Criticality and Adaptivity in Enzymatic Networks

Ruth J Williams

Acknowledgements

- Jeff Hasty, Lev Tsimring, Natalie Cookson, PJ Steiner (UCSD)
- Will Mather (VT), Tal Danino (MIT), Octavio Mondragon-Palomino (MIT)
- members of the UCSD Systems Biodynamics Lab

- Thanks to NSF and NIH for funding

Enzymes

- Large biological molecules that act as catalysts for complex biochemical reactions in living organisms

$$
S+E \underset{\eta^{-}}{\stackrel{\eta^{+}}{\rightleftharpoons}}[S E] \xrightarrow{\mu} E+P
$$

- Deterministic model: Michaelis-Menten equation

$$
\frac{d[P]}{d t}=\frac{\mu[E]_{0}[S]}{K+[S]}, \quad K=\frac{\eta^{-}}{\eta^{+}}
$$

- Here: stochastic model, limited \#enzymes, shared

Bottlenecks in Enzymatic Processing

Competitive enzymatic degradation in E. Coli:
Mistranslated proteins

Oxidative stress response in S. pombe:

Translational crosstalk:

Synthetic shared degradation model

Connection to Queueing

- Queueing theory traditionally has used stochastic models to understand congestion effects in man-made systems in engineering and business where the processing resources are limited
- Queueing theory useful for formulating, analysing and interpreting models
- Two interesting regimes

Two Regimes in Queueing

No queue for iPad mini in London, Nov 2, 2012
Photo by Rik Henderson
Service rate > arrival rate Queues are short Little competition

Overloaded

Photo by Ilze Ziedins

Service rate < arrival rate Queues are long
Strong competition

Two Regimes in Queueing

No queue for iPad mini in London, Nov 2, 2012 Photo by Rik Henderson

Service rate > arrival rate Queues are short

Photo by Ilze Ziedins

Service rate < arrival rate Queues are long

Balance: service rate = arrival rate

Outline

- Competition for common downstream (degradation) enzyme
- Adaptive enzymatic processing
- Enzymatic networks with shared resources

Competition for Enzymatic Processing

Theory

Experiment

Competition for Degradation

- Two uncoupled proteins X_{1} and X_{2} are processed downstream by a common enzyme E

Stochastic Model

Biochemical reaction network: protein species X_{1}, X_{2}

$$
\begin{aligned}
\varnothing \xrightarrow{\lambda_{i}} X_{i} & \text { (production) } \\
X_{i}+E \xrightarrow{\eta} X_{i} E & \text { (binding of enzyme) } \\
X_{i} E \xrightarrow{\mu} E & \text { (degradation) } \\
X_{i} E \xrightarrow{\gamma} E, \quad & X_{i} \xrightarrow{\gamma} \varnothing \quad \text { (dilution) }
\end{aligned}
$$

Assume: exponential reaction times and binding is instantaneous Key stochastic processes ($i=1,2$):
$Q_{i}(t)=$ total number of molecules of species i in the system at time t (includes free molecules and those being degraded)
$N(t)=$ total number of protein molecules in system at time t

Multiclass Queue: Processing in Random Order + Reneging

Total service rate $=\phi(n)=\min (n, L) \mu+n \gamma$
$n=$ total number of protein molecules in system

Steady-State Distribution (Quasireversible Queue)

Markovian state descriptor: ordered list of the types in the queue (incl. those being processed)
Theorem (Kelly): There is a unique steady-state distribution for the "list" Markov process. The associated steady-state distribution for the total number of molecules in the system, N, is:

$$
P(N=n)=c \frac{\Lambda^{n}}{\prod_{\ell=1}^{n} \phi(\ell)}
$$

and conditioned on $N=n$, the stationary distribution for the molecular count process Q is a binomial distribution with parameters $\left(n ; p_{1}, p_{2}\right)$:

$$
\begin{aligned}
& P\left(Q=\left(q_{1}, q_{2}\right)\right)=P(N=n) \frac{n!}{q_{1}!q_{2}!} p_{1}^{q_{1}} p_{2}^{q_{2}} \\
& \Lambda=\sum_{i} \lambda_{i} \quad p_{i}=\frac{\lambda_{i}}{\Lambda}
\end{aligned}
$$

