Comments on Earlier Problems

76:60 (Peter Weinberger) Let $|f|$ denote the number of non-zero coefficients of a polynomial f. Is there a function A such that $|(f, g)| \leq A(|f|,|g|)$? Can such an A be a polynomial? The example $f=\left(x^{a b}+1\right)\left(x^{b}+1\right) /(x+1), g=\left(x^{a b}+1\right)\left(x^{b}+1\right) /\left(x^{a}+1\right)$ with $a>b-1, a$ even, b odd shows that if such an A exists then $A(n, n) \gg n^{2}$.

Solution: Andrzej Schinzel writes that the answer to this problem is negative, and a simple counterexample is $f=x^{a b}-1, g=\left(x^{a}-1\right)\left(x^{b}-1\right)$, where $|f|=2,|g|=4$ and $|(f, g)|$ can be arbitrarily large. The only difficult case in characteristic 0 is $|f|=|g|=3$.

86:05 (Michael Filaseta) Is $f_{n}(x)=\frac{d}{d x}\left(x^{n}+x^{n-1}+\cdots+x+1\right)$ irreducible for all positive integers n ? For almost all n ?

Solution: The "almost all" question is answered in the affirmative in
A. Borisov, M. Filaseta, T. Y. Lam, O. Trifonov, Classes of polynomials having only one non-cyclotomic irreducible factor, Acta Arith. 90 (1999) 121-153,
where Theorem 1 states that "if $\epsilon>0$ then for all but $O\left(t^{1 / 3+\epsilon}\right)$ positive integers $n \leq t$ the derivative of the polynomial $f(x)=1+x+x^{2}+\cdots+x^{n}$ is irreducible."

88:06 (Emil Grosswald) Mike Filaseta proved that almost all Bessel polynomials [polynomial solutions of $x^{2} y^{\prime \prime}+x y^{\prime}-n(n+1) y=0$ with $\left.y(0)=1\right]$ are irreducible over \mathbf{Q}. Get rid of "almost all".

Solution: In work submitted for publication, Filaseta and Trifonov write the Bessel polynomials as

$$
y_{n}(x)=\sum_{j=0}^{n} \frac{(n+j)!}{2^{j}(n-j)!j!} x^{j}
$$

and prove that if n is a positive integer and $a_{0}, a_{1}, \ldots, a_{n}$ are arbitrary integers with $\left|a_{0}\right|=\left|a_{n}\right|=1$ then

$$
\sum_{j=0}^{n} a_{j} \frac{(n+j)!}{2^{j}(n-j)!j!} x^{j}
$$

is irreducible.
The techniques are similar to those used in
M. Filaseta, The irreducibility of all but finitely many Bessel polynomials, Acta Math. 174 (1995) $383-397$.

93:20 (Eugene Gutkin via Jeff Lagarias) [...] consider the polynomials

$$
p_{n}(x)=\frac{(n-1)\left(x^{n+1}-1\right)-(n+1)\left(x^{n}-x\right)}{(x-1)^{3}}
$$

[which arise in the solution of $\tan n \theta=n \tan \theta$] for $n \geq 1$.
Conjecture. $p_{n}(x)$ is irreducible if n is even, and is $x+1$ times an irreducible if n is odd.

Solution: This is true for almost all n. Theorem 4 of the four-author paper cited above states that if $\epsilon>0$ then for all but $O\left(t^{4 / 5+\epsilon}\right)$ positive integers $n \leq t$ the polynomial $p(x)=(n-1)\left(x^{n+1}-1\right)-(n+1)\left(x^{n}-x\right)$ is $(x-1)^{3}$ times an irreducible polynomial if n is even and $(x-1)^{3}(x+1)$ times an irreducible polynomial if n is odd.

95:18 (Martin LaBar, via Richard Guy) Is there a 3×3 magic square with distinct square entries?

Remark: Comments on this problem have appeared in each problem set since it was first proposed.

Andrew Bremner, On squares of squares, Acta Arith. 88 (1999) 289-297
constructs parametrized families of 3×3 matrices with distinct square entries and with all sums equal except that along the non-principal diagonal.

97:22 (John Selfridge) Let $n=r s^{2}, r$ square-free, $r>1$. It is conjectured that for all such n except $n=8$ and $n=392$ there exist integers a, b with $n<a<b<r(s+1)^{2}$ such that $n a b$ is a square.

