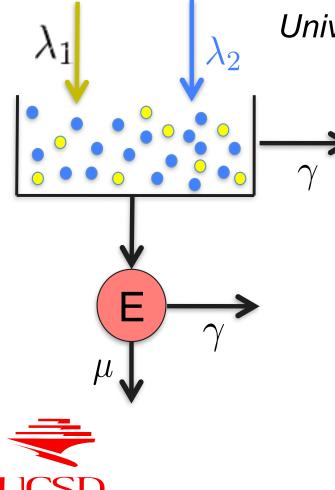
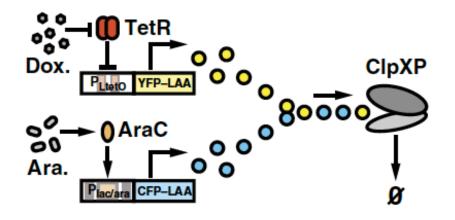
Criticality and Adaptivity in Enzymatic Networks

Ruth J Williams

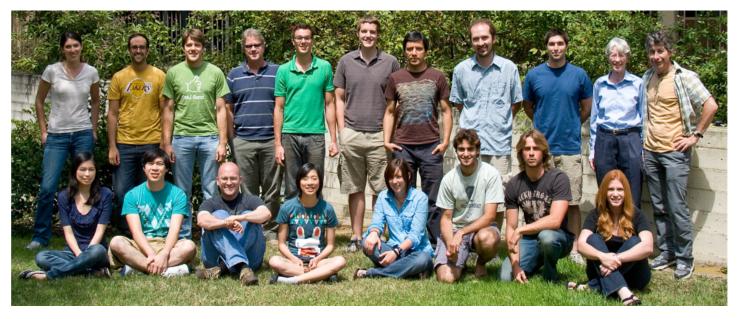


University of California, San Diego



Acknowledgements

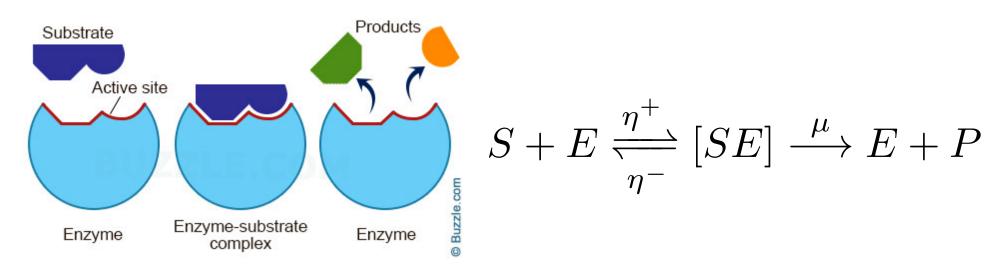
- Jeff Hasty, Lev Tsimring, Natalie Cookson, PJ Steiner (UCSD)
- Will Mather (VT), Tal Danino (MIT), Octavio Mondragon-Palomino (MIT)
- members of the UCSD Systems Biodynamics Lab



Thanks to NSF and NIH for funding

Enzymes

 Large biological molecules that act as catalysts for complex biochemical reactions in living organisms

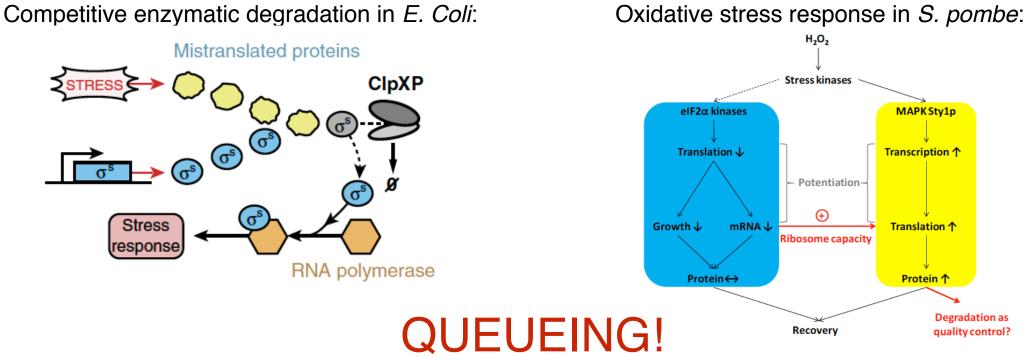


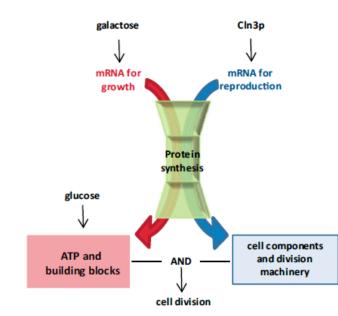
• Deterministic model: Michaelis-Menten equation

$$\frac{d[P]}{dt} = \frac{\mu[E]_0[S]}{K + [S]}, \quad K = \frac{\eta^-}{\eta^+}$$

Here: stochastic model, limited #enzymes, shared

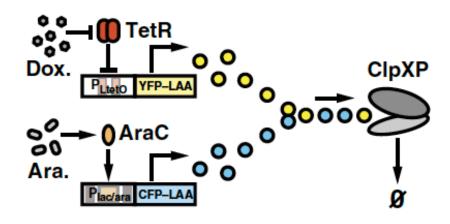
Bottlenecks in Enzymatic Processing





Translational crosstalk:

Synthetic shared degradation model



Connection to Queueing

- Queueing theory traditionally has used stochastic models to understand congestion effects in man-made systems in engineering and business where the processing resources are limited
- Queueing theory useful for formulating, analysing and interpreting models
- Two interesting regimes

Two Regimes in Queueing

Underloaded

No queue for iPad mini in London, Nov 2, 2012 Photo by Rik Henderson

Service rate > arrival rate

Queues are short Little competition

Overloaded

Photo by Ilze Ziedins

Service rate < arrival rate Queues are long Strong competition

Two Regimes in Queueing

Underloaded

No queue for iPad mini in London, Nov 2, 2012 Photo by Rik Henderson

Overloaded

Photo by Ilze Ziedins

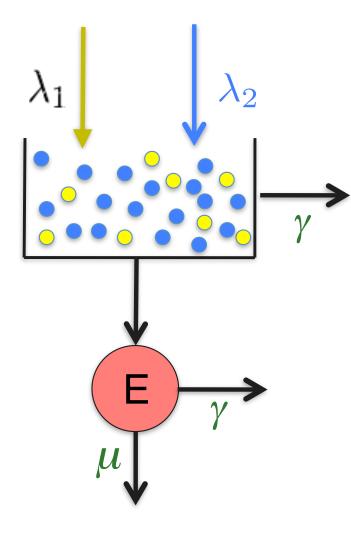
Service rate > arrival rate Queues are short Service rate < arrival rate Queues are long

Balance: service rate = arrival rate

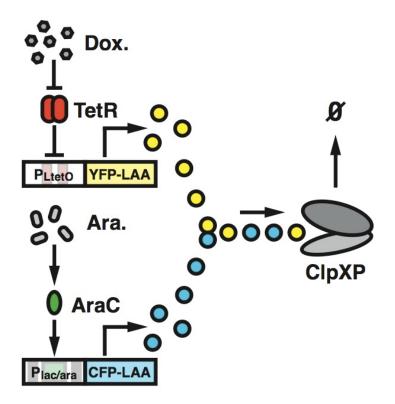
Outline

- Competition for common downstream (degradation) enzyme
- Adaptive enzymatic processing
- Enzymatic networks with shared resources

Competition for Enzymatic Processing



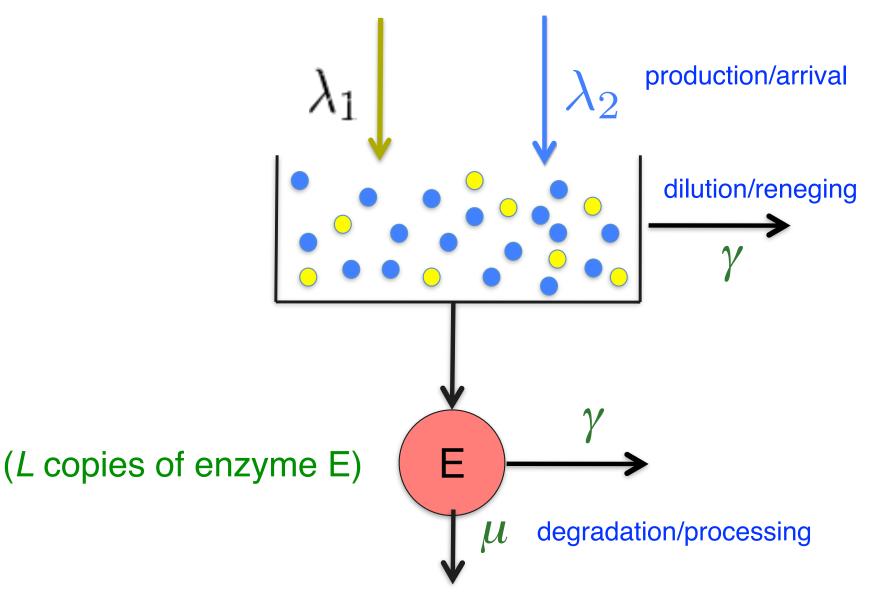
Theory



Experiment

Competition for Degradation

• Two uncoupled proteins X₁ and X₂ are processed downstream by a common enzyme E



Stochastic Model

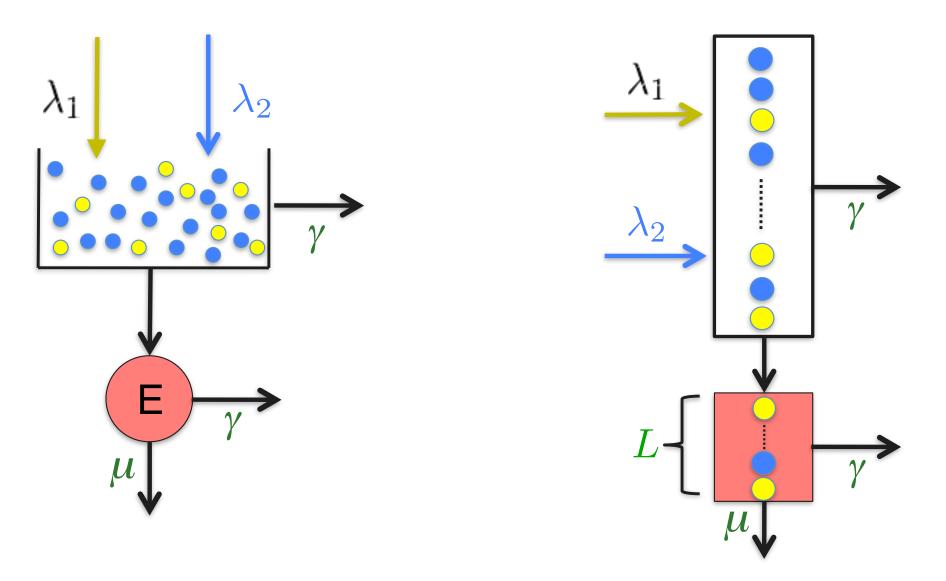
Biochemical reaction network: protein species X_1, X_2