Moments:

$$
\begin{aligned}
E\left[Q_{i}\right] & =p_{i} E[N] \\
E\left[Q_{i}^{2}\right] & =p_{i}\left(1-p_{i}\right) E[N]+p_{i}^{2} E\left[N^{2}\right] \\
\operatorname{Var}\left(Q_{i}\right) & =p_{i}^{2}(\operatorname{Var}(N)-E[N])+p_{i} E[N] \\
E\left[Q_{i} Q_{j}\right] & =p_{i} p_{j}\left(E\left[N^{2}\right]-E[N]\right) \quad \text { for } j \neq i
\end{aligned}
$$

Correlation:

$$
\begin{aligned}
& r_{i j}=\frac{E\left[Q_{i} Q_{j}\right]-E\left[Q_{i}\right] E\left[Q_{j}\right]}{\sqrt{\operatorname{Var}\left(Q_{i}\right) \operatorname{Var}\left(Q_{j}\right)}} \\
& r_{i j}=\frac{F-1}{\sqrt{\left(F-1+1 / p_{i}\right)\left(F-1+1 / p_{j}\right)}} \quad j \neq i \\
& F=\frac{\operatorname{Var}(N)}{E[N] \quad \begin{array}{l}
\text { Fano factor }- \text { can be computed } \\
\text { exactly }
\end{array}}
\end{aligned}
$$

Moments for N

- Distribution: $P(N=n)=c \frac{\Lambda^{n}}{\prod_{\ell=1}^{n} \phi(\ell)}$ where

$$
\Lambda=\sum_{i} \lambda_{i} \quad \phi(n)=\min (n, L) \mu+n \gamma
$$

- Normalizing constant c :

$$
\begin{aligned}
& c^{-1}=\sum_{n=0}^{L-1} \frac{\zeta^{n}}{n!}+\frac{\zeta^{L}}{L!} M(\overbrace{1, \beta+1, \delta)}^{\text {confluent hypergeomertric function }} \\
& \zeta=\frac{\Lambda}{\mu+\gamma}, \quad \beta=\frac{L \mu}{\gamma}+L, \quad \delta=\frac{\Lambda}{\gamma}
\end{aligned}
$$

- Moment generating function:

$$
E\left[e^{u N}\right]=c\left(\sum_{n=0}^{L-1} \frac{\left(e^{u} \zeta\right)^{n}}{n!}+\frac{\left(e^{u} \zeta\right)^{L}}{L!} M\left(1, \beta+1, e^{u} \delta\right)\right)
$$

Moments and Correlations for $Q(L=1)$

$$
\begin{aligned}
& E\left[Q_{i}\right]= \frac{p_{i} \delta M(2, \beta+1, \delta)}{\beta M(1, \beta, \delta)}, \\
& \operatorname{Var}\left(Q_{i}\right)= \frac{2 p_{i}^{2} \delta^{2} M(3, \beta+2, \delta)}{\beta(\beta+1) M(1, \beta, \delta)}-\left(\frac{p_{i} \delta M(2, \beta+1, \delta)}{\beta M(1, \beta, \delta)}\right)^{2}+\frac{p_{i} \delta M(2, \beta+1, \delta)}{\beta M(1, \beta, \delta)}, \\
& r_{i j}= \frac{h(\beta, \delta)}{\left(h(\beta, \delta)+p_{i}^{-1}\right)^{1 / 2}\left(h(\beta, \delta)+p_{j}^{-1}\right)^{1 / 2}}, \\
& \beta=(\mu / \gamma)+1, \delta=\Lambda / \gamma, \Lambda=\sum_{i=1}^{m} \lambda_{i}, \\
& f(\beta, \delta)=\frac{2 \delta M(3, \beta+2, \delta)}{\beta+1}-\frac{\delta(M(2, \beta+1, \delta))^{2}}{\beta M(1, \beta, \delta)}, \\
& g(\beta, \delta)=M(2, \beta+1, \delta), \quad h(\beta, \delta)=\frac{f(\beta, \delta)}{g(\beta, \delta)},
\end{aligned}
$$

Zero Dilution Limit for $L=1$

- For $\gamma \rightarrow 0$ and $\rho=\Lambda / \mu<1$

$$
r_{i j}=\frac{1}{\left(1+\frac{1}{p_{i}}\left(\frac{1}{\rho}-1\right)\right)^{\frac{1}{2}}\left(1+\frac{1}{p_{j}}\left(\frac{1}{\rho}-1\right)\right)^{\frac{1}{2}}}
$$

