Fluid Approximation for an Internet Congestion Control Model with Fair Bandwidth Sharing and General Document Size Distributions

R. J. Williams
UCSD
williams@math.ucsd.edu
http://www.math.ucsd.edu/~williams

Joint work with H. C. Gromoll

Flow level data network model (Roberts \& Massoulie '00)

Link resource or server
Route nonempty subset of links
Flow continuous transfer of document on a route Simultaneous resource possession

Network structure

J links
I routes
$C_{j}>0$ capacity of link j
$J \times I$ incidence matrix A

$$
A_{j i}= \begin{cases}1, & \text { if route } i \text { uses link } j \\ 0, & \text { else }\end{cases}
$$

Stochastic primitives

For each route i

- Renewal arrival process $E_{i}(\cdot)$ with rate ν_{i} k th document arrives at time $\tau_{i k}$
- i.i.d. document sizes $\left\{v_{i k}\right\}_{k=1}^{\infty}$ with distribution ϑ_{i}, mean μ_{i}^{-1}, cumulative process $V_{i}(n)=\sum_{k=1}^{n} v_{i k}$
- Define traffic intensity $\rho_{i}=\nu_{i} / \mu_{i}$

Weighted α-fair bandwidth sharing (мо \& walrand '00)

$\alpha \in(0, \infty), \kappa_{i}$ weight for route i
$\Lambda_{i}(Z)$ dynamic bandwidth allocation for route i
Z_{i} number of flows on route i
Bandwidth Λ_{i} / Z_{i} provided to each flow on route i

Weighted α-fair bandwidth sharing (mo \& walrand '00)

$\alpha \in(0, \infty), \kappa_{i}$ weight for route i
$\Lambda_{i}(Z)$ dynamic bandwidth allocation for route i
Z_{i} number of flows on route i
Bandwidth Λ_{i} / Z_{i} provided to each flow on route i

$$
\Lambda(Z)=\operatorname{argmax}\left\{G_{Z}(\Lambda): A \Lambda \leq C, \Lambda \geq 0\right\}
$$

where $\quad G_{Z}(\Lambda)= \begin{cases}\sum_{i} \kappa_{i} Z_{i}^{\alpha} \frac{\Lambda_{i}^{1-\alpha}}{1-\alpha}, & \text { for } \alpha \neq 1 \\ \sum_{i} \kappa_{i} Z_{i} \log \left(\Lambda_{i}\right), & \text { for } \alpha=1\end{cases}$

Questions

For the flow level model with general interarrival \& document size distributions

- Stability when $A \rho<C$?
- Heavy traffic behavior

First step

- Propose fluid model
- Justify approximation via limit theorem
- Analyze fluid model

Literature

Roberts \& Massoulié '00
Mo \& Walrand '00
de Veciana, Lee \& Konstantopoulos '01 Bonald \& Massoulié '01
Ye '03
Kelly \& W '04 Kang, Kelly, Lee \& W '05
Key, Massoulié, Bain \& Kelly '03, '05
Ye, Ou \& Yuan '05
*Massoulié '06
*Bramson '05
*Lakshmikantha \& Srikant '04
*Lin, Shroff \& Srikant '06

Outline

Stochastic model

Fluid model
Limit theorem
Invariant States for Fluid Model
Fluid Model Stability - Examples

Stochastic model

Performance processes

For each route i

- $Z_{i}(\cdot)$ queue length process (number of documents)
- $W_{i}(\cdot)$ workload process

For each link j

- $U_{j}(\cdot)$ cumulative unused capacity process for link j

Stochastic model

Measure valued process

For each route i :

- $\mathcal{Z}_{i}(\cdot)$ residual document size process
$i=1$

$i=2$

$i=3$

Stochastic model

Measure valued process

For each route i :

