
Biochemical reaction networks and reflected diffusions

In 2019, Leite and Williams proposed certain reflected diffusion processes as
approximations to continuous time Markov chain models frequently used to model
biochemical reaction networks. These diffusions live in the positive orthant of a
d-dimensional space and are confined there by a smoothly varying oblique
reflection field on the boundary. Leite and Williams showed that, under mild
conditions, these diffusions can be obtained as weak limits of certain jump-diffusion
extensions of the traditional Langevin approximations, and therefore called these
constrained Langevin approximations. In this talk, we will review this
approximation and describe some progress on proving error estimates for strong
versions of this approximation and also describe some remaining open problems.
Part of this work is joint with Felipe Campos.
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Motivation

Stochastic (Bio)Chemical Reaction Networks (CRN): continuous-time Markov
chain models used to describe the stochastic dynamics of finitely many species
undergoing changes in their quantities due to finitely many reactions.

Discrete-event stochastic simulation (Gillespie algorithm): Rapidly becomes
computationally intensive.

Approximations

I Reaction Rate Equations: ODE model, good if all species have large numbers.

I Linear Noise Approximation: Diffusion, components can be negative, does not
capture nonlinearities well, numerical instability.

I Langevin Approximation: Diffusion in positive orthant, good until boundary of
orthant is reached.

How can one continue the Langevin approximation beyond the first time the
boundary of the orthant is reached?
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Simple Example: SIS model

S + I
c1−→ 2I, I

c2−→ S

r : volume times Avogadro’s number (fixed)
X̄r : vector of concentrations of the species I, S in Markov chain model
ODE approximation: X̄r(·) ≈ x̄(·)

dx̄1

dt
= c1x̄1(t)x̄2(t)− c2x̄1(t) dx̄2

dt
= c2x̄1(t)− c1x̄1(t)x̄2(t)

Linear noise approximation: X̄r(·) ≈ x̄(·) + 1√
r
D(·)

dD1(t) = −dD2(t)
= ((c1x̄2(t)− c2)D1(t) + c1x̄1(t)D2(t))dt

+
√
c1x̄1(t)x̄2(t)dW1(t)−

√
c2x̄1(t)dW2(t)

Langevin approximation: X̄r(·) ≈ Zr(·)

dZr1 (t) = −dZr2 (t)
= (c1Z

r
1 (t)Zr2 (t)− c2Z1(t))dt

+ 1√
r

(√
c1Zr1 (t)Zr2 (t)dW1(t)−

√
c2Zr1 (t)dW2(t)

)
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Simple Example: SIS model

S + I
c1−→ 2I, I

c2−→ S

r : volume times Avogadro’s number (fixed)
X̄r : vector of concentrations of the species I, S in Markov chain model
ODE approximation: X̄r(·) ≈ x̄(·)

dx̄1

dt
= c1x̄1(t)x2(t)− c2x̄1(t) dx̄2

dt
= c2x̄1(t)− c1x̄1(t)x̄2(t)

Linear noise approximation: X̄r(·) ≈ x̄(·) + 1√
r
D(·)

dD1(t) = −dD2(t)
= ((c1x̄2(t)− c2)D1(t) + c1x̄1(t)D2(t))dt

+
√
c1x̄1(t)x̄2(t)dW1(t)−

√
c2x̄1(t)dW2(t)

Langevin approximation: X̄r(·) ≈ Zr(·)
dZr1 (t) = −dZr2 (t)

= (c1Z
r
1 (t)Zr2 (t)− c2Z1(t))dt

+ 1√
r

(√
c1Zr1 (t)Zr2 (t)dW1(t)−

√
c2Zr1 (t)dW2(t)

)
Only valid until the first time Zr2 is zero.
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Stochastic Chemical Reaction Network

Species: S = {S1, . . . , Sd}

Reactions: R = {(v−j , v
+
j ) ∈ (Zd+ ×Zd+) : v−j 6= v+

j , j = 1, . . . , n}

d∑
i=1

v−ijSi
cj−→

d∑
i=1

v+
ijSi.

Net change vectors (reaction vectors) vj := v+
j − v

−
j , j = 1, . . . , n.

Denote by [v−j ] :=
∑d

i=1 v
−
ij the order of reaction Rj .