Here $\quad p_{i}=\lambda_{i} / \Lambda, p_{j}=\lambda_{j} / \Lambda$

Correlation Resonance (non-zero dilution)

- Correlation as a function of λ_{1}

Simulation parameters:

$$
\lambda_{2}=5 \quad \mu L=10 \quad \gamma=.01 \quad \eta=10^{8}
$$

Dynamics (Stochastic Simulations, $L=1$)

Theorem (at balance: $\rho \triangleq \frac{\lambda_{1}+\lambda_{2}}{\mu}=1, \gamma=0$)
Let $\hat{Q}_{i}^{r}(t)=\frac{Q_{i}\left(r^{2} t\right)}{r}, i=1,2 \quad$ (diffusion scaling)
As $r \rightarrow \infty$,
$\hat{Q}_{i}^{r}(\bullet) \rightarrow \lambda_{i} \tilde{W}(\bullet), \quad i=1,2 \quad$ (convergence in distribn) where \tilde{W} is a one-dimensional reflecting

Brownian motion.

Generalizations

- Finitely many types of proteins X_{1}, \ldots, X_{m}

$$
\varnothing \xrightarrow{\lambda_{i}} X_{i} \quad \text { (production) }
$$

$$
X_{i}+E \xrightarrow{\eta} X_{i} E \quad \text { (binding of enzyme) }
$$

$$
X_{i} E \xrightarrow{\mu} E \quad \text { (degradation) }
$$

$$
X_{i} E \xrightarrow{\gamma} E, \quad X_{i} \xrightarrow{\gamma} \varnothing \quad \text { (dilution) }
$$

Steady-state multivariate distribution factorizes:

$$
\begin{aligned}
& P\left(Q=\left(q_{1}, \ldots, q_{m}\right)\right)=P(N=n) \frac{n!}{q_{1}!\ldots q_{m}!} p_{1}^{q_{1}} \ldots p_{m}^{q_{m}} \\
& P(N=n)=c \frac{\Lambda^{n}}{\prod_{\ell=1}^{n} \phi(\ell)}, \quad \phi(\ell)=\mu \min (\ell, L)+\ell \gamma \\
& r_{i j}=\frac{F-1}{\sqrt{\left(F-1+1 / p_{i}\right)\left(F-1+1 / p_{j}\right)}}, \quad i \neq j,
\end{aligned}
$$

$$
F \text { - Fano factor for } N
$$

Correlation resonance near balance

Generalizations

- Reversible binding $X_{i}+E \frac{n^{+}}{\eta^{+}} X_{i} E$

$$
\begin{gathered}
m=2 \quad \lambda_{2}=5 \quad \mu=10 \quad \gamma=.01 \\
\eta^{+}=10^{8}(K=0) \quad \eta^{-}=1000(K>0) \quad K=\eta^{-} / \eta^{+}
\end{gathered}
$$

Generalizations

- Reversible binding $X_{i}+E \frac{n_{n}^{+}}{n^{+}} X_{i} E$

$$
\begin{gathered}
m=2 \quad \lambda_{2}=5 \quad \mu=10 \quad \gamma=.01 \\
\eta^{+}=10^{8}(K=0) \quad \eta^{-}=1000(K>0) \quad K=\eta^{-} / \eta^{+}
\end{gathered}
$$

- Fluctuating enzymes $\varnothing \xrightarrow{\nu} E, E \xrightarrow{\gamma} \varnothing, X_{i} E \xrightarrow{\gamma} \emptyset$

$$
\begin{array}{cl}
m=2 & \lambda_{2}=5 \quad \mu=1 \quad \gamma=.1 \quad \nu=1 \\
& \eta^{+}=200 \quad \eta^{-}=1000
\end{array}
$$

Experiment

Queueing in a Synthetic Gene Network

- Two independently synthesized fluorescent proteins: YFP and CFP in E Coli
- CIpXP protease degrades LAA tagged proteins
- Tet promoter driving YFP
- Repressible by TetR
- Tunable by Doxycycline
- Lac/Ara promoter driving CFP
- Activated by AraC
- Tunable by Arabinose

