
Comments on Earlier Problems

76:60 (Peter Weinberger) Let jf j denote the number of non-zero coe�cients of a poly-

nomial f . Is there a function A such that j(f; g)j � A(jf j; jgj)? Can such an A be a

polynomial? The example f = (xab + 1)(xb + 1)=(x + 1), g = (xab + 1)(xb + 1)=(xa + 1)

with a > b � 1, a even, b odd shows that if such an A exists then A(n; n)� n2.

Solution: Andrzej Schinzel writes that the answer to this problem is negative, and a

simple counterexample is f = xab � 1, g = (xa � 1)(xb � 1), where jf j = 2, jgj = 4 and

j(f; g)j can be arbitrarily large. The only di�cult case in characteristic 0 is jf j = jgj = 3.

86:05 (Michael Filaseta) Is fn(x) =
d

dx
(xn+xn�1+ � � �+x+1) irreducible for all positive

integers n? For almost all n?

Solution: The \almost all" question is answered in the a�rmative in

A. Borisov, M. Filaseta, T. Y. Lam, O. Trifonov, Classes of polynomials having only one non-cyclotomic

irreducible factor, Acta Arith. 90 (1999) 121{153,

where Theorem 1 states that \if � > 0 then for all but O(t1=3+�) positive integers n � t

the derivative of the polynomial f(x) = 1 + x + x2 + � � � + xn is irreducible."

88:06 (Emil Grosswald) Mike Filaseta proved that almost all Bessel polynomials [poly-

nomial solutions of x2y00 + xy0 �n(n+1)y = 0 with y(0) = 1] are irreducible over Q. Get

rid of \almost all".

Solution: In work submitted for publication, Filaseta and Trifonov write the Bessel

polynomials as

yn(x) =

nX
j=0

(n+ j)!

2j(n � j)!j!
xj

and prove that if n is a positive integer and a0; a1; : : : ; an are arbitrary integers with

ja0j = janj = 1 then
nX

j=0

aj
(n + j)!

2j(n� j)!j!
xj

is irreducible.

The techniques are similar to those used in

M. Filaseta, The irreducibility of all but �nitely many Bessel polynomials, Acta Math. 174 (1995) 383{397.

93:20 (Eugene Gutkin via Je� Lagarias) [...] consider the polynomials

pn(x) =
(n � 1)(xn+1 � 1)� (n + 1)(xn � x)

(x � 1)3

[which arise in the solution of tann� = n tan �] for n � 1.

Conjecture. pn(x) is irreducible if n is even, and is x + 1 times an irreducible if n is

odd.
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Solution: This is true for almost all n. Theorem 4 of the four-author paper cited

above states that if � > 0 then for all but O(t4=5+�) positive integers n � t the polynomial

p(x) = (n� 1)(xn+1� 1)� (n+1)(xn�x) is (x� 1)3 times an irreducible polynomial if n

is even and (x � 1)3(x + 1) times an irreducible polynomial if n is odd.

95:18 (Martin LaBar, via Richard Guy) Is there a 3�3 magic square with distinct square

entries?

Remark: Comments on this problem have appeared in each problem set since it was

�rst proposed.

Andrew Bremner, On squares of squares, Acta Arith. 88 (1999) 289{297

constructs parametrized families of 3 � 3 matrices with distinct square entries and with

all sums equal except that along the non-principal diagonal.

97:22 (John Selfridge) Let n = rs2, r square-free, r > 1. It is conjectured that for all

such n except n = 8 and n = 392 there exist integers a, b with n < a < b < r(s+1)2 such

that nab is a square.

Remark: See the paper,

Paul Erd}os, Janice L. Malouf, J. L. Selfridge, Esther Szekeres, Subsets of an interval whose product is a

power, Discrete Math. 200 (1999) 137{147.

Selfridge reports that he and Aaron Meyerowitz have proved that if there is a coun-

terexample n > 392 then n is at least on the order of 1030000.

Problems Proposed 16 & 19 Dec 99

99:01 (John Wolfskill) Let d � 3 (mod 4) be positive and squarefree. Let a fundamental

unit in Z[
p
d] be given by � = a+b

p
d > 1. Characterize those d for which

p
2 is in Q(

p
�).

