Comments on Earlier Problems

76:60 (Peter Weinberger) Let |f| denote the number of non-zero coefficients of a polynomial f. Is there a function A such that $|(f,g)| \leq A(|f|,|g|)$? Can such an A be a polynomial? The example $f = (x^{ab} + 1)(x^b + 1)/(x + 1)$, $g = (x^{ab} + 1)(x^b + 1)/(x^a + 1)$ with a > b - 1, a even, b odd shows that if such an A exists then $A(n,n) \gg n^2$.

Solution: Andrzej Schinzel writes that the answer to this problem is negative, and a simple counterexample is $f = x^{ab} - 1$, $g = (x^a - 1)(x^b - 1)$, where |f| = 2, |g| = 4 and |(f,g)| can be arbitrarily large. The only difficult case in characteristic 0 is |f| = |g| = 3.

86:05 (Michael Filaseta) Is $f_n(x) = \frac{d}{dx}(x^n + x^{n-1} + \dots + x + 1)$ irreducible for all positive integers *n*? For almost all *n*?

Solution: The "almost all" question is answered in the affirmative in

A. Borisov, M. Filaseta, T. Y. Lam, O. Trifonov, Classes of polynomials having only one non-cyclotomic irreducible factor, Acta Arith. 90 (1999) 121-153,

where Theorem 1 states that "if $\epsilon > 0$ then for all but $O(t^{1/3+\epsilon})$ positive integers $n \leq t$ the derivative of the polynomial $f(x) = 1 + x + x^2 + \cdots + x^n$ is irreducible."

88:06 (Emil Grosswald) Mike Filaseta proved that almost all Bessel polynomials [polynomial solutions of $x^2y'' + xy' - n(n+1)y = 0$ with y(0) = 1] are irreducible over **Q**. Get rid of "almost all".

Solution: In work submitted for publication, Filaseta and Trifonov write the Bessel polynomials as

$$y_n(x) = \sum_{j=0}^n \frac{(n+j)!}{2^j (n-j)! j!} x^j$$

and prove that if n is a positive integer and a_0, a_1, \ldots, a_n are arbitrary integers with $|a_0| = |a_n| = 1$ then

$$\sum_{j=0}^{n} a_j \frac{(n+j)!}{2^j (n-j)! j!} x^j$$

is irreducible.

The techniques are similar to those used in

M. Filaseta, The irreducibility of all but finitely many Bessel polynomials, Acta Math. 174 (1995) 383-397.

93:20 (Eugene Gutkin via Jeff Lagarias) [...] consider the polynomials

$$p_n(x) = \frac{(n-1)(x^{n+1}-1) - (n+1)(x^n - x)}{(x-1)^3}$$

[which arise in the solution of $\tan n\theta = n \tan \theta$] for $n \ge 1$.

Conjecture. $p_n(x)$ is irreducible if n is even, and is x + 1 times an irreducible if n is odd.

Solution: This is true for almost all n. Theorem 4 of the four-author paper cited above states that if $\epsilon > 0$ then for all but $O(t^{4/5+\epsilon})$ positive integers $n \leq t$ the polynomial $p(x) = (n-1)(x^{n+1}-1) - (n+1)(x^n-x)$ is $(x-1)^3$ times an irreducible polynomial if n is even and $(x-1)^3(x+1)$ times an irreducible polynomial if n is odd.

95:18 (Martin LaBar, via Richard Guy) Is there a 3×3 magic square with distinct square entries?

Remark: Comments on this problem have appeared in each problem set since it was first proposed.

Andrew Bremner, On squares of squares, Acta Arith. 88 (1999) 289-297

constructs parametrized families of 3×3 matrices with distinct square entries and with all sums equal except that along the non-principal diagonal.

97:22 (John Selfridge) Let $n = rs^2$, r square-free, r > 1. It is conjectured that for all such n except n = 8 and n = 392 there exist integers a, b with $n < a < b < r(s+1)^2$ such that *nab* is a square.

