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Outline

e IN X N input queued packet switch: example of a stochas-
tic processing network with simultaneous ‘“service’ of more
than one buffer (cf. joining)

e a-max weight matching policy: solution of an optimization
problem

e Stability: Lyapunov function and fluid model

e Heavy traffic diffusion approximation for workload: state
space collapse, invariance principle, SRBM (a =1)

e On-going research (a # 1)



N x N Input Queued Crossbar Switch

Matching

Input Port 1 [ [ Output Port 1
voQ,,
VOQ,,

Input Port 2 — 1

T Output Port 2

A 2 by 2 Input Queued Switch

e /N input ports and N output ports
e Time is slotted (discrete)

e Packets buffered in virtual output queues
(VOQ11,...,VOQ1N,---, VOQN1,--., VOQNN)

e In each time slot, at most one packet can arrive to each
input port, at most one packet can be transferred from each
input port, and at most one packet can be transferred to
each output port

e Scheduling control: need to choose a matching of input
ports to output ports



a-Maximum Weight Matching Algorithm (a € (0, 00))

A matching is an N x N permutation matrix = = (m;;) (there
are N! possible matchings)

Given Q;;(n), the number of packets in VOQ;; at time n,
the associated weight of a matching = is

wr(Q(n)) = vy SN mij(Qi5(n))™

Choose a maximum weight matching at time n whose effect
Is felt at time n 4+ 1:

¥ (n) = argmax{w(Q(n))}

Special case: o =1 — maximum weight matching



Dynamic Equations

E;;(n) = the number of packets arrived to VOQ;; in time
(0, ]

Tr(n) = the number of time slots that the matching = has
taken effect in (0, n]

D;j(n) = the number of packets departed from VOQ;; in
time (0, n]

Q;j(n) = Q;;(0) + E;;(n) — D;;(n)
D;j(n) = » Y mijlg,a-1)>0}(Tr(l) — Tx(l — 1))

T =1
Tr () is non-decreasing and Y Tx(n) =n

T

Th(n) —Tr(n—1)=0ifJ o: wg(n —1) > wyr(n — 1)

Extend the definitions of E;;, D;;, Tr, Q;; to the time in-
terval [0,00) in a piecewise constant manner.



Stability

Assume there exist A;; > 0 such that a.s.,

E:.:(n
Aij = lim i ), ij=1,...,N

n— 00 n

Nominal Stability Condition (SC)

N
> Nj <1, forj=1,...,N
i=1
N

Aij < 1, for:=1,...,N
j=1

Theorem If (SC) holds, then the switch is ‘“stable” under
the a-maximum weight matching algorithm.

(o = 1: McKeown et al. (1996), i.i.d. Bernoulli arrivals; Tassiulas and Ephremides
(1992), similar results for radio networks; Dai and Prabhakar (2000), general arrivals;
a € (0,00): Keslassy and McKeown (2001), i.i.d. Bernoulli arrivals; Shah (2001),

general arrivals)



Heavy Traffic

Assume
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Lemma (Birkhoff-von Neumann)
T he doubly stochastic matrix A can be expressed as a convex
combination of matchings « (permutation matrices)

(cf. Stolyar (2004): other extreme — only one input port or one output port heavily

loaded)



Workload Process

Define (2N — 1)-dimensional workload W:

N
W, = ZQZJ’ t=1,...,N — 1,
j=1
N
WN—l—I—j — ZQ’LJ? j=1...,N —1,
=1
N
Won_1 = Z Qij

1,J=1
Write W = AQ

Will also need the (symmetric) workload S:

N

S; = Znga t=1,..., N,
j=1
N

SN—I—j — Zsza j=1...,N,
=1

Write S = BQ and S = CW.



