Comments on Earlier Problems

76:60 (Peter Weinberger) Let |f| denote the number of non-zero coefficients of a poly-
nomial f. Is there a function A such that |(f,¢)| < A(|f],|¢])? Can such an A be a
polynomial? The example f = (:L'“b + 1)(:1;b +1)/(x+1), 9= (:L'“b + 1)(:1;b +1)/(x* + 1)
with @ > b — 1, a even, b odd shows that if such an A exists then A(n,n) > n?.
Solution: Andrzej Schinzel writes that the answer to this problem is negative, and a
simple counterexample is f = 2% — 1, ¢ = (2% — 1)(2® — 1), where |f| = 2, |¢|] = 4 and
|(f,g)| can be arbitrarily large. The only difficult case in characteristic 0 is |f| = |¢g| = 3.

86:05 (Michael Filaseta) Is f,(x) = %(:1;" L 1) irreducible for all positive
integers n? For almost all n?

Solution: The “almost all” question is answered in the affirmative in

A. Borisov, M. Filaseta, T. Y. Lam, O. Trifonov, Classes of polynomials having only one non-cyclotomic

irreducible factor, Acta Arith. 90 (1999) 121-153,

where Theorem 1 states that “if € > 0 then for all but O(t'/3%¢) positive integers n < t
the derivative of the polynomial f(z) =1+« + 22 4+ -+ 4+ 2" is irreducible.”

88:06 (Emil Grosswald) Mike Filaseta proved that almost all Bessel polynomials [poly-
nomial solutions of 22y + 2y’ — n(n + 1)y = 0 with y(0) = 1] are irreducible over Q. Get
rid of “almost all”.

Solution: In work submitted for publication, Filaseta and Trifonov write the Bessel

polynomials as
n

yn(z) = Z Majy

= 2 —=J)l!
and prove that if n is a positive integer and ag,ay,...,a, are arbitrary integers with
lag| = |an| = 1 then
n P
Z%‘Lj)-*f’
27(n — g)lj!

=0
1s irreducible.

The techniques are similar to those used in

M. Filaseta, The irreducibility of all but finitely many Bessel polynomials, Acta Math. 174 (1995) 383-397.

93:20 (Eugene Gutkin via Jeff Lagarias) [...] consider the polynomials

B (n — 1)(:1;"+1 —1)—(n+1)(a™ —a)
pn(l') - (l‘ _ 1)3

[which arise in the solution of tannf = ntan 6] for n > 1.

Conjecture. p,(x) is irreducible if n is even, and is @ 4+ 1 times an irreducible if n is

odd.



Solution: This is true for almost all n. Theorem 4 of the four-author paper cited
above states that if € > 0 then for all but O(t4/5+6) positive integers n < t the polynomial
pz) =(n—1)(a"" —1)—(n+1)(a™ —z) is (x — 1)® times an irreducible polynomial if n
is even and (z — 1)3(z 4+ 1) times an irreducible polynomial if n is odd.

95:18 (Martin LaBar, via Richard Guy) Is there a 3 x 3 magic square with distinet square
entries?

Remark: Comments on this problem have appeared in each problem set since it was
first proposed.

Andrew Bremner, On squares of squares, Acta Arith. 88 (1999) 289-297

constructs parametrized families of 3 x 3 matrices with distinct square entries and with
all sums equal except that along the non-principal diagonal.

97:22 (John Selfridge) Let n = rs?, r square-free, r > 1. It is conjectured that for all
such n except n = 8 and n = 392 there exist integers a, b with n < a < b < r(s+1)? such
that nab is a square.

Remark: See the paper,

Paul Erdés, Janice L. Malouf, J. L. Selfridge, Esther Szekeres, Subsets of an interval whose product is a
power, Discrete Math. 200 (1999) 137-147.