Assume: exponential reaction times and binding is instantaneous Key stochastic processes (i=1,2):

 $Q_i(t)$ = total number of molecules of species *i* in the system at time t (includes free molecules and those being degraded)

N(t) = total number of protein molecules in system at time t

Multiclass Queue: Processing in Random Order + Reneging



Total service rate = $\phi(n) = min(n, L)\mu + n\gamma$ n = total number of protein molecules in system

Steady-State Distribution (Quasireversible Queue)

Markovian state descriptor: ordered list of the types in the queue (incl. those being processed)

<u>Theorem (Kelly):</u> There is a unique steady-state distribution for the "list" Markov process. The associated steady-state distribution for the total number of molecules in the system, *N*, is:

$$P(N=n) = c \frac{\Lambda^n}{\prod_{\ell=1}^n \phi(\ell)}$$

and conditioned on *N=n*, the stationary distribution for the molecular count process *Q* is a binomial distribution with parameters $(n; p_1, p_2)$:

$$P(Q = (q_1, q_2)) = P(N = n) \frac{n!}{q_1! q_2!} p_1^{q_1} p_2^{q_2}$$
$$\Lambda = \sum_i \lambda_i \qquad p_i = \frac{\lambda_i}{\Lambda}$$

Moments:

$E[Q_i]$	=	$p_i E[N]$
$E[Q_i^2]$	=	$p_i(1-p_i)E[N] + p_i^2E[N^2]$
$Var(Q_i)$	=	$p_i^2(Var(N) - E[N]) + p_i E[N]$
$E[Q_iQ_j]$	=	$p_i p_j (E[N^2] - E[N]) \text{for } j \neq i$

Correlation:

$$r_{ij} = \frac{E[Q_i Q_j] - E[Q_i]E[Q_j]}{\sqrt{Var(Q_i)Var(Q_j)}}$$

$$r_{ij} = \frac{F - 1}{\sqrt{(F - 1 + 1/p_i)(F - 1 + 1/p_j)}} \qquad j \neq i$$

 $F = \frac{Var(N)}{E[N]}$

Fano factor - can be computed exactly

Moments for N

• Distribution: $P(N = n) = c \frac{\Lambda^n}{\prod_{\ell=1}^n \phi(\ell)}$ where $\Lambda = \sum_{i} \lambda_{i} \qquad \qquad \phi(n) = \min(n, L)\mu + n\gamma$ $\int M(x,y,z) = \sum_{n=0}^{\infty} \frac{(x)_n z^n}{(y)_n n!}$ Normalizing constant c: \bullet $c^{-1} = \sum_{n=0}^{L-1} \frac{\zeta^n}{n!} + \frac{\zeta^L}{L!} M(1, \beta + 1, \delta)$ confluent hypergeometric function $\zeta = \frac{\Lambda}{\mu + \gamma}, \quad \beta = \frac{L\mu}{\gamma} + L, \quad \delta = \frac{\Lambda}{\gamma}$ Moment generating function: lacksquare

$$E[e^{uN}] = c \left(\sum_{n=0}^{L-1} \frac{(e^u \zeta)^n}{n!} + \frac{(e^u \zeta)^L}{L!} M(1, \beta + 1, e^u \delta) \right)$$

Moments and Correlations for Q (L=1)

$$E[Q_i] = \frac{p_i \delta M(2, \beta + 1, \delta)}{\beta M(1, \beta, \delta)},$$

$$Var(Q_i) = \frac{2p_i^2 \delta^2 M(3, \beta + 2, \delta)}{\beta (\beta + 1) M(1, \beta, \delta)} - \left(\frac{p_i \delta M(2, \beta + 1, \delta)}{\beta M(1, \beta, \delta)}\right)^2 + \frac{p_i \delta M(2, \beta + 1, \delta)}{\beta M(1, \beta, \delta)},$$

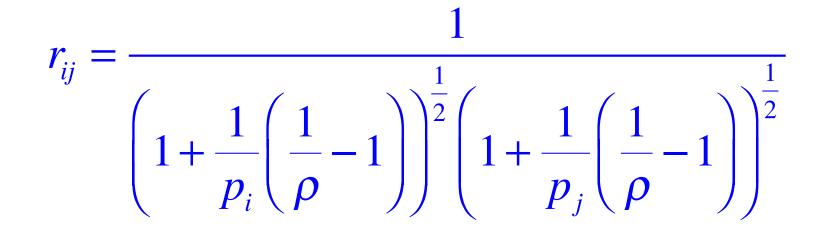
$$r_{ij} = \frac{h(\beta, \delta)}{(h(\beta, \delta) + p_i^{-1})^{1/2} (h(\beta, \delta) + p_j^{-1})^{1/2}},$$