Remarks:
p
2 is in Q(

p
�) for all prime d and for some but not all composite d.

Gary Walsh shows that the following are equivalent:

a)
p
2 is in Q(

p
�);

b) at least one of the equations x2 � dy2 = �2 is solvable in integers x and y;

c) the prime over 2 in Q(
p
d) is principal.

Characterizing d such that x2 � dy2 = �1 has a solution is a notorious open question,

which suggests that there may be no simple solution to the current problem.

Walsh's argument, as presented by Wolfskill, runs as follows. Let K = Q(
p
�), let �

in K be such that �2 = �. Note that the norm of � is 1, whence K=Q is Galois and

non-cyclic. Since � is in K we have � = r + s
p
d+ t

p
d0 + u

p
dd0 for some rational r, s,

t and u and some d0 with
p
d0 in K. Let � be the element of the Galois group of K=Q

�xing
p
d but not �xing

p
d0. Then

�
�(�)

�2
= �(�2) = �(�) = � = �2, so �(�) = � or

�(�) = ��. If �(�) = � then � is in Q(
p
d) but then �2 = � contradicts the hypothesis

that � is a fundamental unit in Q(
p
d), so �(�) = ��, so � = t

p
d0 + u

p
dd0.
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Now assume
p
2 is in K, so � = t

p
2 + u

p
2d, t and u rational. From �2 = � we get

that 2(t2 + du2) = a and 4tu = b are both integers, from which it is easy to deduce that

2t = x (say) and 2u = y (say) are integers. Then (x2 � dy2)2 = 4(a2 � db2) = 4, so

x2 � dy2 = �2.
Conversely, suppose x and y are positive integers such that x2 � dy2 = �2. Note that

x and y are odd. Let a = (x2 + dy2)=2, b = xy. Then a2 � db2 = 1, so a + b
p
d is a

unit in Q(
p
d). Also,

�
x

2

p
2 + y

2

p
2d
�2

= a + b
p
d, so a + b

p
d must be an odd power of

the fundamental unit in Q(
p
d)|otherwise, x

2

p
2 + y

2

p
2d would be in Q(

p
d). So,

p
2 is

in Q(
p
�).

99:02 (Greg Martin) Consider the following \proof" that 4680 is perfect: 4680 = 23 � 32 �
(�5)�(�13), so �(4680) = (1+2+22+23)(1+3+32)(1+(�5))(1+(�13)) = 9360 = 2�4680.
Allowing the use of �(�pn) =

Pn

j=0(�p)j , is there a \spoof perfect number" with exactly

3 distinct prime factors?

Remark: If so, it must be negative.

Solution: Dennis Eichhorn found that �84 = 22(3)(�7) is spoof-perfect, and Eichhorn
and Peter Montgomery independently found that �120 = 23(3)(�5) is spoof-perfect.

Montgomery also found that �672 = (�2)5(3)(7) leads to

�(�672) = (1 � 2 + 4� 8 + 16� 32)(1 + 3)(1 + 7) = �672:

Alf van der Poorten asked whether there are any odd spoof-perfects.

John Selfridge asked whether 4680 is the smallest positive spoof-perfect.

See also 99:08, below.

99:03 (Mike Filaseta) Find m0 such that if m � m0 and m(m � 1) = 2a3bm0 and
(m0; 6) = 1 then m0 >

p
m.

Remark: See

M. Filaseta, A generalization of an irreducibility theorem of I. Schur, Analytic number theory, Vol. 1 (Allerton

Park, IL, 1995), 371{396, Progr. Math. 138, Birkhauser, Boston 1996

for a similar but ine�ective result derived from work of Mahler.

99:04 (Mike Filaseta) Show that every n�n integer matrix, n � 2, is a sum of 3 squares

of n� n integer matrices.

Remark: What is wanted is an argument more transparent than that in

Leonid N. Vaserstein, Every integral matrix is the sum of three squares, Linear and Multilinear Algebra 20

(1986) 1{4.

