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2007 MARKOV LECTURE
ABSTRACT

Stochastic networks are used as models for complex systems involving 
dynamic interactions subject to uncertainty. Application domains include 
manufacturing, the service industry, telecommunications, and computer 
systems. Networks arising in modern applications are often highly complex 
and heterogeneous, with network features that transcend those of
conventional queueing models. The control and analysis of such networks 
present challenging mathematical problems. In this talk, a concrete application 
will be used to illustrate a general approach to the study of stochastic networks 
using more tractable approximate models. Specifically, we consider a 
connection-level model of Internet congestion control that represents the 
randomly varying number of flows present in a network where bandwidth is 
shared fairly amongst elastic documents. This model, introduced by Massoulie
and Roberts, can be viewed as a stochastic network with simultaneous 
resource possession. Elegant fluid and diffusion approximations will be used 
to study the stability and performance of this model. The talk will conclude with 
a summary of the current status and description of open problems associated 
with the further development of approximate models for general stochastic 
networks. This talk is based in part on joint work with W. Kang, F. P. Kelly, and 
N. H. Lee. Discussants: Kavita Ramanan and Mark Squillante.



Outline

Stochastic processing networks
Flow level model of congestion control
Questions: stability and performance
Approximations: fluid and diffusion 
Perspective and open problems



STOCHASTIC PROCESSING    
NETWORKS



Stochastic Processing Networks (cf. Harrison ‘00)

 

buffers 
(classes)

servers      
(resources)

activities

An activity consumes from certain classes, 
produces for certain (possibly different) classes, 
and uses certain servers.



Stochastic Processing Networks

 
 

 
 

Activities are Very General
 
 

Multiclass Queueing Network

Alternate Routing

Simultaneous actions



FLOW LEVEL MODEL OF    
CONGESTION CONTROL



Flow Level Model of Congestion Control
(Massoulie-Roberts ‘00)

 

 

Link

Route



Flow Level Model

Documents arrive to routes
A flow corresponds to the continuous transfer of a 
document over a route
Assume a “separation of time scales”
(zero transmission time through the network)
Bandwidth is allocated dynamically to the routes and is 
shared equally amongst all active flows on a route

 



Stochastic Processing Network with   
Simultaneous Resource Possession 

Flow level model

Stochastic processing network

 

 



Network Structure for Flow Level Model 
 

I routes                                J links

Bandwidth (capacity) for link j:                      
Incidence matrix  (full row rank):

 

jC

1  if route  uses link 
0   otherwise              ji
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Stochastic Assumptions for Flow Level Model
 

- Poisson arrivals of documents at rate       to route i 
- Document sizes: exponentially distributed  with mean           

for route  i
- Interarrival times and document sizes are all mutually 

independent
- Traffic intensity 

iν
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iμ
−

/i i iρ ν μ=



Proportional Fair Bandwidth Sharing Policy (Kelly ‘97) 
 

= # of documents on route i                  
= bandwidth allocation for route i
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Bandwidth Allocations
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Stochastic Network Model

Number of documents on route i  at time t:

Cumulative unused capacity for link j up to time t: 

Cumulative bandwidth allocated to route i up to time t:
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Outline of rest of talk

Stability 
Performance in heavy traffic
– balanced fluid model and invariant manifold
– (multiplicative) state space collapse
– diffusion approximation         
– example: a linear network (entrainment)
Further problems and perspective



STABILITY



is uniformly Lipschitz continuous and

At a.e. t, for each i,

where                      .

Fluid model
(formal functional law of large numbers limit)
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Stability
Lyapunov function

Theorem (De Veciana et al. ’01, Bonald & Massoulie ‘01, Kelly-W ‘04) 

The Markov chain is positive recurrent if
and only if  
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PERFORMANCE IN 
HEAVY TRAFFIC

( )A Cρ =



Balanced Fluid Model  (             )A Cρ =

:   is an if there is a fluid 
model solut
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Theorem (Kelly-W ‘04)     The following are equivalent:
(a) n is an invariant state 
(b) 
(c)
(d)                          where

Balanced Fluid Model   (             )A Cρ =

( ) for all  : 0i i in i nρ= >Λ
 :  ( )  for all ii iq qAn iρ+ ′∃ ∈ =JR

( )n w n= Δ  ( () A diw nagn μ −1)=
1 1( ) '[ ( ) ( ) ']diag A Adiag diag Aρ μ ρ− −Δ =



Theorem (Kelly-W ‘04)     The following are equivalent:
(a) n is an invariant state 
(b) 
(c)
(d)                          where

Furthermore, fluid model solutions converge uniformly to 
the invariant manifold starting in a compact set.