Remark: See the paper,
Paul Erdős, Janice L. Malouf, J. L. Selfridge, Esther Szekeres, Subsets of an interval whose product is a power, Discrete Math. 200 (1999) 137-147.

Selfridge reports that he and Aaron Meyerowitz have proved that if there is a counterexample $n>392$ then n is at least on the order of 10^{30000}.

Problems Proposed 16 \& 19 Dec 99
99:01 (John Wolfskill) Let $d \equiv 3(\bmod 4)$ be positive and squarefree. Let a fundamental unit in $\mathbf{Z}[\sqrt{d}]$ be given by $\epsilon=a+b \sqrt{d}>1$. Characterize those d for which $\sqrt{2}$ is in $\mathbf{Q}(\sqrt{\epsilon})$.

Remarks: $\sqrt{2}$ is in $\mathbf{Q}(\sqrt{\epsilon})$ for all prime d and for some but not all composite d.
Gary Walsh shows that the following are equivalent:
a) $\sqrt{2}$ is in $\mathbf{Q}(\sqrt{\epsilon})$;
b) at least one of the equations $x^{2}-d y^{2}= \pm 2$ is solvable in integers x and y;
c) the prime over 2 in $\mathbf{Q}(\sqrt{d})$ is principal.

Characterizing d such that $x^{2}-d y^{2}=-1$ has a solution is a notorious open question, which suggests that there may be no simple solution to the current problem.

Walsh's argument, as presented by Wolfskill, runs as follows. Let $K=\mathbf{Q}(\sqrt{\epsilon})$, let α in K be such that $\alpha^{2}=\epsilon$. Note that the norm of ϵ is 1 , whence K / \mathbf{Q} is Galois and non-cyclic. Since α is in K we have $\alpha=r+s \sqrt{d}+t \sqrt{d^{\prime}}+u \sqrt{d d^{\prime}}$ for some rational r, s, t and u and some d^{\prime} with $\sqrt{d^{\prime}}$ in K. Let σ be the element of the Galois group of K / \mathbf{Q} fixing \sqrt{d} but not fixing $\sqrt{d^{\prime}}$. Then $(\sigma(\alpha))^{2}=\sigma\left(\alpha^{2}\right)=\sigma(\epsilon)=\epsilon=\alpha^{2}$, so $\sigma(\alpha)=\alpha$ or $\sigma(\alpha)=-\alpha$. If $\sigma(\alpha)=\alpha$ then α is in $\mathbf{Q}(\sqrt{d})$ but then $\alpha^{2}=\epsilon$ contradicts the hypothesis that ϵ is a fundamental unit in $\mathbf{Q}(\sqrt{d})$, so $\sigma(\alpha)=-\alpha$, so $\alpha=t \sqrt{d^{\prime}}+u \sqrt{d d^{\prime}}$.

Now assume $\sqrt{2}$ is in K, so $\alpha=t \sqrt{2}+u \sqrt{2 d}$, t and u rational. From $\alpha^{2}=\epsilon$ we get that $2\left(t^{2}+d u^{2}\right)=a$ and $4 t u=b$ are both integers, from which it is easy to deduce that $2 t=x$ (say) and $2 u=y$ (say) are integers. Then $\left(x^{2}-d y^{2}\right)^{2}=4\left(a^{2}-d b^{2}\right)=4$, so $x^{2}-d y^{2}= \pm 2$.

Conversely, suppose x and y are positive integers such that $x^{2}-d y^{2}= \pm 2$. Note that x and y are odd. Let $a=\left(x^{2}+d y^{2}\right) / 2, b=x y$. Then $a^{2}-d b^{2}=1$, so $a+b \sqrt{d}$ is a unit in $\mathbf{Q}(\sqrt{d})$. Also, $\left(\frac{x}{2} \sqrt{2}+\frac{y}{2} \sqrt{2 d}\right)^{2}=a+b \sqrt{d}$, so $a+b \sqrt{d}$ must be an odd power of the fundamental unit in $\mathbf{Q}(\sqrt{d})$-otherwise, $\frac{x}{2} \sqrt{2}+\frac{y}{2} \sqrt{2 d}$ would be in $\mathbf{Q}(\sqrt{d})$. So, $\sqrt{2}$ is in $\mathbf{Q}(\sqrt{\epsilon})$.