Selfridge reports that he and Aaron Meyerowitz have proved that if there is a coun-
terexample n > 392 then n is at least on the order of 1030009,

Problems Proposed 16 & 19 Dec 99

99:01 (John Wolfskill) Let d = 3 (mod 4) be positive and squarefree. Let a fundamental
unit in Z[v/d] be given by € = a+bv/d > 1. Characterize those d for which v/2 is in Q(+/€).

Remarks: /2 is in Q(+/¢) for all prime d and for some but not all composite d.
Gary Walsh shows that the following are equivalent:

2) V3 s in Q(ve)
b) at least one of the equations 2? — dy* = 42 is solvable in integers = and y;
¢) the prime over 2 in Q(v/d) is principal.

Characterizing d such that 2 — dy? = —1 has a solution is a notorious open question,
which suggests that there may be no simple solution to the current problem.

Walsh’s argument, as presented by Wolfskill, runs as follows. Let K = Q( /¢), let «
in K be such that a®> = e. Note that the norm of € is 1, whence K/Q is Galois and
non-cyclic. Since « is in K we have o = r 4+ svV/d+ +/d + u\/dd for some rational r, s,
t and u and some d’ with v/d' in K. Let o be the element of the Galois group of K/Q
fixing Vd but not fixing Vd'. Then (a(a)>2 = a(ozz) =o(e) =€ = a?, so o(a) = v or
o(a) = —a. If o(a) = a then « is in Q(v/d) but then a? = € contradicts the hypothesis
that e is a fundamental unit in Q(v/d), so o(a) = —a, so a = t/d' 4+ u\/dd'.



Now assume \/§ isin K, so o = t\/§ + U\/ﬁ, t and u rational. From o? = ¢ we get
that 2(+* 4+ du?) = a and 4tu = b are both integers, from which it is easy to deduce that
2t = z (say) and 2u = y (say) are integers. Then (2? — dy?)? = 4(a* — db*) = 4, so
2? — dy? = £2.

Conversely, suppose * and y are positive integers such that z? — dy? = +2. Note that
z and y are odd. Let a = (22 + dy?)/2, b = zy. Then o> — db* = 1, so a + b/d is a
unit in Q(v/d). Also, (%\/ﬁ + %@)2 = a+ b/d, so a+ bv/d must be an odd power of
the fundamental unit in Q(v/d)—otherwise, %\/i + £v2d would be in Q(V/d). So, V2 is
in Qo)

99:02 (Greg Martin) Consider the following “proof” that 4680 is perfect: 4680 = 23 - 32 .
(—5)-(—13), s0 0(4680) = (1+2+22+2%)(1+3+3%)(1+(—5))(1+(—13)) = 9360 = 2x4680.
Allowing the use of o(—p") = 2?20(—p)j, is there a “spoof perfect number” with exactly
3 distinct prime factors?

Remark: If so, it must be negative.

Solution: Dennis Eichhorn found that —84 = 2%(3)(—7) is spoof-perfect, and Eichhorn
and Peter Montgomery independently found that —120 = 2?(3)(—5) is spoof-perfect.
Montgomery also found that —672 = (—2)°(3)(7) leads to

o(—672) = (1 — 244 — 8+ 16— 32)(1 + 3)(1 + 7) = —672.

Alf van der Poorten asked whether there are any odd spoof-perfects.
John Selfridge asked whether 4680 is the smallest positive spoof-perfect.
See also 99:08, below.

99:03 (Mike Filaseta) Find mg such that if m > mg and m(m — 1) = 2%3*m’ and
(m',6) =1 then m' > /m.
Remark: See

M. Filaseta, A generalization of an irreducibility theorem of I. Schur, Analytic number theory, Vol. 1 (Allerton
Park, IL, 1995), 371-396, Progr. Math. 138, Birkhauser, Boston 1996

for a similar but ineffective result derived from work of Mahler.

99:04 (Mike Filaseta) Show that every n X n integer matrix, n > 2, is a sum of 3 squares
of n X n integer matrices.

Remark: What is wanted is an argument more transparent than that in

Leonid N. Vaserstein, Every integral matrix is the sum of three squares, Linear and Multilinear Algebra 20

(1986) 1-4.