99:05 (Zachary Franco) Call n equidigital if each digit occurs equally often in the repeating

block in the decimal expansion of 1=n. It is easy to see that if p is prime and 10 is a

primitive root (mod p) then p is equidigital. Are there any equidigital primes p for which

10 is not a primitive root?

Remarks: The answer to the corresponding question in base 2 is yes; 2 is not a

primitive root (mod 17) but the binary expansion of 1=17 is : _0000111 _1.

There are equidigital composites, e.g., n = 1349 = 19� 71.
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Mike Filaseta notes that if p � 11 (mod 20) is prime and 10 is of order (p � 1)=2

(mod p) then 10k runs through the quadratic residues (mod p), and since there are more

quadratic residues in [1; (p � 1)=2] than in [(p + 1)=2; p � 1] for such p (p � 3 (mod 4))

p can't be equidigital. For example, 1=31 = : _03225806451612 _9 has 9 small digits and 6

large ones. Perhaps there are similar results for 10 of order (p � 1)=k for k = 3; 4; : : : .

99:06 (Kevin O'Bryant) Write
p

a1; a2; : : : ] for the continued square root

1q
a1 +

1p
a
2
+:::

where a1; a2; : : : are positive integers. Every real number r, 0 < r < 1, has such an

expression, and the expression is unique in the same sense as for simple continued fractions.

Does 3=4 have a �nite continued root?

Remark: 2=3 =
p

2; 16], 22=47 =
p

3; 1098; 2892; 410; 256].

99:07 (Bart Goddard) Let f : (0;1) ! (0;1) be strictly decreasing and onto with

f(1) = 1. Let g be the functional inverse f�1 of f . For �0 real and positive, de�ne

integers a0; a1; : : : and reals �1; �2; : : : by aj = [�j ], �j = g(�j�1�aj�1). Write (�0)f for

the sequence a0; a1; : : : . Let c0 = a0, c1 = a0 + f(a1), c2 = a0 + f
�
a1 + f(a2)

�
, etc. Note

that f(x) = 1=x gives the usual continued fraction expansion of �0, and f(x) = 1=
p
x

gives the expansion of 99:06.

Some interesting examples are

f(x) = x�5, ( 5

p
7)f = (1; 1; 1; : : : )

f(x) = 1=
(ex), where 
 is the Lambert 
-function,

(�)f = (3; 3033; 23766810023426903113005; 2279; 2; 864; : : : )

1. Given f , which numbers have �nite expansions? periodic expansions? Is it true that

if f(x) = x�2=3 then ( 3

p
3)f = (_1; 1; 1; _2)?

2. Is there an f such that (�)f is periodic for all algebraic � of degree 3?

3. Find f such that (�)f has a recognizable pattern.

4. Find f such that (e)f is periodic.

5. Find conditions on f and � for limn!1 cn = �.

Solution: (to question 4) Greg Martin notes that if f(x) = xlog(e�2)= log(e�1) then

(e)f = (2; 1; 1; 1; : : : ).

Remark: Je� Lagarias refers to

A. R�enyi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8

(1957) 477{493, MR 20 #3843.

Many later papers refer to this one, as may be seen from the listing on MathSciNet.
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99:08 (Greg Martin) De�ne a multiplicative function ~� (or
v

� if you are left-handed) by

~�(pr) = pr � pr�1 + pr�2 � � � �+ (�1)r . Note that ~�(n) � n with equality only for n = 1.

Call n ~�-perfect if 2~�(n) = n; examples are n = 2; 12; 40; 252; 880; 10880, and 75852. Call

n ~�-k-perfect (or, more generally, ~�-multiply perfect) if k~�(n) = n for a positive integer k.

Two examples of ~�-3-perfects are n = 30240 and n = 210345411�132 �31�61�157�521�683|
there are at least 40 ~�-3-perfects.

1. Are there any ~�-k-perfect numbers with k � 4?

2. Are there in�nitely many ~�-k-perfect numbers?

3. Are there any odd ~�-3-perfect numbers? Any such number must be a square.

Remark: Paraphrasing email from Greg: let � (n) = n=~�(n), so � (n) = k means n

is a ~�-k-perfect number. Suppose n = p2k�1m, p prime, and ~�(p2k) = q is prime, and

(m;pq) = 1. Then it's not hard to prove that � (n) = � (npq). In particular, if n is

~�-k-perfect, so is npq.