99:02 (Greg Martin) Consider the following "proof" that 4680 is perfect: $4680=2^{3} \cdot 3^{2}$. $(-5) \cdot(-13)$, so $\sigma(4680)=\left(1+2+2^{2}+2^{3}\right)\left(1+3+3^{2}\right)(1+(-5))(1+(-13))=9360=2 \times 4680$. Allowing the use of $\sigma\left(-p^{n}\right)=\sum_{j=0}^{n}(-p)^{j}$, is there a "spoof perfect number" with exactly 3 distinct prime factors?

Remark: If so, it must be negative.
Solution: Dennis Eichhorn found that $-84=2^{2}(3)(-7)$ is spoof-perfect, and Eichhorn and Peter Montgomery independently found that $-120=2^{3}(3)(-5)$ is spoof-perfect. Montgomery also found that $-672=(-2)^{5}(3)(7)$ leads to

$$
\sigma(-672)=(1-2+4-8+16-32)(1+3)(1+7)=-672
$$

Alf van der Poorten asked whether there are any odd spoof-perfects.
John Selfridge asked whether 4680 is the smallest positive spoof-perfect.
See also 99:08, below.
99:03 (Mike Filaseta) Find m_{0} such that if $m \geq m_{0}$ and $m(m-1)=2^{a} 3^{b} m^{\prime}$ and $\left(m^{\prime}, 6\right)=1$ then $m^{\prime}>\sqrt{m}$.

Remark: See
M. Filaseta, A generalization of an irreducibility theorem of I. Schur, Analytic number theory, Vol. 1 (Allerton Park, IL, 1995), 371-396, Progr. Math. 138, Birkhauser, Boston 1996
for a similar but ineffective result derived from work of Mahler.
99:04 (Mike Filaseta) Show that every $n \times n$ integer matrix, $n \geq 2$, is a sum of 3 squares of $n \times n$ integer matrices.

Remark: What is wanted is an argument more transparent than that in
Leonid N. Vaserstein, Every integral matrix is the sum of three squares, Linear and Multilinear Algebra 20 (1986) 1-4.

99:05 (Zachary Franco) Call n equidigital if each digit occurs equally often in the repeating block in the decimal expansion of $1 / n$. It is easy to see that if p is prime and 10 is a primitive root $(\bmod p)$ then p is equidigital. Are there any equidigital primes p for which 10 is not a primitive root?

Remarks: The answer to the corresponding question in base 2 is yes; 2 is not a primitive root $(\bmod 17)$ but the binary expansion of $1 / 17$ is .00001111 .

There are equidigital composites, e.g., $n=1349=19 \times 71$.

Mike Filaseta notes that if $p \equiv 11(\bmod 20)$ is prime and 10 is of order $(p-1) / 2$ $(\bmod p)$ then 10^{k} runs through the quadratic residues $(\bmod p)$, and since there are more quadratic residues in $[1,(p-1) / 2]$ than in $[(p+1) / 2, p-1]$ for such $p(p \equiv 3(\bmod 4))$ p can't be equidigital. For example, $1 / 31=.032258064516129$ has 9 small digits and 6 large ones. Perhaps there are similar results for 10 of order $(p-1) / k$ for $k=3,4, \ldots$.

99:06 (Kevin O'Bryant) Write $\left.\sqrt{a_{1}}, a_{2}, \ldots\right]$ for the continued square root

$$
\frac{1}{\sqrt{a_{1}+\frac{1}{\sqrt{a_{2}+\ldots}}}}
$$

where a_{1}, a_{2}, \ldots are positive integers. Every real number $r, 0<r<1$, has such an expression, and the expression is unique in the same sense as for simple continued fractions. Does $3 / 4$ have a finite continued root?

