Fluid Approximation for an Internet Congestion Control Model with Fair Bandwidth Sharing and General Document Size Distributions

R. J. Williams

UCSD

williams@math.ucsd.edu http://www.math.ucsd.edu/~williams

Joint work with H. C. Gromoll

Flow level data network model (Roberts & Massoulié '00)

Link resource or server

Route nonempty subset of links

Flow continuous transfer of document on a route Simultaneous resource possession

Network structure

J links

I routes

 $C_j > 0$ capacity of link j

 $J \times I$ incidence matrix A

$$A_{ji} = egin{cases} 1, & ext{if route } i ext{ uses link } j \ 0, & ext{else} \end{cases}$$

Stochastic primitives

For each route i

- Renewal arrival process $E_i(\cdot)$ with rate u_i kth document arrives at time au_{ik}
- i.i.d. document sizes $\{v_{ik}\}_{k=1}^{\infty}$ with distribution ϑ_i , mean μ_i^{-1} , cumulative process $V_i(n) = \sum_{k=1}^n v_{ik}$
- Define traffic intensity $\rho_i = \nu_i/\mu_i$

Weighted α -fair bandwidth sharing (Mo & Walrand '00)

 $\alpha \in (0, \infty)$, κ_i weight for route i

 $\Lambda_i(Z)$ dynamic bandwidth allocation for route i

 Z_i number of flows on route i

Bandwidth Λ_i/Z_i provided to each flow on route i

Weighted α -fair bandwidth sharing (Mo & Walrand '00)

 $\alpha \in (0, \infty)$, κ_i weight for route i

 $\Lambda_i(Z)$ dynamic bandwidth allocation for route i

 Z_i number of flows on route i

Bandwidth Λ_i/Z_i provided to each flow on route i

$$\begin{split} & \Lambda(Z) = \operatorname{argmax} \big\{ G_Z(\Lambda) : A\Lambda \leq C, \Lambda \geq 0 \big\} \\ & \text{where} \quad G_Z(\Lambda) = \begin{cases} \sum_i \kappa_i Z_i^\alpha \frac{\Lambda_i^{1-\alpha}}{1-\alpha}, & \text{for } \alpha \neq 1 \\ \sum_i \kappa_i Z_i \log(\Lambda_i), & \text{for } \alpha = 1 \end{cases} \end{split}$$

Questions

For the flow level model with *general* interarrival & document size distributions

- Stability when $A\rho < C$?
- Heavy traffic behavior

First step

- Propose fluid model
- Justify approximation via limit theorem
- Analyze fluid model

Literature

Roberts & Massoulié '00 Mo & Walrand '00 de Veciana, Lee & Konstantopoulos '01 Bonald & Massoulié '01 Ye '03 Kelly & W '04 Kang, Kelly, Lee & W '05 Key, Massoulié, Bain & Kelly '03, '05 Ye, Ou & Yuan '05 *Massoulié '06 *Bramson '05 *Lakshmikantha & Srikant '04 *Lin, Shroff & Srikant '06

Outline

Stochastic model

Fluid model

Limit theorem

Invariant States for Fluid Model

Fluid Model Stability - Examples

Performance processes

For each route i

- $Z_i(\cdot)$ queue length process (number of documents)
- $W_i(\cdot)$ workload process

For each link j

• $U_i(\cdot)$ cumulative unused capacity process for link j

Measure valued process

For each route i:

• $\mathcal{Z}_i(\cdot)$ residual document size process

$$i = 1$$
 $i = 2$
 $i = 3$

Measure valued process

For each route i:

• $\mathcal{Z}_i(\cdot)$ residual document size process

$$Z_i(t) = \langle 1, \mathcal{Z}_i(t) \rangle$$
, $W_i(t) = \langle \chi, \mathcal{Z}_i(t) \rangle$ where $\chi(x) = x$

$$i$$
 $rac{\Lambda_i(Z(t))}{Z_i(t)}$

Dynamic equations

For the vector valued processes

$$W(t) = W(0) + V(E(t)) - T(t)$$
$$U(t) = Ct - AT(t)$$

where
$$T_i(t) = \int_0^t \Lambda_i(Z(u)) du$$

Dynamic equations

For the measure valued process

Consider projections $\langle g, \mathcal{Z}_i(\cdot) \rangle$ for all $g \in \mathcal{C}$

$$\mathcal{C} = \{ g \in \mathbf{C}_b^1 : g(0) = g'(0) = 0 \}$$

Dynamic equations

Route i

$$\frac{\Lambda_i(Z(t))}{Z_i(t)}$$

$$\langle g, \mathcal{Z}_i(t) \rangle = \langle g(\cdot - S_i(t)), \mathcal{Z}_i(0) \rangle + \sum_{k=1}^{E_i(t)} g\left(v_{ik} - S_i(t) + S_i(\tau_{ik})\right)$$

where
$$S_i(t) = \int_0^t \frac{\Lambda_i(Z(u))}{Z_i(u)} 1_{(0,\infty)}(Z_i(u)) du$$

Next...

Stochastic model

Fluid model

Limit theorem

Invariant States for Fluid Model

Fluid Model Stability - Examples

Functional law of large numbers approximation

Fluid model

Network (J, I, A, C) as before

Primitive parameters (ν, ϑ) For each i

- $\nu_i > 0$
- ϑ_i probability measure on $(0,\infty)$ with mean μ_i^{-1}

State space M^I , where M is the set of finite non-negative Borel measures on \mathbb{R}_+

Performance functions

$$(\zeta, z, w, u)$$

Fluid model

A fluid model solution ζ is a continuous function

$$\zeta:[0,\infty)\to \mathbf{M}^I$$
 such that

(i)
$$\langle 1_{\{0\}}, \zeta_i(t) \rangle = 0$$
 for all $i \leq I$, $t \geq 0$

(ii) For each
$$g \in \mathcal{C}$$
, $i \leq I$, $t \geq 0$

$$\langle g, \zeta_i(t) \rangle = \langle g, \zeta_i(0) \rangle - \int_0^t \langle g', \zeta_i(u) \rangle \frac{\Lambda_i(z(u))}{z_i(u)} 1_{(0,\infty)}(z_i(u)) du + \nu_i \langle g, \vartheta_i \rangle \int_0^t 1_{(0,\infty)}(z_i(u)) du$$

(iii) For each $j \leq J$

$$u_j(t) = C_j t - \sum_i A_{ji} \int_0^t \{ \Lambda_i(z(u)) 1_{(0,\infty)}(z_i(u)) + \rho_i 1_{\{0\}}(z_i(u)) \} du$$

is nondecreasing.

Here
$$z_i(\cdot) = \langle 1, \zeta_i(\cdot) \rangle$$
 for all $i \leq I$

Fluid model

Workload (when finite)

For each $i \leq I$

$$w_i(t) = \langle \chi, \zeta_i(t) \rangle = w_i(0) + \int_0^t \left(\rho_i - \Lambda_i(z(u)) \, \mathbb{1}_{(0,\infty)}(z_i(u)) du \right)$$

Next...

Stochastic model

Fluid model

Limit theorem

Invariant States for Fluid Model

Fluid Model Stability - Examples

Sequence of systems

$$\mathscr{X}^r = (\mathcal{Z}^r, Z^r, W^r, U^r)$$

Fluid scaling
$$\bar{\mathscr{Z}}^r(t)=\frac{1}{r}\mathscr{X}^r(rt)$$
 e.g. $\bar{\mathcal{Z}}^r_i(t)=\frac{1}{r}\mathcal{Z}^r_i(rt)$