 $\beta = (\mu/\gamma) + 1, \ \delta = \Lambda/\gamma, \ \Lambda = \sum_{i=1}^{m} \lambda_i,$

$$f(\beta,\delta) = \frac{2\delta M(3,\beta+2,\delta)}{\beta+1} - \frac{\delta (M(2,\beta+1,\delta))^2}{\beta M(1,\beta,\delta)},$$
$$g(\beta,\delta) = M(2,\beta+1,\delta), \qquad h(\beta,\delta) = \frac{f(\beta,\delta)}{g(\beta,\delta)},$$

Zero Dilution Limit for L=1

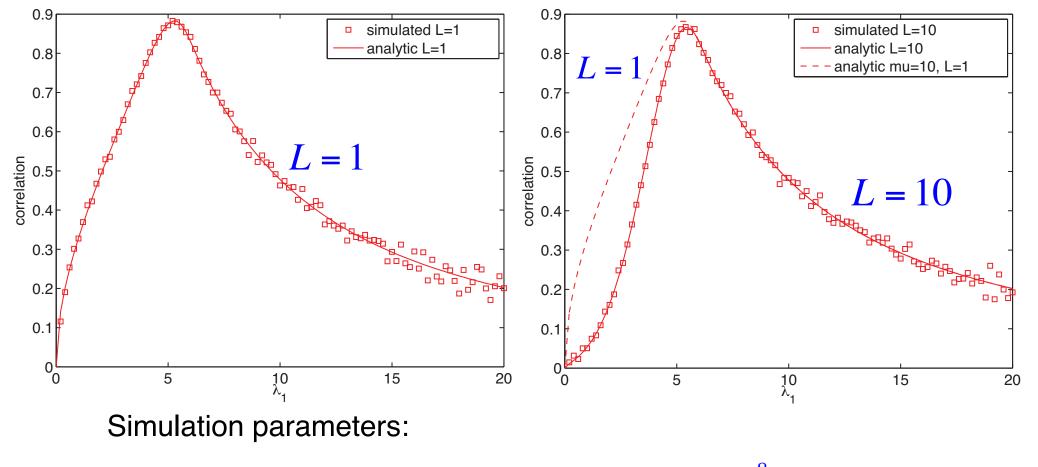
• For $\gamma \rightarrow 0$ and $\rho = \Lambda / \mu < 1$



Here $p_i = \lambda_i / \Lambda$, $p_j = \lambda_j / \Lambda$

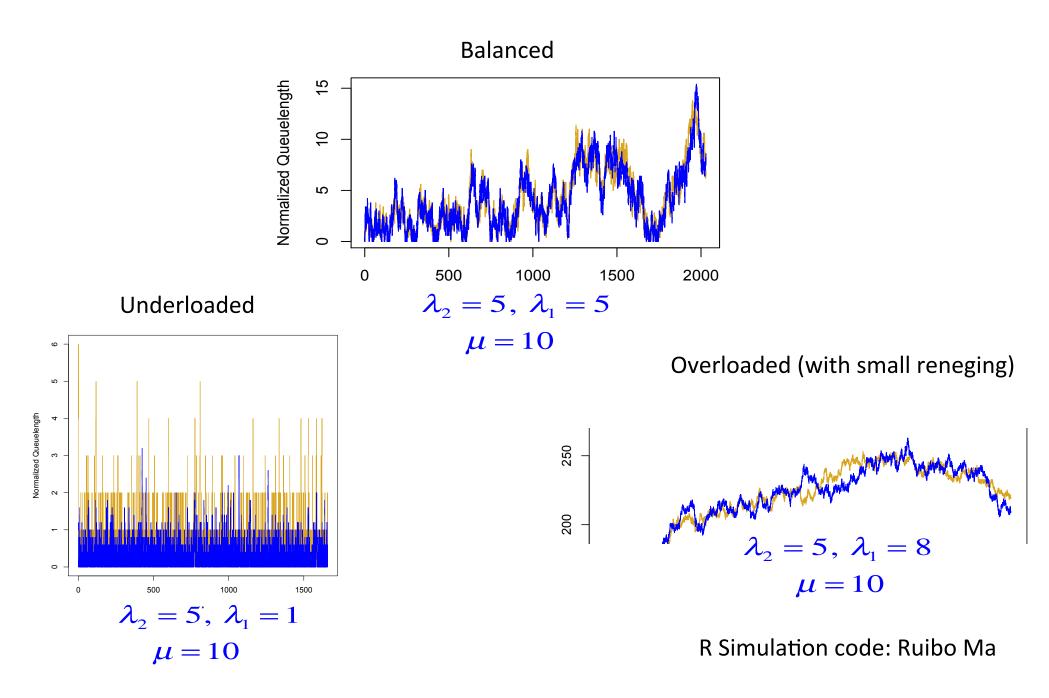
Correlation Resonance (non-zero dilution)

• Correlation as a function of λ_1



 $\lambda_2 = 5 \qquad \mu L = 10 \qquad \gamma = .01 \qquad \eta = 10^8$

Dynamics (Stochastic Simulations, L=1)



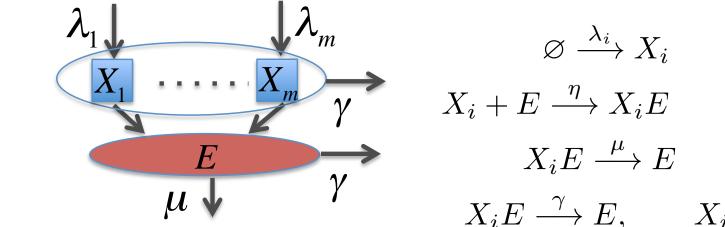
Theorem (at balance: $\rho \triangleq \frac{\lambda_1 + \lambda_2}{\mu} = 1$, $\gamma = 0$)