- $\mathcal{Z}_{i}(\cdot)$ residual document size process

$$
\begin{aligned}
& Z_{i}(t)=\left\langle 1, \mathcal{Z}_{i}(t)\right\rangle, \\
& W_{i}(t)=\left\langle\chi, \mathcal{Z}_{i}(t)\right\rangle \text { where } \chi(x)=x
\end{aligned}
$$

i

Stochastic model

Dynamic equations

For the vector valued processes

$$
\begin{aligned}
& W(t)=W(0)+V(E(t))-T(t) \\
& U(t)=C t-A T(t)
\end{aligned}
$$

where $T_{i}(t)=\int_{0}^{t} \Lambda_{i}(Z(u)) d u$

Stochastic model

Dynamic equations

For the measure valued process
Consider projections $\left\langle g, \mathcal{Z}_{i}(\cdot)\right\rangle$ for all $g \in \mathcal{C}$

$$
\mathcal{C}=\left\{g \in \mathbf{C}_{b}^{1}: g(0)=g^{\prime}(0)=0\right\}
$$

Stochastic model

Dynamic equations

Route i

$\left\langle g, \mathcal{Z}_{i}(t)\right\rangle=\left\langle g\left(\cdot-S_{i}(t)\right), \mathcal{Z}_{i}(0)\right\rangle+\sum_{k=1}^{E_{i}(t)} g\left(v_{i k}-S_{i}(t)+S_{i}\left(\tau_{i k}\right)\right)$
where $\quad S_{i}(t)=\int_{0}^{t} \frac{\Lambda_{i}(Z(u))}{Z_{i}(u)} 1_{(0, \infty)}\left(Z_{i}(u)\right) d u$

Stochastic model
Fluid model
Limit theorem
Invariant States for Fluid Model
Fluid Model Stability - Examples

Functional law of large numbers approximation

Stochastic model

$$
\mathscr{X}=(\mathcal{Z}, Z, W, U)
$$

scaling limit

Fluid model

$$
(\zeta, z, w, u)
$$

Fluid model

Network (J, I, A, C) as before
Primitive parameters (ν, ϑ)
For each i

- $\nu_{i}>0$
- ϑ_{i} probability measure on $(0, \infty)$ with mean μ_{i}^{-1}

State space \mathbf{M}^{I}, where \mathbf{M} is the set of finite non-negative Borel measures on \mathbb{R}_{+}

Performance functions
(ζ, z, w, u)

Fluid model

A fluid model solution ζ is a continuous function
$\zeta:[0, \infty) \rightarrow \mathbf{M}^{I}$ such that
(i) $\left\langle 1_{\{0\}}, \zeta_{i}(t)\right\rangle=0$ for all $i \leq I, t \geq 0$
(ii) For each $g \in \mathcal{C}, i \leq I, t \geq 0$
$\left\langle g, \zeta_{i}(t)\right\rangle=\left\langle g, \zeta_{i}(0)\right\rangle-\int_{0}^{t}\left\langle g^{\prime}, \zeta_{i}(u)\right\rangle \frac{\Lambda_{i}(z(u))}{z_{i}(u)} 1_{(0, \infty)}\left(z_{i}(u)\right) d u$ $+\nu_{i}\left\langle g, \vartheta_{i}\right\rangle \int_{0}^{t} 1_{(0, \infty)}\left(z_{i}(u)\right) d u$
(iii) For each $j \leq J$

$$
\begin{aligned}
& u_{j}(t)=C_{j} t-\sum_{i} A_{j i} \int_{0}^{t}\left\{\Lambda_{i}(z(u)) 1_{(0, \infty)}\left(z_{i}(u)\right)\right. \\
& \left.+\rho_{i} 1_{\{0\}}\left(z_{i}(u)\right)\right\} d u
\end{aligned}
$$

is nondecreasing.
Here $z_{i}(\cdot)=\left\langle 1, \zeta_{i}(\cdot)\right\rangle$ for all $i \leq I$

Fluid model

Workload (when finite)
For each $i \leq I$

$$
w_{i}(t)=\left\langle\chi, \zeta_{i}(t)\right\rangle=w_{i}(0)+\int_{0}^{t}\left(\rho_{i}-\Lambda_{i}(z(u)) 1_{(0, \infty)}\left(z_{i}(u)\right) d u\right.
$$

Stochastic model
Fluid model
Limit theorem
Invariant States for Fluid Model
Fluid Model Stability - Examples

Sequence of systems

$$
\mathscr{X}^{r}=\left(\mathcal{Z}^{r}, Z^{r}, W^{r}, U^{r}\right)
$$

Fluid scaling $\overline{\mathscr{X}}^{r}(t)=\frac{1}{r} \mathscr{X}^{r}(r t)$

$$
\text { e.g. } \overline{\mathcal{Z}}_{i}^{r}(t)=\frac{1}{r} \mathcal{Z}_{i}^{r}(r t)
$$