99:05 (Zachary Franco) Call n equidigital if each digit occurs equally often in the repeating
block in the decimal expansion of 1/n. It is easy to see that if p is prime and 10 is a
primitive root (mod p) then p is equidigital. Are there any equidigital primes p for which
10 i1s not a primitive root?

Remarks: The answer to the corresponding question in base 2 is yes; 2 is not a
primitive root (mod 17) but the binary expansion of 1/17 is .00001111.

There are equidigital composites, e.g., n = 1349 = 19 x 71.
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Mike Filaseta notes that if p = 11 (mod 20) is prime and 10 is of order (p — 1)/2
(mod p) then 10* runs through the quadratic residues (mod p), and since there are more
quadratic residues in [1,(p — 1)/2] than in [(p+ 1)/2,p — 1] for such p (p = 3 (mod 4))
p can’t be equidigital. For example, 1/31 = .032258064516129 has 9 small digits and 6
large ones. Perhaps there are similar results for 10 of order (p — 1)/k for k =3,4,....

99:06 (Kevin O’Bryant) Write Vo, as,. . .] for the continued square root

1

1

“t+ Zor

where ay,as,... are positive integers. Every real number r, 0 < r < 1, has such an
expression, and the expression is unique in the same sense as for simple continued fractions.
Does 3/4 have a finite continued root?

Remark: 2/3 =V 2,16], 22/47 = V3, 1098, 2892, 410, 256).

99:07 (Bart Goddard) Let f : (0,00) — (0,00) be strictly decreasing and onto with
f(1) = 1. Let g be the functional inverse f~! of f. For g real and positive, define
integers ag, ay, ... and reals ay, ag,... by a; = [a;], aj = g(aj—1 —a;—1). Write («y)y for
the sequence ag,aq,.... Let ¢g = ag, c1 = ag + f(a1), c2 = ap + f<a1 + f(a2)>, etc. Note
that f(x) = 1/x gives the usual continued fraction expansion of ag, and f(x) = 1//x
gives the expansion of 99:06.

Some interesting examples are
fla)y =2 (VT)y =(1,1,1,...)
flz) =1/Q(ex), where Q is the Lambert Q-function,

(7)f = (3,3033,23766810023426903113005, 2279, 2, 864, .. . )

1. Given f, which numbers have finite expansions? periodic expansions? Is it true that
if f(z)=272/% then (V/3); = (1,1,1,2)?

2. Is there an f such that («)¢ is periodic for all algebraic « of degree 37

3. Find f such that (7)s has a recognizable pattern.

4. Find f such that (e) is periodic.

5. Find conditions on f and « for lim, .~ ¢, = «.

Solution: (to question 4) Greg Martin notes that if f(z) = zlos(e=2)/loa(e=1) thep
(e)f =(2,1,1,1,...).

Remark: Jeff Lagarias refers to

A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8
(1957) 477-493, MR 20 #3843.

Many later papers refer to this one, as may be seen from the listing on MathSciNet.
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99:08 (Greg Martin) Define a multiplicative function & (or & if you are left-handed) by
g(p")=p " —p" 14+ p"7%—..-4+(=1)". Note that 5(n) < n with equality only for n = 1.
Call n g-perfect if 26(n) = n; examples are n = 2,12, 40,252, 880, 10880, and 75852. Call
n &-k-perfect (or, more generally, -multiply perfect) if k&(n) = n for a positive integer k.
Two examples of 5-3-perfects are n = 30240 and n = 21°345%11.13%.31-61-157-521-683—
there are at least 40 &-3-perfects.

1. Are there any o-k-perfect numbers with & > 47
2. Are there infinitely many &-k-perfect numbers?
3. Are there any odd &-3-perfect numbers? Any such number must be a square.