Remark: See the paper,

Paul Erdős, Janice L. Malouf, J. L. Selfridge, Esther Szekeres, Subsets of an interval whose product is a power, Discrete Math. 200 (1999) 137-147.

Selfridge reports that he and Aaron Meyerowitz have proved that if there is a counterexample n > 392 then n is at least on the order of 10^{30000} .

Problems Proposed 16 & 19 Dec 99

99:01 (John Wolfskill) Let $d \equiv 3 \pmod{4}$ be positive and squarefree. Let a fundamental unit in $\mathbb{Z}[\sqrt{d}]$ be given by $\epsilon = a + b\sqrt{d} > 1$. Characterize those d for which $\sqrt{2}$ is in $\mathbb{Q}(\sqrt{\epsilon})$.

Remarks: $\sqrt{2}$ is in $\mathbf{Q}(\sqrt{\epsilon})$ for all prime d and for some but not all composite d.

Gary Walsh shows that the following are equivalent:

- a) $\sqrt{2}$ is in $\mathbf{Q}(\sqrt{\epsilon})$;
- b) at least one of the equations $x^2 dy^2 = \pm 2$ is solvable in integers x and y;
- c) the prime over 2 in $\mathbf{Q}(\sqrt{d})$ is principal.

Characterizing d such that $x^2 - dy^2 = -1$ has a solution is a notorious open question, which suggests that there may be no simple solution to the current problem.

Walsh's argument, as presented by Wolfskill, runs as follows. Let $K = \mathbf{Q}(\sqrt{\epsilon})$, let α in K be such that $\alpha^2 = \epsilon$. Note that the norm of ϵ is 1, whence K/\mathbf{Q} is Galois and non-cyclic. Since α is in K we have $\alpha = r + s\sqrt{d} + t\sqrt{d'} + u\sqrt{dd'}$ for some rational r, s,t and u and some d' with $\sqrt{d'}$ in K. Let σ be the element of the Galois group of K/\mathbf{Q} fixing \sqrt{d} but not fixing $\sqrt{d'}$. Then $(\sigma(\alpha))^2 = \sigma(\alpha^2) = \sigma(\epsilon) = \epsilon = \alpha^2$, so $\sigma(\alpha) = \alpha$ or $\sigma(\alpha) = -\alpha$. If $\sigma(\alpha) = \alpha$ then α is in $\mathbf{Q}(\sqrt{d})$ but then $\alpha^2 = \epsilon$ contradicts the hypothesis that ϵ is a fundamental unit in $\mathbf{Q}(\sqrt{d})$, so $\sigma(\alpha) = -\alpha$, so $\alpha = t\sqrt{d'} + u\sqrt{dd'}$. Now assume $\sqrt{2}$ is in K, so $\alpha = t\sqrt{2} + u\sqrt{2d}$, t and u rational. From $\alpha^2 = \epsilon$ we get that $2(t^2 + du^2) = a$ and 4tu = b are both integers, from which it is easy to deduce that 2t = x (say) and 2u = y (say) are integers. Then $(x^2 - dy^2)^2 = 4(a^2 - db^2) = 4$, so $x^2 - dy^2 = \pm 2$.

Conversely, suppose x and y are positive integers such that $x^2 - dy^2 = \pm 2$. Note that x and y are odd. Let $a = (x^2 + dy^2)/2$, b = xy. Then $a^2 - db^2 = 1$, so $a + b\sqrt{d}$ is a unit in $\mathbf{Q}(\sqrt{d})$. Also, $(\frac{x}{2}\sqrt{2} + \frac{y}{2}\sqrt{2d})^2 = a + b\sqrt{d}$, so $a + b\sqrt{d}$ must be an odd power of the fundamental unit in $\mathbf{Q}(\sqrt{d})$ —otherwise, $\frac{x}{2}\sqrt{2} + \frac{y}{2}\sqrt{2d}$ would be in $\mathbf{Q}(\sqrt{d})$. So, $\sqrt{2}$ is in $\mathbf{Q}(\sqrt{\epsilon})$.