Some examples of prime powers p2k�1 such that ~�(p2k) is prime are

21; 23; 25; 29; 31; 33; 35; 53; 71; 131:

This makes it possible to �nd 40 ~�-3-perfects from the four examples 2333527, 25335 � 7,
2535527313, and 29335311 � 13 � 31.

Je� Lagarias suggested looking at the Dirichlet series generating function for ~�, in

analogy with
1X
n=1

�(n)

n
n�s = �(s+ 1)�(s):

Greg �nds that
1X
n=1

1

� (n)
n�s = �(2s+ 2)�(s)=�(s + 1);

but no such tidy form for
P1

n=1 � (n)n
�s.

99:09 (Jean-Marie De Koninck) Given an integer k, k � 2, not a multiple of 3,

1. prove that there is a prime whose digits sum to k,

2. prove that if k � 4 then there are in�nitely many primes whose digits sum to k.

Remarks: Jean-Marie provided a table of values of �(k), the smallest prime whose

digits add up to k, for 2 � k � 83, k not a multiple of 3. Your editor notes that

�(56) � �(55) = 2999999� 2998999 = 1000 and asks whether there are in�nitely many k

with �(k+1)� �(k) = 1000, or with �(k+ 1)� �(k) = 10m for some m, or whether there

is an integer r with �(k + 1)� �(k) = r for in�nitely many r.

Your editor further notes that �(34)=�(32) = 17989=6899 = 2:61 (to two decimals),

�(37)=�(35) = 29989=8999 = 3:33, �(70)=�(68) = 189997999=59999999 = 3:17, and

�(73)=�(71) = 289999999=89999999 = 3:22, and asks whether �(3k + 1)=�(3k � 1) is

unbounded. Moreover, your editor also notes that �(34)=�(35) = 17989=8999 = 2:00 and

�(70)=�(71) = 189997899=89999999 = 2:11 and asks whether �(k) > �(k + 1) in�nitely

often.
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Further questions: is it true that k > 25 implies �(k) � 9 (mod 10)? that k > 38

implies �(k) � 99 (mod 100)? that k > 59 implies �(k) � 999 (mod 1000)?

Jean-Marie also notes that it is trivial that �(k) � (a+ 1)10b � 1, where b = [k=9] and

a = k � 9b; and asks whether equality holds in�nitely often. For instance, it is the case

when k = 5; 7; 10; 11; 14; 16; 17; 19; 22; 23; 28; 29; 31; 35; 40.

99:10 (Je� Lagarias) Is there a �eld with Galois group Sn, n � 5, whose ring of integers

has a power basis?

99:11 (Sinai Robins) Let q be real, jqj < 1. Is the function given by f(x) =
P1

n=1[nx]q
n

real analytic in x?

Remark: A starting place for the analytic properties of this and related series is

Wolfgang Schwarz, �Uber Potenzreihen, die irrationale Funktionen darstellen, I and II, �Uberblicke Mathe-

matik, Band 6, 179{196 and 7, 7{32, MR 51 #8382-3.

See also

J. H. Loxton, A. J. van der Poorten, Arithmetic properties of certain functions in several variables. III, Bull.

Austral. Math. Soc. 16 (1977) 15{47, MR 81g:10046.

99:12 (Je� Lagarias) Given n > 3, �nd upper and lower bounds for the number of

solutions 1 < q1 < � � � < qn of the system q�1
j

Qn

1 qj � 1 (mod qj), j = 1; : : : ; n.

Remark: It is known that there are only �nitely many solutions for each n, in fact

there is an upper bound for qn, but it does not give a good estimate for the number of

solutions. (2; 3; 5) is the only solution for n = 3. The problem is discussed in

Lawrence Brenton, Mi-Kyung Joo, On the system of congruences
Q

j 6=i
nj�1 (mod ni), Fib. Q. 33 (1995)

258{267.

The review, MR 96k:11039, is also worth reading.