Concentration Process (Continuous Time Markov Chain): For N1, . . . , Nn
independent Poisson processes,

X̄r(t) = Xr(t)
r

= X̄r(0) + 1
r

n∑
j=1

vjNj

(∫ t

0
rβj
(
X̄r(s)

)
ds

)
.

where βj (x) = cj
∏d

i=1(xi)v
−
ij (mass action kinetics).
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Approximations

ODE (Kurtz ’70): under mild assumptions, for every T ≥ 0,
(FLLN) lim

r→∞
sup

0≤t≤T
|Xr(t)− x(t)| = 0 a.s.,

where for µ(x) =
∑n

j=1 vjβj (x),

dx

dt
= µ(x(t)).

Linear Noise Approximation (van Kampen ‘61, Kurtz ‘75): Xr(·) ≈ x(·) + 1√
r
D(·)

D(t) =
∫ t

0
Jµ(x(s))D(s)ds+

n∑
j=1

∫ t

0
vj
√
βj(x(s))dWj(s)

Langevin Approximation (Kurtz ‘76): Xr(·) ≈ Zr(·), where until Zr reaches ∂Rd+,

Zr(t) = Zr(0) +
∫ t

0
µ(Zr(s))ds+ 1√

r

n∑
j=1

vj

∫ t

0

√
βj(Zr(s))dWj(s)

d= Zr(0) +
∫ t

0
µ(Zr(s))ds+ 1√

r

∫ t

0
σ(Zr(s))dW r(s)

Here W = (W1, . . . ,Wn) is an n-dimensional standard Brownian motion, W r is a
d-dimensional standard Brownian motion and (σσ′)(x) =

∑n

j=1 vjv
′
jβj(x).
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Constrained Langevin Approximation (CLA)

Leite & Williams (’19) proposed the Constrained Langevin Approximation (CLA)
Zr for Xr where Zr is the solution to the following SDE with reflection :

Zr(t) = Zr(0)+
∫ t

0
µ(Zr(s))ds+ 1√

r

∫ t

0
σ(Zr(s))dW r(s)+ 1√

r

∫ t

0
γ(Zr(s))dLr(s),

where (σσ′)(x) =
∑n

j=1 vjv
′
jβ(x, vj) and γ(x) = µ(x)

|µ(x)| , for x ∈ Rd+.

Assuming production and degradation for each species, LW19 proved Zr is well
defined and can be obtained as a limit of jump-diffusions which behave like the
Langevin approximation in the interior of the orthant and as a rescaled version of
the Markov chain on the boundary.
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Example

∅
c2−⇀↽−
c1

S1
c5−⇀↽−
c6

S2
c3−⇀↽−
c4
∅

Z(t) = z +
∫ t

0
µ(Z(s))ds+ 1√

r

(∫ t

0
σ(Z(s)) · dW (s) +

∫ t

0
γ(Z(s))dL(s)

)
µ1(x) = c2 − c1x1 − c5x1 + c6x2, µ2(x) = c4 − c3x2 + c5x1 − c6x2

(σσ′)(x) =
[
c2 + c1x1 + c5x1 + c6x2 −(c5x1 + c6x2)
−(c5x1 + c6x2) c4 + c3x2 + c5x1 + c6x2

]
γ(x) = µ(x)/|µ(x)|

Parameters: c1 = 10−4, c2 = 1, c3 = 1, c4 = 10−4, c5 = 100, c6 = 1, r = 100.
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Comparison of Approximations

Figure: MCM=Markov Chain Model, CLA=Constrained Langevin Approximation,
LNA=Linear Noise Approximation, LE-NR=Langevin Equation with Normal Reflection at
boundary, LE-Chop=LE with Chopping off of negative excursions. Simulations run until
time t = 104.
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Further Questions

Error estimates for approximation of X̄r by CLA Zr

What happens if some species do not have production or degradation? Problems
with well posedness.

Numerical approximation of the reflected diffusion (CLA).
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One-dimensional Case

Includes

Chemical reaction networks (CRNs) with one species.

Some reduced CRNs because of mass conservation.

Some reduced CRNs because of multiscaling.

Does not need production or degradation of species.

There are two cases, the CLA state space is I = [0, a], where a > 0, or I = [0,∞).
For r ≥ 1, define Ir := I ∩ (Z+/r).

Extension to nearly density dependent Markov chains (not displayed here).
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Bounded Interval Case (I = [0, a])

Concentration Process:

(1) X̄r(t) = X̄r(0) + 1
r

n∑
j=1

vjNj

(∫ t

0
rβj
(
X̄r(s)

)
ds

)
where the functions βj(·) are Lipschitz continuous on I for j = 1, . . . , n.