Let $\hat{Q}_i^r(t) = \frac{Q_i(r^2 t)}{r}$, i = 1, 2 (diffusion scaling)

As $r \to \infty$, $\hat{Q}_i^r(\bullet) \to \lambda_i \tilde{W}(\bullet)$, i = 1,2 (convergence in distribn) where \tilde{W} is a one-dimensional reflecting Brownian motion. $\tilde{W}(t)$

Generalizations

• Finitely many types of proteins X



Steady-state multivariate distribution factorizes:

$$P(Q = (q_1, \dots, q_m)) = P(N = n) \frac{n!}{q_1! \dots q_m!} p_1^{q_1} \dots p_m^{q_m}$$

$$P(N=n) = c \frac{\Lambda^n}{\prod_{\ell=1}^n \phi(\ell)}, \quad \phi(\ell) = \mu \min(\ell, L) + \ell\gamma$$

$$r_{ij} = \frac{F-1}{\sqrt{(F-1+1/p_i)(F-1+1/p_j)}}, \quad i \neq j,$$

F – Fano factor for N

$$\sum_{k=1}^{B} 0.6$$

$$\sum_{i=1}^{0.6} 0.40.5$$

$$0.2$$

$$\sum_{k=10}^{0.6} 12$$

$$\sum_{i=10}^{0.6} 0.4$$

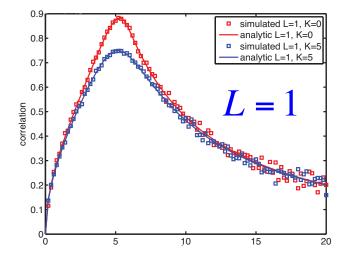
$$\sum_{i=10}^{0.6} 0.2$$

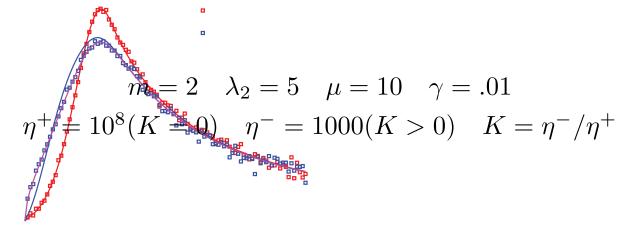
$$\sum_{i=10}^{0.6} 0.4$$

$$\sum_{$$

Generalizations

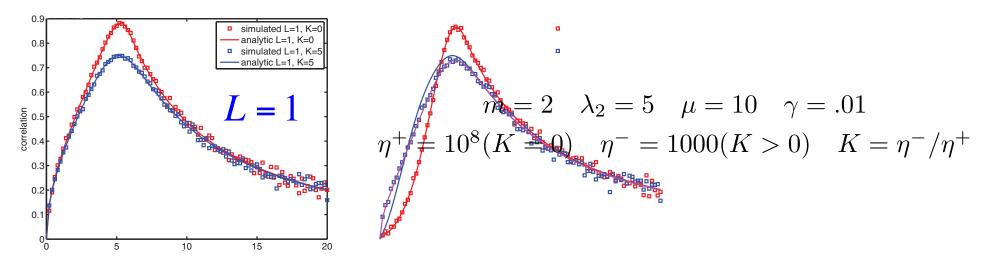
• Reversible binding $X_i + E \stackrel{\eta^+}{\longrightarrow} X_i E$



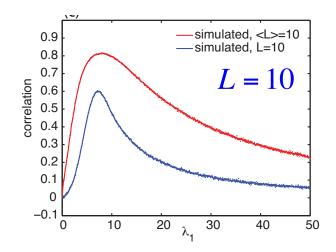


Generalizations

• Reversible binding $X_i + E \stackrel{\eta^+}{\underset{\eta^-}{\longrightarrow}} X_i E$



• Fluctuating enzymes $\varnothing \xrightarrow{\nu} E, E \xrightarrow{\gamma} \varnothing, X_i E \xrightarrow{\gamma} \emptyset$

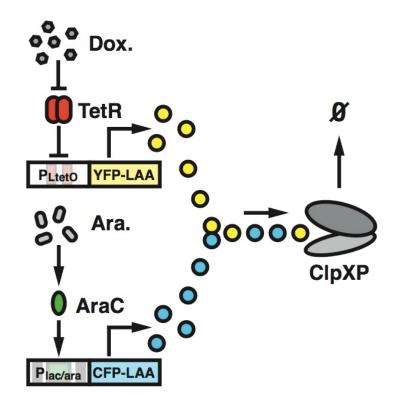


$$m = 2$$
 $\lambda_2 = 5$ $\mu = 1$ $\gamma = .1$ $\nu = 1$
 $\eta^+ = 200$ $\eta^- = 1000$