Asymptotic assumptions

Arrivals

$$\nu^r \to \nu$$
 $\bar{E}^r(\cdot) \Rightarrow \nu(\cdot)$

Document sizes

Initial condition

$$\begin{split} & \left(\bar{\mathcal{Z}}^r(0), \bar{W}^r(0) \right) \Rightarrow \left(\mathcal{Z}^0, \langle \chi, \mathcal{Z}^0 \rangle \right) \in \mathbf{M}^I \times \mathbb{R}^I_+ \\ & E[\langle 1, \mathcal{Z}^0 \rangle] < \infty, \ E[\langle \chi, \mathcal{Z}^0 \rangle] < \infty, \ \langle 1_{\{x\}}, \mathcal{Z}^0 \rangle = 0 \ \forall x \in \mathbb{R}_+ \end{split}$$

Limit theorem

Theorem (Gromoll-W) The sequence $\{\mathscr{X}^r\}$ is C-tight; each weak limit point $\mathscr{\bar{X}} = (\bar{\mathcal{Z}}, \bar{\mathcal{Z}}, \bar{W}, \bar{U})$ a.s. yields a fluid model solution $\bar{\mathcal{Z}}$ with associated queuelength $\bar{Z} = \langle 1, \bar{\mathcal{Z}} \rangle$, (finite) workload $\bar{W} = \langle \chi, \bar{\mathcal{Z}} \rangle$, and unused capacity \bar{U} .

Next...

Stochastic model

Fluid model

Limit theorem

Invariant States for Fluid Model

Fluid Model Stability - Examples

Invariant States for Fluid Model

For each $i \leq I$, let ϑ_i^e denote the excess lifetime probability measure associated with ϑ_i , i.e., ϑ_i^e has probability density $p_i^e(x) = \mu_i \langle 1_{(x,\infty)}, \vartheta_i \rangle$, $x \in \mathbb{R}_+$.

Theorem (Gromoll-W) There are no invariant states unless

$$\sum_{i \le I} A_{ji} \rho_i \le C_j \quad \text{ for all } j \le J.$$

When the above holds, $\xi \in \mathbf{M}^I$ is invariant if and only if $\xi_i = z_i \vartheta_i^e$ for all $i \leq I$, for some $z \in \mathbb{R}_+^I$ satisfying $\Lambda_i(z) = \rho_i$ for all i such that $z_i > 0$.

Next ...

Stochastic model

Fluid model

Limit theorem

Invariant States for Fluid Model

Fluid Model Stability - Examples

Linear network

A linear network consists of J links and I = J + 1 routes where route j consists of link j alone for $j = 1, \ldots, J$ and route J + 1 consists of all of the J links.

A linear network with 3 links and 4 routes

Linear network

Theorem Consider a linear network and a fluid model solution ζ with finite initial workload $w(0) = \langle \chi, \zeta(0) \rangle$. Suppose that $\varepsilon = C - A\rho > 0$. Then

$$\zeta(t) = 0$$
, for all $t \ge \delta$,

where $\delta = \max_{j \leq J} (w_j(0) + w_{J+1}(0))/\varepsilon$.

Lyapunov function

$$H(w) = \max_{j \le J} (w_j + w_{J+1})$$

Tree network

A tree network (cf. Bonald and Proutière (2003)) consists of $J \geq 2$ links and I = J - 1 routes such that a single link (labeled J and referred to as the trunk) belongs to all routes and each of the other links (labeled by $1, \ldots, J - 1$) belongs to a single route.

A tree network with 4 links and 3 routes

Tree network

Theorem Consider a tree network and a fluid model solution ζ with finite initial workload $w(0) = \langle \chi, \zeta(0) \rangle$. Suppose that $\varepsilon = C - A\rho > 0$. Then

$$\zeta(t) = 0$$
, for all $t \ge \delta$,

where $\delta = \sum_{i < J-1} w_i(0)/\varepsilon$.

Lyapunov function

$$H(w) = \sum_{i < J-1} w_i$$