Remark: $2 / 3=\sqrt{2}, 16], 22 / 47=\sqrt{3}, 1098,2892,410,256]$.
99:07 (Bart Goddard) Let $f:(0, \infty) \rightarrow(0, \infty)$ be strictly decreasing and onto with $f(1)=1$. Let g be the functional inverse f^{-1} of f. For α_{0} real and positive, define integers a_{0}, a_{1}, \ldots and reals $\alpha_{1}, \alpha_{2}, \ldots$ by $a_{j}=\left[\alpha_{j}\right], \alpha_{j}=g\left(\alpha_{j-1}-a_{j-1}\right)$. Write $\left(\alpha_{0}\right)_{f}$ for the sequence a_{0}, a_{1}, \ldots Let $c_{0}=a_{0}, c_{1}=a_{0}+f\left(a_{1}\right), c_{2}=a_{0}+f\left(a_{1}+f\left(a_{2}\right)\right)$, etc. Note that $f(x)=1 / x$ gives the usual continued fraction expansion of α_{0}, and $f(x)=1 / \sqrt{x}$ gives the expansion of 99:06.

Some interesting examples are
$f(x)=x^{-5},(\sqrt[5]{7})_{f}=(1,1,1, \ldots)$
$f(x)=1 / \Omega(e x)$, where Ω is the Lambert Ω-function,

$$
(\pi)_{f}=(3,3033,23766810023426903113005,2279,2,864, \ldots)
$$

1. Given f, which numbers have finite expansions? periodic expansions? Is it true that if $f(x)=x^{-2 / 3}$ then $(\sqrt[3]{3})_{f}=(\dot{1}, 1,1, \dot{2})$?
2. Is there an f such that $(\alpha)_{f}$ is periodic for all algebraic α of degree 3?
3. Find f such that $(\pi)_{f}$ has a recognizable pattern.
4. Find f such that $(e)_{f}$ is periodic.
5. Find conditions on f and α for $\lim _{n \rightarrow \infty} c_{n}=\alpha$.

Solution: (to question 4) Greg Martin notes that if $f(x)=x^{\log (e-2) / \log (e-1)}$ then $(e)_{f}=(2,1,1,1, \ldots)$.

Remark: Jeff Lagarias refers to
A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493, MR 20 \#3843.

Many later papers refer to this one, as may be seen from the listing on MathSciNet.

99:08 (Greg Martin) Define a multiplicative function $\tilde{\sigma}$ (or $\tilde{\sigma}$ if you are left-handed) by $\tilde{\sigma}\left(p^{r}\right)=p^{r}-p^{r-1}+p^{r-2}-\cdots+(-1)^{r}$. Note that $\tilde{\sigma}(n) \leq n$ with equality only for $n=1$. Call $n \tilde{\sigma}$-perfect if $2 \tilde{\sigma}(n)=n$; examples are $n=2,12,40,252,880,10880$, and 75852 . Call $n \tilde{\sigma}$ - k-perfect (or, more generally, $\tilde{\sigma}$-multiply perfect) if $k \tilde{\sigma}(n)=n$ for a positive integer k. Two examples of $\tilde{\sigma}$-3-perfects are $n=30240$ and $n=2^{10} 3^{4} 5^{4} 11 \cdot 13^{2} \cdot 31 \cdot 61 \cdot 157 \cdot 521 \cdot 683$ there are at least $40 \tilde{\sigma}$-3-perfects.

1. Are there any $\tilde{\sigma}$ - k-perfect numbers with $k \geq 4$?
2. Are there infinitely many $\tilde{\sigma}$ - k-perfect numbers?
3. Are there any odd $\tilde{\sigma}-3$-perfect numbers? Any such number must be a square.

Remark: Paraphrasing email from Greg: let $\tau(n)=n / \tilde{\sigma}(n)$, so $\tau(n)=k$ means n is a $\tilde{\sigma}$ - k-perfect number. Suppose $n=p^{2 k-1} m, p$ prime, and $\tilde{\sigma}\left(p^{2 k}\right)=q$ is prime, and $(m, p q)=1$. Then it's not hard to prove that $\tau(n)=\tau(n p q)$. In particular, if n is $\tilde{\sigma}$ - k-perfect, so is $n p q$.

Some examples of prime powers $p^{2 k-1}$ such that $\tilde{\sigma}\left(p^{2 k}\right)$ is prime are

$$
2^{1}, 2^{3}, 2^{5}, 2^{9}, 3^{1}, 3^{3}, 3^{5}, 5^{3}, 7^{1}, 13^{1}
$$

This makes it possible to find $40 \tilde{\sigma}$ - 3 -perfects from the four examples $2^{3} 3^{3} 5^{2} 7,2^{5} 3^{3} 5 \cdot 7$, $2^{5} 3^{5} 5^{2} 7^{3} 13$, and $2^{9} 3^{3} 5^{3} 11 \cdot 13 \cdot 31$.