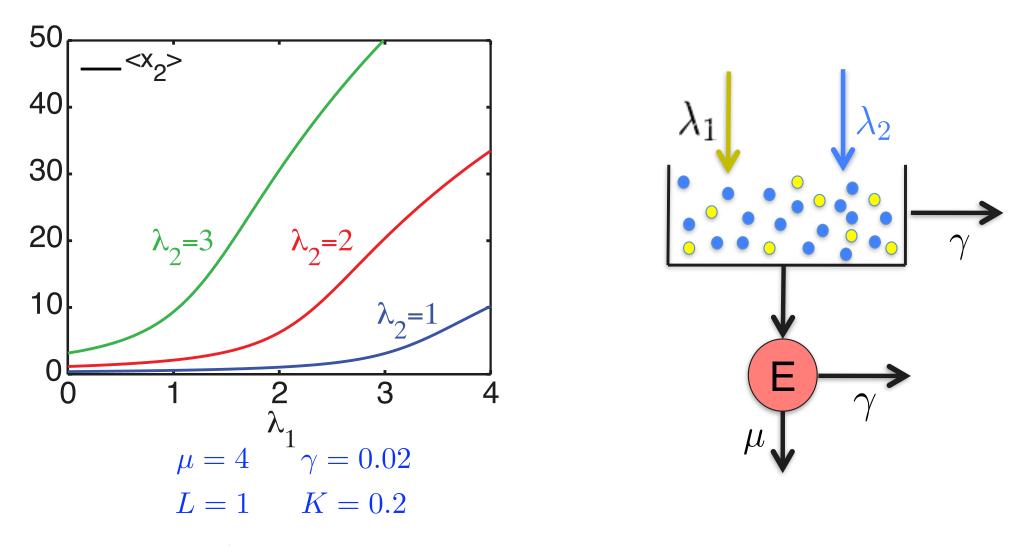
Experiment

Queueing in a Synthetic Gene Network

- Two independently synthesized fluorescent proteins: YFP and CFP in *E Coli*
- ClpXP protease degrades LAA tagged proteins
- Tet promoter driving YFP
 - Repressible by TetR
 - Tunable by Doxycycline
- Lac/Ara promoter driving CFP
 - Activated by AraC
 - Tunable by Arabinose

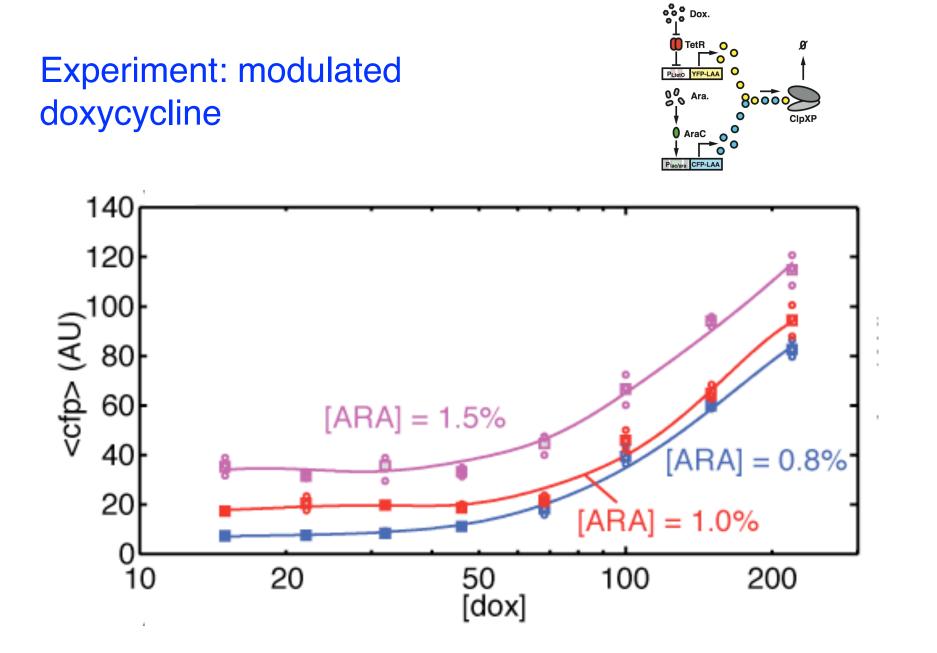


Effect of Coupling on Mean:

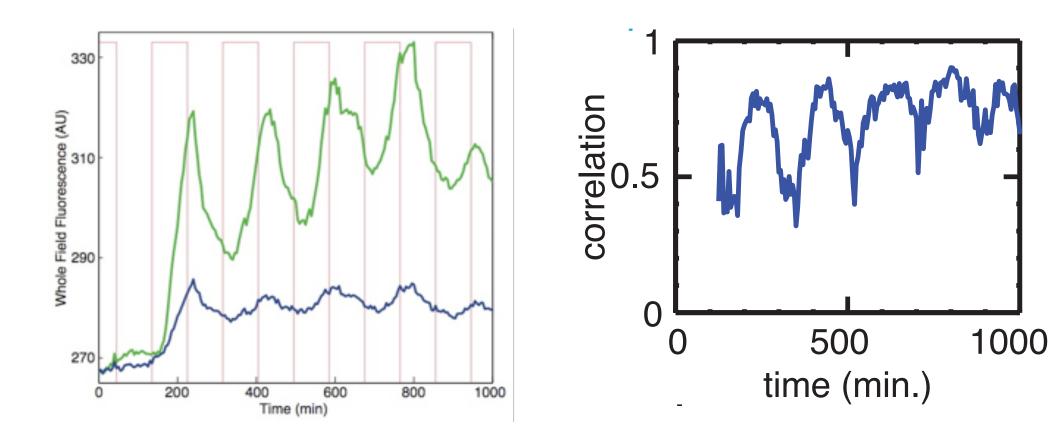


As λ_1 increases, means both X_1 and X_2 increase rapidly at the "balance" point, where $\lambda_1 + \lambda_2 = \mu$