Constrained Langevin Approximation (CLA) Zr:

Zr(t) = Zr(0)+
∫ t

0
µ(Zr(s))ds+ 1√

r

∫ t

0
σ(Zr(s))dW r(s)+ 1√

r

∫ t

0
γ(Zr(s))dLr(s)

where µ, σ, γ : I −→ R are defined by:

µ(x) :=
n∑
j=1

vjβj(x), σ(x) :=

(
n∑
j=1

v2
jβj(x)

)1/2

γ =
{
1{0} − 1{a} if I = [0, a]
1{0} if I = [0,∞).

Strong existence and pathwise uniqueness holds for the CLA. Note that σ may be
only Hölder continuous of order 1/2.
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Bounded Interval Case (I = [0, a])

Theorem 1 I Campos-Williams ‘23

There exists a filtered probability space (Ω,F , {Ft},P) such that for each
r ≥ 8 and xr0 ∈ I

r, there are processes Zr,W r, Lr, X
r defined on (Ω,F ,P)

such that:
(i) X̄r satisfies the concentration process equation (1) with Xr(0) = xr0.
(ii) The tuple (Ω,F ,P, {Ft}, Zr,W r, Lr) is a weak solution to the CLA

equation, with Zr(0) = xr0, P-a.s.

Furthermore,
(iii) there is a family of nonnegative random variables {Θr

T }T≥1 such that
for every T ≥ 1

sup
0≤t≤T

|Xr(t)− Zr(t)| ≤ Θr
T

log r
r

P− a.s.

and
P[Θr

T > CT + x] ≤ KT

r2 exp (−λTx log r)

for every x ≥ 0, where λT , CT and KT do not depend on r.
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SIS Model

S + I
c1−→ 2I, I

c2−→ S

I Define X̄r := X̄r
1 fraction of the total population of size r that are infected

I The CLA Zr that approximates Xr satisfies:

Zr(t) = Zr(0) +
∫ t

0
(c1Zr(s)(1− Zr(s))− c2Zr(s))ds

+
1
√

r

∫ t

0

√
c1Zr(s)(1− Zr(s)) + c2Zr(s)dW r(s)

+
1
√

r

∫ t

0
(1{0}(Zr(s))− 1{1}(Zr(s)))dLr(s).
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SIS model

Example

Figure: Simulation for one run of the MC X
r, CLA Zr and ODE solution x for

the SIS model with xr0 = 0.82, r = 100, c1 = c2 = 1.

X
r and Zr both reach 0 in finite time and absorb there.
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SIS model

Example

Figure: Densities (simulated) for the hitting time to 0 (absorbing time) for the
Markov chain X

r and the CLA Zr with parameters c1 = 1, c2 = 0.95, r = 100,
a = 1 and xr0 = 0.99.
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Halfline Case (I = [0, ∞))

Theorem 2 I Campos-Williams ‘23

When I = [0,∞), under suitable conditions, for r ≥ 8 we can construct a
coupling (Xr

, Zr) where for every compact set K ⊆ I such that xr0 ∈ K
there is a family of nonnegative random variables {Θr

T,K}T≥1 such that:

sup
0≤t≤T∧τK

|Xr(t)− Zr(t)| ≤ Θr
T,K

log r
r

P− a.s.

P[Θr
T,K > CT + x] ≤ KT

r2 exp (−λTx log r)

for every x ≥ 0, where τK = inf{t ≥ 0 | Xr(t) /∈ K or Zr(t) /∈ K}.
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Main Ingredients of the Proof

I Komlós-Major-Tusnády type strong approximation (Komlós, Major & Tusnády
’75 & ’76 and Ethier & Kurtz ’86)

Nj(t) = t+Wj(t) +O(log t)

I Lipschitz continuity of the Skorokhod map
I For I = [0,∞), there is an explicit formula and it is straightforward to check

the Lipschitz property.
I The case I = [0, a] was proved in Kruk, Lehoczky, Ramanan & Shreve ’07

Much of what we have done extends to the CLA in higher dimensions

Two challenges:
I Lipschitz continuity of the Skorokhod map for a smoothly varying oblique

reflection field on the boundary of the orthant
I Well posedness of the CLA without production/degradation
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