_l(K57t,s).
Then

(3.8)

H#(F \ Fso) < 10Ce™46° - (#F),
and for every X € Fj 4, we have
(3.11) X' € Fya @ |mot(X) — me(X')| < 6}) < Cem A5y %5277,

This finishes the proof. Indeed, let Bs C B be the set of t € B for which
there exists Fys¢ C F' with

#(F\ Fyg) <1000 P5° - (#F)
so that for all X € Fj¢ we have
#{X’ = F&,t : ‘ﬂ't(X) — TFt(XI)‘ < 5}) < CﬁEfA(So—lﬂa(sa'

Then (3.11) implies that for every t' € B’ and s € Js4/, we have st’ € By,
so long as st’ € B. In particular, we conclude that

|B\ Bs| < e 46°
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as we aimed to prove. U

4. THEOREM 1.2 AND THE ISOMETRY GROUP OF H"

Let n > 3, and let

n

2

QO(zlaxla cee 7l'n+1) — 2x1$n+1 - sz
i=1

Then G = SO(Qp)° ~ SO(n, 1)° is the group of orientation preserving isome-
tries of H". Let

Lie(G) = {A € 51, 1(R) : ATQo + QoA =0}

where we identify Q)g and the corresponding symmetric matrix, i.e.,

0 0 1
QO =110 —I,2 O
1 0 0

Let H C G be the stabilizer of e, = (0,...,1,0). Then
Lie(G) = Lie(H) @ ¢
where t is invariant under conjugation by H and dimt = n. More explicitly,
t= {X(rl,w,rg) :r,r9 ER, W € R”*Q}
where for 71,79 € R and w € R" 2,

0 0 0
OT T

(41> X(Tb w, T2) = R(W) 0 € Math (R)
-T2 -y

0 0’/“2 0

0,0 wl
0
We may identify v with R™ using the above coordinates. With this nota-
tion, put

here 0 € R"~2 and R(w) = > € Mat,—1(R).

vt ={X(r1,0,0): r; € R} ~R.
Define the subgroup U C H as follows. For every t € R"~2, let
1t 0 Ly
T

Uy = OT In72 tO € Matn+1 (R)
0 0 1

where 0 € R*~!. Put
U={u:teR"?}.
It is worth noting that if a5 denotes the one parameter diagonal subgroup
of H defined by

ase; = e’eq, As€n+1 = €_s€n+1, ase; =¢; 2<1i<m,
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then
U={heH: Egl asha_s =1} and

vt ={Xer: im e Xa—s = 0}.
For every t € R"~2, define
Giv—=tT by &(X) = (uXug)T.
where for X € v, X denote the orthogonal projection to t™.
We have the following lemma.
4.1. Lemma. Identify t* and R as above. Then
&e(X(r1, w,72)) = Tid et (11, W, 72)
where id : R"~% — R"~2 is the identity map and gs(t) = 5 I1t]12.

Proof. The proof is based on a direct computation as we now explicate.
To simplify the notation slightly, we will write t = (t,0) and 7; = (0, 7).
Note that t - 7, = 0. Recall also that

(X)) = (ue X (r1, o, w)u_¢) "

We have
1 t 3 [ 0 1 0
wX(r,ra,w) =07 I,o 7 |- R(w) -7 |=
0 0 1 0 79 0
F1+ER(wW) + 5 [t 72 0
—7y R(w) + 77, )
0 T2 0

Multiplying this with u_¢, we have

u X (11,72, W)u_¢ =

0 i +tR(w)+1[t)]*/m 0 1=t e
—il R(w) + tT7y — ][0T I, —tT |=
0 T9 0 0 0 1
0 7 +tR(W)+ L [t][>7 =
k * k
* * *

Since tR(w) = (0,t - w), the above and the definitions of & and 7 imply
E(X) =i+t W+ g [[t]° 72 = Tia g6 (r1, W)
as we claimed. O

In view of Lemma 4.1, the following theorem is a restatement of Theo-
rem 1.2 in the language of adjoint action of U on t.
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4.2. Theorem. Let 0 < a < 1, and let 0 < 69 < 1. Let F C B(0,1) be a
finite set satisfying the following

#(B(X,0)NF) < C6* - (#F) for all X € F and all 6 > dy

where C' > 1.
Let 0 < € < «/100. For every 6 > 0y, there exists a subset By C B :=
{t e R*2:1 < ||t]| < 2} with

|B\ Bs| < e 46°
so that the following holds. Let t € By, there exists Fsy C F with
#(F\ Fsg) < e 46% - (#F)
such that for all X € Fjy, we have
#({X' € Fyp: |6(X) — &(X)| < 6}) < Co5105 - 6 - (#F)

where A and the implied constants are absolute.
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