Effect of Coupling on Mean:



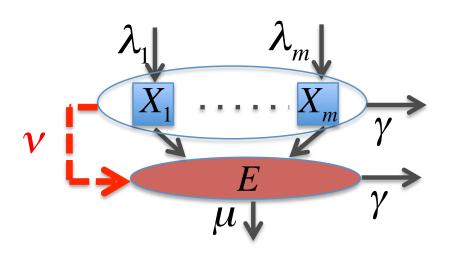
Dynamic Modulation



Red trace: periodic influx of doxycycline Green trace: response in level of YFP Blue trace: response in level of CFP due to coupled degradation

Adaptive Enzymatic Processing (Theory)

Stochastic Model with Adaptation



If enzymes are underloaded - make less If enzymes are overloaded - make more

Steady-State Distribution

С

0.6

0.4

0.2

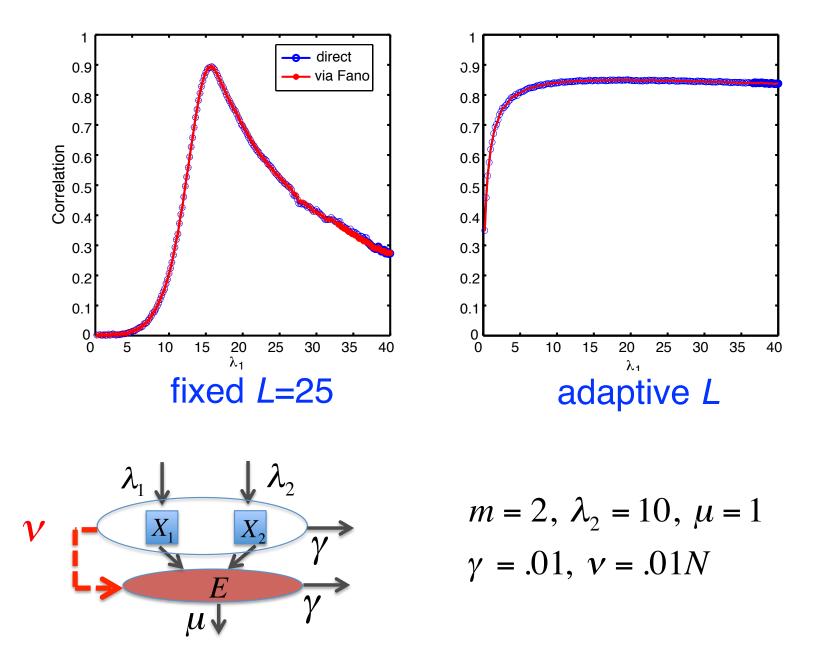
0.0

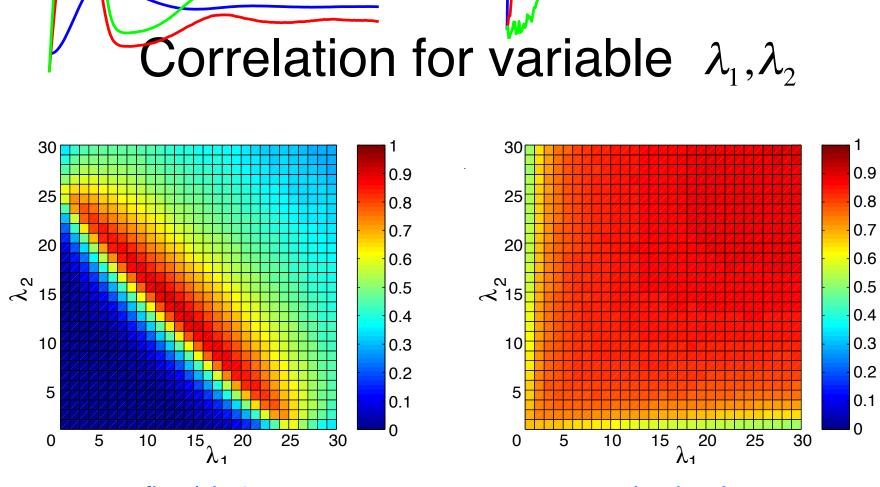
Steady-state multivariate distribution factorizes and canexpress the steady-state correlations in terms of Fano factor *F* for *N*:

$$r_{ij} = \frac{F-1}{\sqrt{(F-1+1/p_i)(F-1+1/p_j)}}, \quad i \neq j,$$

For instant irreversible binding, (N,L) is a twodimensional birth-death process.