Effect of Coupling on Mean:

As λ_{1} increases, means both X_{1} and X_{2} increase rapidly at the "balance" point, where

$$
\lambda_{1}+\lambda_{2}=\mu
$$

Effect of Coupling on Mean:

Experiment: modulated doxycycline

Dynamic Modulation

Red trace: periodic influx of doxycycline
Green trace: response in level of YFP
Blue trace: response in level of CFP due to coupled degradation

Adaptive Enzymatic Processing
 (Theory)

Stochastic Model with Adaptation

$$
\begin{gathered}
\varnothing \xrightarrow{\lambda_{i}} X_{i}, \quad \varnothing \xrightarrow{\nu} E, \\
X_{i}+E \stackrel{\eta^{+}}{\rightleftharpoons} X_{i} E \xrightarrow{\mu} E, \\
X_{i} E \xrightarrow{\gamma} \varnothing, \quad X_{i} \xrightarrow{\gamma} \varnothing, \quad E \xrightarrow{\gamma} \varnothing . \\
v(Q)=\alpha N=\alpha \sum_{i=1}^{m} Q_{i}
\end{gathered}
$$

If enzymes are underloaded - make less
If enzymes are overloaded - make more

Steady-State Distribution

Steady-state multivariate distribution factorizes and can express the steady-state correlations in terms of Fano factor F for N :

$$
r_{i j}=\frac{F-1}{\sqrt{\left(F-1+1 / p_{i}\right)\left(F-1+1 / p_{j}\right)}}, \quad i \neq j
$$

For instant irreversible binding, (N, L) is a twodimensional birth-death process.

Correlation vs. λ_{1} (with slow adaptation)

fixed $L=25$

adaptive L

$$
\begin{aligned}
& m=2, \lambda_{2}=10, \mu=1 \\
& \gamma=.01, v=.01 \mathrm{~N}
\end{aligned}
$$

Correlation for variable λ_{1}, λ_{2}

fixed $L=25$

adaptive L

$$
\begin{gathered}
m=2, \mu=1 \\
\gamma=.01, v=.01 \mathrm{~N}
\end{gathered}
$$

Effect of α

$$
\begin{gathered}
m=2, v=\alpha N, \lambda_{1}=10, \lambda_{2}=15, \mu=1, \gamma=.01 \\
\frac{\gamma^{2}}{\mu} \leq \alpha \leq \gamma
\end{gathered}
$$

Effect of α

Enzymatic Networks with Shared Resources

parallel network with shared enzyme

serial network with shared enzyme
networks with shared cofactor

$$
\begin{aligned}
& \xrightarrow[\rightarrow]{\lambda_{6} X_{6}} \xrightarrow{\mathrm{~S}_{1}} \xrightarrow[\mathrm{X}_{3}]{\mathrm{S}_{3}} \xrightarrow[\mathrm{~S}_{2}]{\mathrm{X}_{8}}
\end{aligned}
$$

Conclusions

- Shared processing resources produce correlated behavior in enzymatic networks
- By mapping stochastic enzymatic models to multiclass quasireversible queues, we obtained explicit formulas for steady-state multi-variate distributions and correlations
- Correlations have a strong peak near balance point
- Slow adaptation of enzymatic resources leads to high correlations in broad regions of parameter space
- Theoretical predictions agree with experimental results for a two-component synthetic gene network

References

Correlation Resonance Generated by Coupled Enzymatic Processing, W. H. Mather, N. A. Cookson, J. Hasty, L. S. Tsimring and R. J. Williams, Biophysical Journal, 99, 3172-3181.

Queueing up for enzymatic processing: correlated signaling through coupled degradation, N. A. Cookson, W. H. Mather, T. Danino, O. MondragonPalomino, R. J. Williams, L. S. Tsimring and J. Hasty, Molecular Systems Biology 7:561.

Factorized time-dependent distributions for certain multiclass queueing networks and an application to enzymatic processing networks, W. H. Mather, J. Hasty, L. S. Tsimring, and R. J. Williams, Queueing Systems 1-16.

Criticality and Adaptivity in Enzymatic Networks,
P. J. Steiner, R. J. Williams, J. Hasty, and L. S. Tsimring, Biophysical J., Vol. 111, 1078-1087.

THANK YOU