99:02 (Greg Martin) Consider the following "proof" that 4680 is perfect: $4680 = 2^3 \cdot 3^2 \cdot (-5) \cdot (-13)$, so $\sigma(4680) = (1+2+2^2+2^3)(1+3+3^2)(1+(-5))(1+(-13)) = 9360 = 2 \times 4680$. Allowing the use of $\sigma(-p^n) = \sum_{j=0}^n (-p)^j$, is there a "spoof perfect number" with exactly 3 distinct prime factors?

Remark: If so, it must be negative.

Solution: Dennis Eichhorn found that $-84 = 2^2(3)(-7)$ is spoof-perfect, and Eichhorn and Peter Montgomery independently found that $-120 = 2^3(3)(-5)$ is spoof-perfect. Montgomery also found that $-672 = (-2)^5(3)(7)$ leads to

$$\sigma(-672) = (1 - 2 + 4 - 8 + 16 - 32)(1 + 3)(1 + 7) = -672.$$

Alf van der Poorten asked whether there are any odd spoof-perfects.

John Selfridge asked whether 4680 is the smallest positive spoof-perfect.

See also 99:08, below.

99:03 (Mike Filaseta) Find m_0 such that if $m \ge m_0$ and $m(m-1) = 2^a 3^b m'$ and (m', 6) = 1 then $m' > \sqrt{m}$.

Remark: See

M. Filaseta, A generalization of an irreducibility theorem of I. Schur, Analytic number theory, Vol. 1 (Allerton Park, IL, 1995), 371-396, Progr. Math. 138, Birkhauser, Boston 1996

for a similar but ineffective result derived from work of Mahler.

99:04 (Mike Filaseta) Show that every $n \times n$ integer matrix, $n \ge 2$, is a sum of 3 squares of $n \times n$ integer matrices.

Remark: What is wanted is an argument more transparent than that in

Leonid N. Vaserstein, Every integral matrix is the sum of three squares, Linear and Multilinear Algebra 20 (1986) 1-4.

99:05 (Zachary Franco) Call n equidigital if each digit occurs equally often in the repeating block in the decimal expansion of 1/n. It is easy to see that if p is prime and 10 is a primitive root (mod p) then p is equidigital. Are there any equidigital primes p for which 10 is not a primitive root?

Remarks: The answer to the corresponding question in base 2 is yes; 2 is not a primitive root (mod 17) but the binary expansion of 1/17 is .00001111.

There are equidigital composites, e.g., $n = 1349 = 19 \times 71$.

Mike Filaseta notes that if $p \equiv 11 \pmod{20}$ is prime and 10 is of order $(p-1)/2 \pmod{p}$ then 10^k runs through the quadratic residues $(\mod p)$, and since there are more quadratic residues in [1, (p-1)/2] than in [(p+1)/2, p-1] for such $p \ (p \equiv 3 \pmod{4})$ p can't be equidigital. For example, 1/31 = .032258064516129 has 9 small digits and 6 large ones. Perhaps there are similar results for 10 of order (p-1)/k for $k = 3, 4, \ldots$

99:06 (Kevin O'Bryant) Write $\sqrt{a_1, a_2, \ldots}$ for the continued square root

$$\frac{1}{\sqrt{a_1 + \frac{1}{\sqrt{a_2 + \dots}}}}$$

where a_1, a_2, \ldots are positive integers. Every real number r, 0 < r < 1, has such an expression, and the expression is unique in the same sense as for simple continued fractions. Does 3/4 have a finite continued root?

Remark: $2/3 = \sqrt{2}, 16$], $22/47 = \sqrt{3}, 1098, 2892, 410, 256$].

99:07 (Bart Goddard) Let $f : (0, \infty) \to (0, \infty)$ be strictly decreasing and onto with f(1) = 1. Let g be the functional inverse f^{-1} of f. For α_0 real and positive, define integers a_0, a_1, \ldots and reals $\alpha_1, \alpha_2, \ldots$ by $a_j = [\alpha_j], \alpha_j = g(\alpha_{j-1} - a_{j-1})$. Write $(\alpha_0)_f$ for the sequence a_0, a_1, \ldots Let $c_0 = a_0, c_1 = a_0 + f(a_1), c_2 = a_0 + f(a_1 + f(a_2))$, etc. Note that f(x) = 1/x gives the usual continued fraction expansion of α_0 , and $f(x) = 1/\sqrt{x}$ gives the expansion of 99:06.