Correlation vs. λ_1 (with slow adaptation)



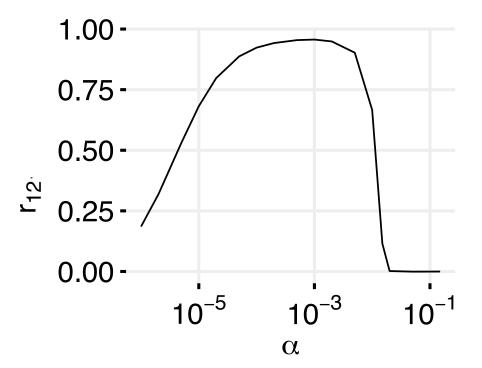


fixed L=25

$$m = 2, \ \mu = 1$$

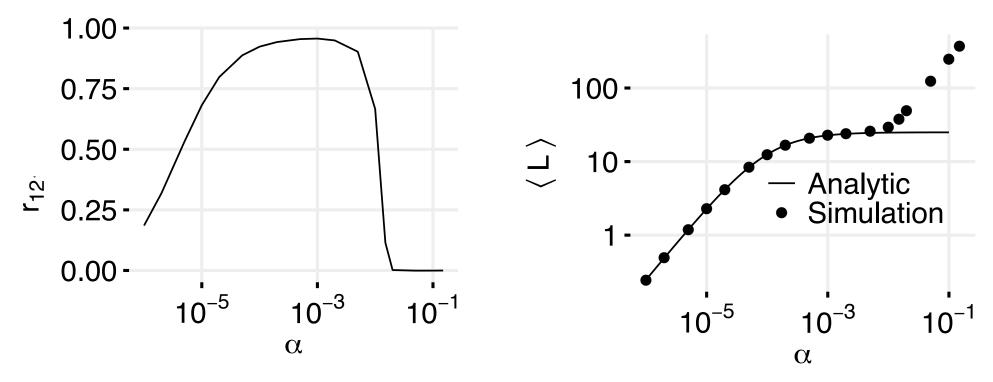
 $\gamma = .01, \ \nu = .01N$

Effect of α



$$m = 2, \ v = \alpha N, \ \lambda_1 = 10, \ \lambda_2 = 15, \ \mu = 1, \ \gamma = .01$$
$$\frac{\gamma^2}{\mu} \le \alpha \le \gamma$$

Effect of α



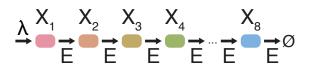
$$m = 2, \ \nu = \alpha N, \ \lambda_1 = 10, \ \lambda_2 = 15, \ \mu = 1, \ \gamma = .01$$
$$\frac{\gamma^2}{\mu} \le \alpha \le \gamma$$

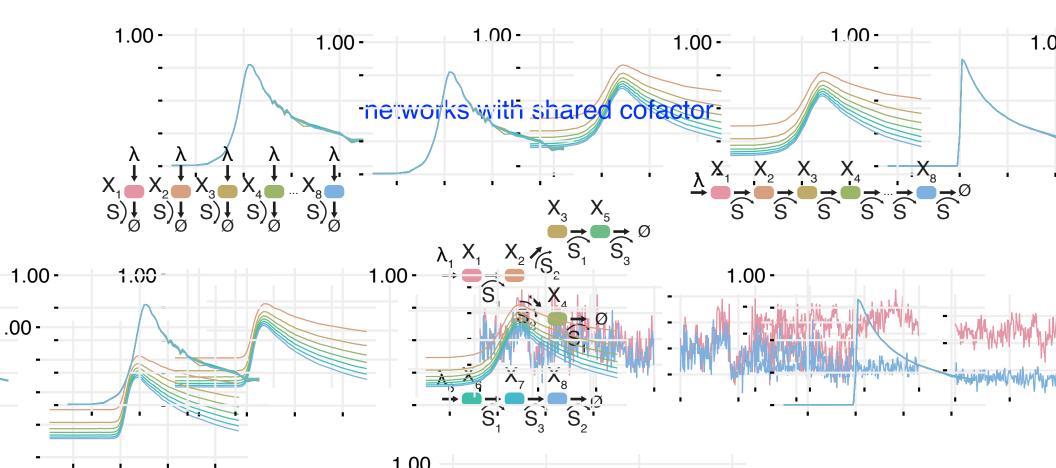
Enzymatic Networks with Shared Resources

parallel network with shared enzyme

 $X_{1} \stackrel{\downarrow}{=} X_{2} \stackrel{\downarrow}{=} X_{3} \stackrel{\downarrow}{=} X_{4} \stackrel{\downarrow}{=} \dots X_{8} \stackrel{\downarrow}{=} E_{\alpha} \stackrel{\downarrow}{=$

serial network with shared enzyme





Conclusions

- Shared processing resources produce correlated behavior in enzymatic networks
- By mapping stochastic enzymatic models to multiclass quasireversible queues, we obtained explicit formulas for steady-state multi-variate distributions and correlations
- Correlations have a strong peak near balance point
- Slow adaptation of enzymatic resources leads to high correlations in broad regions of parameter space
- Theoretical predictions agree with experimental results for a two-component synthetic gene network

References

Correlation Resonance Generated by Coupled Enzymatic Processing, W. H. Mather, N. A. Cookson, J. Hasty, L. S. Tsimring and R. J. Williams, Biophysical Journal, 99, 3172-3181.

Queueing up for enzymatic processing: correlated signaling through coupled degradation, N. A. Cookson, W. H. Mather, T. Danino, O. Mondragon-Palomino, R. J. Williams, L. S. Tsimring and J. Hasty, Molecular Systems Biology 7:561.

Factorized time-dependent distributions for certain multiclass queueing networks and an application to enzymatic processing networks, W. H. Mather, J. Hasty, L. S. Tsimring, and R. J. Williams, Queueing Systems 1-16.

Criticality and Adaptivity in Enzymatic Networks, P. J. Steiner, R. J. Williams, J. Hasty, and L. S. Tsimring, Biophysical J., Vol. 111, 1078-1087.

THANK YOU