Balanced Fluid Model   (             )A Cρ =

( ) for all  : 0i i in i nρ= >Λ
 :  ( )  for all ii iq qAn iρ+ ′∃ ∈ =JR

( )n w n= Δ  ( () A diw nagn μ −1)=
1 1( ) '[ ( ) ( ) ']diag A Adiag diag Aρ μ ρ− −Δ =



Fluid scaling

Fluid and Diffusion Scaling

( ) ( ) /  
r rN t N rt r=



Fluid scaling

Diffusion scaling

Fluid and Diffusion Scaling
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Fluid scaling

Diffusion scaling

Fluid and Diffusion Scaling
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Theorem (Kang-Kelly-Lee-W)    Suppose the system starts empty.

For each  

as

Proof: Use asymptotic behavior of balanced fluid model and 
adapt Bramson ’98.

(Multiplicative) State Space Collapse
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where

Diffusion Scaled Workload
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Conjecture: where                      
is a semimartingale reflecting Brownian motion 
in the polyhedral cone

Here        increases on the boundary corresponding 
to          

Conjectured Diffusion Approximation 
in Heavy Traffic 
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SRBM IN A 3-D CONE



SRBM IN A 3-D CONE



SRBM IN A 3-D CONE



DIFFUSION APPROXIMATION



Diffusion Approximation    
Assumption (local traffic): For each link   
there is a route  that goes only through  

j
i j



Theorem (Kang-Kelly-Lee-W)  Suppose that the 
local traffic assumption holds. Then, 

where                  and                     is an SRBM  in the 
polyhedral cone        

Diffusion Approximation

W

Assumption (local traffic): For each link   
there is a route  that goes only through  

j
i j
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Theorem (Kang-Kelly-Lee-W)  Suppose that the 
local traffic assumption holds. Then, 

where                  and                     is an SRBM  in the 
polyhedral cone   
Proof : Uses invariance principle of Kang-W ‘07

Diffusion Approximation

W

Assumption (local traffic): For each link   
there is a route  that goes only through  

j
i j
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Example: Linear Network

4 2 4 3 4

1,  1,2,3, 4
1,  1, 1,

1,  1, 2,3
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Linear Network: Workload State Space

 



STATIONARY DISTRIBUTION



Theorem (Kang-Kelly-Lee-W)  Suppose that the SRBM 
has a drift               and covariance matrix      .

Then,       has a product form stationary distribution 
with density

Product Form Stationary Distribution

W

1( ) exp(2 ),  p w c w wθ−Γ ⋅= ∈W

W 0θ < Γ



Theorem (Kang-Kelly-Lee-W)  Suppose that the SRBM 
has a drift               and covariance matrix      .

Then,       has a product form stationary distribution 
with density

Hence,                  has a stationary distribution 
expressed as a linear combination of independent 
exponential random variables.  

Product Form Stationary Distribution

W

1( ) exp(2 ),  p w c w wθ−Γ ⋅= ∈W

N W= Δ

W 0θ < Γ



Extensions

Theorems extend to document sizes distributed 
as finite mixtures of exponentials (insensitivity).
[cf. Massoulie & Roberts ‘00, Bonald & Massoulie ‘01 exact 
results for single link, linear network, grid network with equal
capacities.]

Some extension to models with multipath routing



FURTHER PROBLEMS



Further Problems for Flow Level Model

Prove diffusion approximation for more general 
utility based bandwidth sharing policies 
(e.g., alpha fair policies of Mo and Walrand ‘00  ---- diffusion 
workload state space can be a non-polyhedral cone) 



Further Problems for Flow Level Model

General document size distributions (non-HL)
(Massoulie ‘07, Gromoll-W ‘07)



Further Problems for SPN

Stability and performance via fluid and diffusion 
approximations for other stochastic processing 
networks



PERSPECTIVE
MQN                                     SPN

Sufficient conditions for e.g., parallel server system,
HL   stability and diffusion packet switch

approximations                                

Non- e.g., LIFO, EDF,                                 e.g., congestion    
HL       Processor Sharing control model with general

document distributions



THE END