Asymptotic assumptions

Arrivals
$\nu^{r} \rightarrow \nu$
$\bar{E}^{r}(\cdot) \Rightarrow \nu(\cdot)$
Document sizes
$\vartheta^{r} \xrightarrow{\mathrm{w}} \vartheta$
$\lim \sup _{r}\left\langle\chi^{1+\epsilon}, \vartheta^{r}\right\rangle<\infty$
$\left(\Rightarrow \mu^{r} \rightarrow \mu\right)$
Initial condition
$\left(\overline{\mathcal{Z}}^{r}(0), \bar{W}^{r}(0)\right) \Rightarrow\left(\mathcal{Z}^{0},\left\langle\chi, \mathcal{Z}^{0}\right\rangle\right) \in \mathbf{M}^{I} \times \mathbb{R}_{+}^{I}$
$E\left[\left\langle 1, \mathcal{Z}^{0}\right\rangle\right]<\infty, E\left[\left\langle\chi, \mathcal{Z}^{0}\right\rangle\right]<\infty,\left\langle 1_{\{x\}}, \mathcal{Z}^{0}\right\rangle=0 \forall x \in \mathbb{R}_{+}$

Limit theorem

Theorem (Gromoll-W) The sequence $\left\{\overline{\mathscr{X}}^{r}\right\}$ is C-tight; each weak limit point $\overline{\mathscr{X}}=(\overline{\mathcal{Z}}, \bar{Z}, \bar{W}, \bar{U})$ a.s. yields a fluid model solution $\overline{\mathcal{Z}}$ with associated queuelength $\bar{Z}=\langle 1, \overline{\mathcal{Z}}\rangle$, (finite) workload $\bar{W}=\langle\chi, \overline{\mathcal{E}}\rangle$, and unused capacity \bar{U}.

Stochastic model
Fluid model
Limit theorem
Invariant States for Fluid Model
Fluid Model Stability - Examples

Invariant States for Fluid Model

For each $i \leq I$, let ϑ_{i}^{e} denote the excess lifetime probability measure associated with ϑ_{i}, i.e., ϑ_{i}^{e} has probability density $p_{i}^{e}(x)=\mu_{i}\left\langle 1_{(x, \infty)}, \vartheta_{i}\right\rangle, x \in \mathbb{R}_{+}$.

Theorem (Gromoll-W) There are no invariant states unless

$$
\sum_{i \leq I} A_{j i} \rho_{i} \leq C_{j} \quad \text { for all } j \leq J
$$

When the above holds, $\xi \in \mathbf{M}^{I}$ is invariant if and only if $\xi_{i}=z_{i} \vartheta_{i}^{e}$ for all $i \leq I$, for some $z \in \mathbb{R}_{+}^{I}$ satisfying $\Lambda_{i}(z)=\rho_{i}$ for all i such that $z_{i}>0$.

Stochastic model
Fluid model
Limit theorem
Invariant States for Fluid Model
Fluid Model Stability - Examples

Linear network

A linear network consists of J links and $I=J+1$ routes where route j consists of link j alone for $j=1, \ldots, J$ and route $J+1$ consists of all of the J links.

A linear network with 3 links and 4 routes

Linear network

Theorem Consider a linear network and a fluid model solution ζ with finite initial workload $w(0)=\langle\chi, \zeta(0)\rangle$. Suppose that $\varepsilon=C-A \rho>0$. Then

$$
\zeta(t)=0, \quad \text { for all } t \geq \delta,
$$

where $\delta=\max _{j \leq J}\left(w_{j}(0)+w_{J+1}(0)\right) / \varepsilon$.

Lyapunov function

$$
H(w)=\max _{j \leq J}\left(w_{j}+w_{J+1}\right)
$$

Tree network

A tree network (cf. Bonald and Proutière (2003)) consists of $J \geq 2$ links and $I=J-1$ routes such that a single link (labeled J and referred to as the trunk) belongs to all routes and each of the other links (labeled by $1, \ldots, J-1$) belongs to a single route.

A tree network with 4 links and 3 routes

Tree network

Theorem Consider a tree network and a fluid model solution ζ with finite initial workload $w(0)=\langle\chi, \zeta(0)\rangle$. Suppose that $\varepsilon=C-A \rho>0$. Then

$$
\zeta(t)=0, \quad \text { for all } t \geq \delta,
$$

where $\delta=\sum_{i \leq J-1} w_{i}(0) / \varepsilon$.

Lyapunov function

$$
H(w)=\sum_{i \leq J-1} w_{i}
$$