Fluid Model

(functional law of large numbers approximation)

For:,j53=1,...,N, t > 0,

Qij(t) = Q;;(0) + Xt — D;;(t) >0

S T (1)

t, Tn(:) T, Tx(0) =0
Q,D {T;} are absolutely continuous. A time t is regular if

Q, D, {T;} are differentiable at ¢t (occurs for a.e. t)

At a regular time ¢,

4o e ETe(t) i Qi (t) > 0
dtD” () = { g\ff if Qi;(t) =0

%Tﬂ.(t) —0if 3 0: we(Q(t)) > wr(Q(t))



Given a fluid

m(t)

II(t)

Lyapunov Function

N N

1
Fla)=——2> > dj

i=17j=1
model solution, let

= mﬁxwﬂ(()(t)) = max (

{m:wr(Q()) =m(t)}

N —_
Y mii Qi (t)

1,7=1

|
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At a regular point t,

dF ) (t — - () | N\ --dT ¢
—F(Q(t) = ijzzfzij() zg—zﬂ;wzja (1)
d _ N )
< m(t) — Z It (1) Z Wng%(t)
well(t) 1,7=1
= m(t)— ), —Tx(t)ym(t)
well(t)



Invariant States

q < IR]JY2 IS an invariant state for the fluid model if 4 a fluid
model solution Q(-):

Q(t) = q for all t > 0.

Given s € IR2Y, let A(s) denote the optimal solution of
2
minimize F'(q) such that Bgq > s, q € ]Rf
Theorem (Shah-Wischik)

q is an invariant state if and only if g = A(s(q)) where s(q) =
Bgq.

Note: Each invariant state g is of the form q = (B’p)l/® for
p € IRV (via Lagrange multipliers)
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(Multiplicative) State Space Collapse

For each r > 0, define diffusion scaled processes:

Q"(t) = Q(r3*t)/r
W) = AQ"(t)

Assume the switch starts empty and packet arrivals are i.i.d.
(with finite means and variances)

Theorem (Shah-Wischik)

For any T > 0,
@70 —aewre|],
@O, v

in probability as »r — oc.

(cf. Bramson, 1998 for multiclass HL queueing networks)
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Diffusion Scaling in Heavy traffic

Define

]
Yij(t) :/0 1{Q;j(s—)=0}d (Z 71"&'J'TW(S)>

Define centered, rescaled processes

E™(t) = (E(r?t) — xr?t)/r
Q" (t) Q(r%t)/r
W (t) AQ" (t)
Y"(t) = Y(r%t)/r

Workload Process
W7 (t) = X"(t) + AY"(t)
where X" (t) = AE"(t) +o(1), t > 0
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Conjecture of Shah and Wischik

W™ = W as r — oo

where W = X + AY is a semimartingale reflecting Brownian
motion living in a cone G C IR?FN_1 bounded by N2 faces
8G% = {weG”:w= A(B'p)l/a, p € RN,
P; = PN+ = 0}

The column of A indexed by 23 is the direction of reflection
~v* on the boundary face 8G§‘j where Y;; can increase
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2 X 2 Switch: the Cone G“

Cross-section: a =1
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Cross-section: a = 2



Cross-section: o = 0.5



Diffusion Approximation in Heavy traffic

Theorem (Kang-W) Assume o = 1.

(W",Q") = (W,Q) as r — oo
where W = X + AY is an SRBM in G and Q = A(CW).

Proof: Uses an invariance principle for domains with piece-
wise smooth boundaries.
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Key Condition (cf. Dai-W 1995):

There is a constant a € (0,1), and functions b(-) = (b;;(-))
and c(-) = (c;;(-)) from dG! into IRJJY2 such that for each
xr € G,

(i) Yy bij(@) = 1,

min < Y bz-j<a:>nij<w),~y“(m)>za,

kleZ(x) i ET ()

(i) > ijez(z) Cij(x) = 1,

min < > cz-j<w)~yij(:c>,nkl(az>>2a.

kleZ(x) i ET ()

Here

I(z) = {ij : © € 8Gy;}
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2 X 2 Switch: the Cone G“

Cross-section: a =1
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Cross-section: a = 2



Cross-section: o = 0.5