Some interesting examples are

 $f(x) = x^{-5}, (\sqrt[5]{7})_f = (1, 1, 1, \dots)$

 $f(x)=1/\Omega(ex),$ where Ω is the Lambert $\Omega\text{-function},$

 $(\pi)_f = (3, 3033, 23766810023426903113005, 2279, 2, 864, \ldots)$

1. Given f, which numbers have finite expansions? periodic expansions? Is it true that if $f(x) = x^{-2/3}$ then $(\sqrt[3]{3})_f = (\dot{1}, 1, 1, \dot{2})$?

2. Is there an f such that $(\alpha)_f$ is periodic for all algebraic α of degree 3?

- 3. Find f such that $(\pi)_f$ has a recognizable pattern.
- 4. Find f such that $(e)_f$ is periodic.

5. Find conditions on f and α for $\lim_{n\to\infty} c_n = \alpha$.

Solution: (to question 4) Greg Martin notes that if $f(x) = x^{\log(e-2)/\log(e-1)}$ then $(e)_f = (2, 1, 1, 1, ...)$.

Remark: Jeff Lagarias refers to

A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493, MR 20 #3843.

Many later papers refer to this one, as may be seen from the listing on MathSciNet.

99:08 (Greg Martin) Define a multiplicative function $\tilde{\sigma}$ (or $\tilde{\sigma}$ if you are left-handed) by $\tilde{\sigma}(p^r) = p^r - p^{r-1} + p^{r-2} - \cdots + (-1)^r$. Note that $\tilde{\sigma}(n) \leq n$ with equality only for n = 1. Call $n \tilde{\sigma}$ -perfect if $2\tilde{\sigma}(n) = n$; examples are n = 2, 12, 40, 252, 880, 10880, and 75852. Call $n \tilde{\sigma}$ -k-perfect (or, more generally, $\tilde{\sigma}$ -multiply perfect) if $k\tilde{\sigma}(n) = n$ for a positive integer k. Two examples of $\tilde{\sigma}$ -3-perfects are n = 30240 and $n = 2^{10}3^45^411 \cdot 13^2 \cdot 31 \cdot 61 \cdot 157 \cdot 521 \cdot 683$ —there are at least 40 $\tilde{\sigma}$ -3-perfects.

- 1. Are there any $\tilde{\sigma}$ -k-perfect numbers with $k \geq 4$?
- 2. Are there infinitely many $\tilde{\sigma}$ -k-perfect numbers?
- 3. Are there any odd $\tilde{\sigma}$ -3-perfect numbers? Any such number must be a square.

Remark: Paraphrasing email from Greg: let $\tau(n) = n/\tilde{\sigma}(n)$, so $\tau(n) = k$ means n is a $\tilde{\sigma}$ -k-perfect number. Suppose $n = p^{2k-1}m$, p prime, and $\tilde{\sigma}(p^{2k}) = q$ is prime, and (m, pq) = 1. Then it's not hard to prove that $\tau(n) = \tau(npq)$. In particular, if n is $\tilde{\sigma}$ -k-perfect, so is npq.

Some examples of prime powers p^{2k-1} such that $\tilde{\sigma}(p^{2k})$ is prime are

$$2^1, 2^3, 2^5, 2^9, 3^1, 3^3, 3^5, 5^3, 7^1, 13^1$$

This makes it possible to find 40 $\tilde{\sigma}$ -3-perfects from the four examples $2^3 3^3 5^2 7$, $2^5 3^3 5 \cdot 7$, $2^5 3^5 5^2 7^3 13$, and $2^9 3^3 5^3 11 \cdot 13 \cdot 31$.