Remark: Paraphrasing email from Greg: let 7(n) = n/é(n), so 7(n) = k means n
is a §-k-perfect number. Suppose n = p**~lm, p prime, and &(p**) = ¢ is prime, and
(m,pq) = 1. Then it’s not hard to prove that 7(n) = 7(npg). In particular, if n is
a-k-pertect, so is npq.

Some examples of prime powers p?*~! such that &(p**) is prime are
ol 2% 25 9% 31 3% 3° 53 7' 13%.
This makes it possible to find 40 &-3-perfects from the four examples 2333527, 25335 . 7,
2°35527%13, and 29335311 - 13 - 31.

Jeff Lagarias suggested looking at the Dirichlet series generating function for &, in
analogy with

5 20 = s 4 1)¢0)

n=1

Greg finds that

(25 +2)C(s)/C(s + 1),

but no such tidy form for 22021 T(n)n=".

99:09 (Jean-Marie De Koninck) Given an integer k, k > 2, not a multiple of 3,
1. prove that there is a prime whose digits sum to k,
2. prove that if k& > 4 then there are infinitely many primes whose digits sum to k.

Remarks: Jean-Marie provided a table of values of p(k), the smallest prime whose
digits add up to k, for 2 < k < 83, k£ not a multiple of 3. Your editor notes that
p(56) — p(55) = 2999999 — 2998999 = 1000 and asks whether there are infinitely many k
with p(k 4+ 1) — p(k) = 1000, or with p(k+ 1) — p(k) = 10™ for some m, or whether there
is an integer r with p(k + 1) — p(k) = r for infinitely many r.

Your editor further notes that p(34)/p(32) = 17989/6899 = 2.61 (to two decimals),
p(37)/p(35) = 29989/8999 = 3.33, p(70)/p(63) = 189997999/59999999 = 3.17, and
p(73)/p(71) = 289999999/89999999 = 3.22, and asks whether p(3k + 1)/p(3k — 1) is
unbounded. Moreover, your editor also notes that p(34)/p(35) = 17989/8999 = 2.00 and
p(70)/p(71) = 189997899/89999999 = 2.11 and asks whether p(k) > p(k 4 1) infinitely

often.



Further questions: is it true that & > 25 implies p(k) = 9 (mod 10)? that k& > 38
implies p(k) = 99 (mod 100)7 that k£ > 59 implies p(k) =999 (mod 1000)?
Jean-Marie also notes that it is trivial that p(k) > (a 4 1)10° — 1, where b = [k/9] and

a = k — 9b; and asks whether equality holds infinitely often. For instance, it is the case
when k£ = 5,7,10,11,14,16,17,19, 22,23, 28, 29, 31, 35, 40.

99:10 (Jeff Lagarias) Is there a field with Galois group S,, n > 5, whose ring of integers
has a power basis?

99:11 (Sinai Robins) Let ¢ be real, |¢| < 1. Is the function given by f(z) =Y.~ [nz]¢"
real analytic in 7

Remark: A starting place for the analytic properties of this and related series is

Wolfgang Schwarz, Uber Potenzreihen, die irrationale Funktionen darstellen, I and II, Uberblicke Mathe-
matik, Band 6, 179-196 and 7, 7-32, MR 51 #8382-3.
See also

J. H. Loxton, A. J. van der Poorten, Arithmetic properties of certain functions in several variables. ITI, Bull.

Austral. Math. Soc. 16 (1977) 15-47, MR 81g:10046.

99:12 (Jeff Lagarias) Given n > 3, find upper and lower bounds for the number of
solutions 1 < g1 < -+ < ¢y of the system qj_l [[7¢gj =1 (mod gj), j =1,...,n.

Remark: It is known that there are only finitely many solutions for each n, in fact
there is an upper bound for ¢,, but it does not give a good estimate for the number of
solutions. (2,3,5) is the only solution for n = 3. The problem is discussed in

Lawrence Brenton, Mi-Kyung Joo, On the system of congruences []

258-267.
The review, MR 96k:11039, is also worth reading.

G =1 (mod n;), Fib. Q. 33 (1995)