Jeff Lagarias suggested looking at the Dirichlet series generating function for $\tilde{\sigma}$, in analogy with

$$
\sum_{n=1}^{\infty} \frac{\sigma(n)}{n} n^{-s}=\zeta(s+1) \zeta(s) .
$$

Greg finds that

$$
\sum_{n=1}^{\infty} \frac{1}{\tau(n)} n^{-s}=\zeta(2 s+2) \zeta(s) / \zeta(s+1)
$$

but no such tidy form for $\sum_{n=1}^{\infty} \tau(n) n^{-s}$.
99:09 (Jean-Marie De Koninck) Given an integer $k, k \geq 2$, not a multiple of 3 ,

1. prove that there is a prime whose digits sum to k,
2. prove that if $k \geq 4$ then there are infinitely many primes whose digits sum to k.

Remarks: Jean-Marie provided a table of values of $\rho(k)$, the smallest prime whose digits add up to k, for $2 \leq k \leq 83, k$ not a multiple of 3 . Your editor notes that $\rho(56)-\rho(55)=2999999-2998999=1000$ and asks whether there are infinitely many k with $\rho(k+1)-\rho(k)=1000$, or with $\rho(k+1)-\rho(k)=10^{m}$ for some m, or whether there is an integer r with $\rho(k+1)-\rho(k)=r$ for infinitely many r.

Your editor further notes that $\rho(34) / \rho(32)=17989 / 6899=2.61$ (to two decimals), $\rho(37) / \rho(35)=29989 / 8999=3.33, \rho(70) / \rho(68)=189997999 / 59999999=3.17$, and $\rho(73) / \rho(71)=289999999 / 89999999=3.22$, and asks whether $\rho(3 k+1) / \rho(3 k-1)$ is unbounded. Moreover, your editor also notes that $\rho(34) / \rho(35)=17989 / 8999=2.00$ and $\rho(70) / \rho(71)=189997899 / 89999999=2.11$ and asks whether $\rho(k)>\rho(k+1)$ infinitely often.

Further questions: is it true that $k>25$ implies $\rho(k) \equiv 9(\bmod 10)$? that $k>38$ implies $\rho(k) \equiv 99(\bmod 100) ?$ that $k>59$ implies $\rho(k) \equiv 999(\bmod 1000)$?

Jean-Marie also notes that it is trivial that $\rho(k) \geq(a+1) 10^{b}-1$, where $b=[k / 9]$ and $a=k-9 b$; and asks whether equality holds infinitely often. For instance, it is the case when $k=5,7,10,11,14,16,17,19,22,23,28,29,31,35,40$.

99:10 (Jeff Lagarias) Is there a field with Galois group $S_{n}, n \geq 5$, whose ring of integers has a power basis?

99:11 (Sinai Robins) Let q be real, $|q|<1$. Is the function given by $f(x)=\sum_{n=1}^{\infty}[n x] q^{n}$ real analytic in x ?

Remark: A starting place for the analytic properties of this and related series is
Wolfgang Schwarz, Über Potenzreihen, die irrationale Funktionen darstellen, I and II, Überblicke Mathematik, Band 6, 179-196 and 7, 7-32, MR 51 \#8382-3.

See also
J. H. Loxton, A. J. van der Poorten, Arithmetic properties of certain functions in several variables. III, Bull. Austral. Math. Soc. 16 (1977) 15-47, MR 81g:10046.

99:12 (Jeff Lagarias) Given $n>3$, find upper and lower bounds for the number of solutions $1<q_{1}<\cdots<q_{n}$ of the system $q_{j}^{-1} \prod_{1}^{n} q_{j} \equiv 1\left(\bmod q_{j}\right), j=1, \ldots, n$.

Remark: It is known that there are only finitely many solutions for each n, in fact there is an upper bound for q_{n}, but it does not give a good estimate for the number of solutions. $(2,3,5)$ is the only solution for $n=3$. The problem is discussed in

Lawrence Brenton, Mi-Kyung Joo, On the system of congruences $\prod_{j \neq i} n_{j} \equiv 1\left(\bmod n_{i}\right)$, Fib. Q. 33 (1995) 258-267.

The review, MR 96k:11039, is also worth reading.