Jeff Lagarias suggested looking at the Dirichlet series generating function for $\tilde{\sigma}$, in analogy with

$$\sum_{n=1}^{\infty} \frac{\sigma(n)}{n} n^{-s} = \zeta(s+1)\zeta(s).$$

Greg finds that

$$\sum_{n=1}^{\infty} \frac{1}{\tau(n)} n^{-s} = \zeta(2s+2)\zeta(s)/\zeta(s+1),$$

but no such tidy form for $\sum_{n=1}^{\infty} \tau(n) n^{-s}$.

99:09 (Jean-Marie De Koninck) Given an integer $k, k \geq 2$, not a multiple of 3,

- 1. prove that there is a prime whose digits sum to k,
- 2. prove that if $k \ge 4$ then there are infinitely many primes whose digits sum to k.

Remarks: Jean-Marie provided a table of values of $\rho(k)$, the smallest prime whose digits add up to k, for $2 \leq k \leq 83$, k not a multiple of 3. Your editor notes that $\rho(56) - \rho(55) = 2999999 - 2998999 = 1000$ and asks whether there are infinitely many k with $\rho(k+1) - \rho(k) = 1000$, or with $\rho(k+1) - \rho(k) = 10^m$ for some m, or whether there is an integer r with $\rho(k+1) - \rho(k) = r$ for infinitely many r.

Your editor further notes that $\rho(34)/\rho(32) = 17989/6899 = 2.61$ (to two decimals), $\rho(37)/\rho(35) = 29989/8999 = 3.33$, $\rho(70)/\rho(68) = 189997999/59999999 = 3.17$, and $\rho(73)/\rho(71) = 289999999/89999999 = 3.22$, and asks whether $\rho(3k + 1)/\rho(3k - 1)$ is unbounded. Moreover, your editor also notes that $\rho(34)/\rho(35) = 17989/8999 = 2.00$ and $\rho(70)/\rho(71) = 189997899/89999999 = 2.11$ and asks whether $\rho(k) > \rho(k + 1)$ infinitely often.

Further questions: is it true that k > 25 implies $\rho(k) \equiv 9 \pmod{10}$? that k > 38 implies $\rho(k) \equiv 99 \pmod{100}$? that k > 59 implies $\rho(k) \equiv 999 \pmod{1000}$?

Jean-Marie also notes that it is trivial that $\rho(k) \ge (a+1)10^b - 1$, where $b = \lfloor k/9 \rfloor$ and a = k - 9b; and asks whether equality holds infinitely often. For instance, it is the case when k = 5, 7, 10, 11, 14, 16, 17, 19, 22, 23, 28, 29, 31, 35, 40.

99:10 (Jeff Lagarias) Is there a field with Galois group S_n , $n \ge 5$, whose ring of integers has a power basis?

99:11 (Sinai Robins) Let q be real, |q| < 1. Is the function given by $f(x) = \sum_{n=1}^{\infty} [nx]q^n$ real analytic in x?

Remark: A starting place for the analytic properties of this and related series is

Wolfgang Schwarz, Über Potenzreihen, die irrationale Funktionen darstellen, I and II, Überblicke Mathematik, Band 6, 179-196 and 7, 7-32, MR 51 #8382-3.

See also

J. H. Loxton, A. J. van der Poorten, Arithmetic properties of certain functions in several variables. III, Bull. Austral. Math. Soc. 16 (1977) 15-47, MR 81g:10046.

99:12 (Jeff Lagarias) Given n > 3, find upper and lower bounds for the number of solutions $1 < q_1 < \cdots < q_n$ of the system $q_j^{-1} \prod_{i=1}^{n} q_i \equiv 1 \pmod{q_i}, j = 1, \ldots, n$.

Remark: It is known that there are only finitely many solutions for each n, in fact there is an upper bound for q_n , but it does not give a good estimate for the number of solutions. (2,3,5) is the only solution for n = 3. The problem is discussed in

Lawrence Brenton, Mi-Kyung Joo, On the system of congruences $\prod_{j \neq i} n_j \equiv 1 \pmod{n_i}$, Fib. Q. 33 (1995) 258-267.

The review, MR 96k:11039, is also worth reading.