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OUTLINE
Stochastic Processing Networks
An Invariance Principle for SRBMs in Domains 
with Piecewise Smooth Boundary
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STOCHASTIC  PROCESSING 
NETWORKS
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Stochastic Processing Networks (cf. Harrison ’00)

 

I buffers 
(classes)

K servers      
(resources)

 J activities

An activity consumes from certain classes, 
produces for certain (possibly different) classes, 
and uses certain servers.
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Stochastic Processing Networks

 
 

 
 

 
 

 
 

Activities are Very General 

 
 

 
 

Queueing network

Flexible servers,    
alternate routing

Simultaneous actions
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Data Network (Roberts and Massoulie, ‘00)
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SPN with Simultaneous Resource Possession
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Diffusion Workload Cone for a 3-node Linear 
Network under a Fair Bandwidth Sharing Policy
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NxN Input Queued Packet Switch: Prabhakar
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2x2 Input Queued Packet Switch 

 
 
 



11

Diffusion Workload Cone   
(2 by 2 Switch using a Maximum Weight Matching algorithm)
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SRBM Data

• G a non-empty domain in IRd with piecewise smooth
boundary:
G =

⋂
i∈I Gi, where I is a finite index set and Gi 6= IRd is

a domain with C1 boundary, i ∈ I.

• Denote the inward unit normal vector field on ∂Gi by ni,
i ∈ I

• γi is a uniformly Lipschitz continuous unit length vector
field on ∂Gi, i ∈ I

• µ ∈ IRd, Γ is a symmetric positive definite d × d matrix

• ν is a Borel probability measure on G
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SRBM with data (G, µ, Γ, {γi}, ν)

An adapted, continuous d-dimensional process W defined
on some filtered probability space (Ω,F , {Ft}, P ) such that

(i) P -a.s., for all t ≥ 0, W (t) ∈ G and
W (t) = W (0) + X(t) +

∑
i∈I

∫
(0,t] γ

i(W (s))dYi(s),
and under P , W (0) has distribution ν,

(ii) under P , X is a (µ,Γ)-Brownian motion starting from the
origin and {X(t) − µt,Ft, t ≥ 0} is a martingale,

(iii) for each i, Yi is a continuous, increasing adapted,
one-dimensional process starting from zero, such that
P -a.s.,
Yi(t) =

∫
(0,t] 1{W (s)∈∂Gi∩∂G}dYi(s), t ≥ 0.
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Assumptions on G

(A1) For each ε ∈ (0, 1) there exists R(ε) > 0 such that for
each i ∈ I, x ∈ ∂Gi ∩ ∂G and y ∈ Gi ∩ G satisfying
||x − y|| < R(ε), we have

〈
ni(x), y − x

〉
≥ −ε||y − x||.

(A2) D(r) → 0 as r → 0 where

D(r) = sup
∅6=J⊂I

sup
{

dist
(
x,

⋂

j∈J

(∂Gj ∩ ∂G)
)

:

dist(x, (∂Gj ∩ ∂G)) ≤ r, for all j ∈ J
}

.
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Notes

1. I(x) = {i ∈ I : x ∈ ∂Gi} is upper semi-continuous as a
function of x ∈ ∂G.

2. If G is bounded or convex, then (A1) holds.

3. If G is bounded or a convex polyhedron, then (A2) holds.
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Assumptions on {γi}

(A3) There is a > 0 such that for each x ∈ ∂G, there are
convex combinations γ(x) of γi(x) and n(x) of ni(x) for
i ∈ I(x) such that

(i)
〈
γ(x), ni(x)

〉
> a for all i ∈ I(x),

(ii)
〈
n(x), γi(x)

〉
> a for all i ∈ I(x).
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Invariance Principle: Informally

Assume (A1)-(A3).

A sequence of processes that satisfies suitably perturbed
versions of the SRBM conditions is C-tight.

In addition, if uniqueness in law holds for the SRBM, then
the sequence of processes converges to the SRBM.

(Formal theorem — Kang-W ’07)
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Applications: Existence

• Under (A1)-(A3), there exists an SRBM with the data
(G,µ,Γ, {γi}, ν).
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Applications: Approximation

A process that satisfies a perturbed version of the SRBM
conditions is close in distribution to the SRBM under the
following condition:

• G is a convex polyhedron with minimal description. For
each i ∈ I, γi is a constant vector field and {γi}
satisfies (A3).

(Uniqueness in law of SRBMs holds by Dai-W ’95)
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Approximation Continued ...

A process that satisfies a perturbed version of the SRBM
conditions is close in distribution to the SRBM under the
following condition:

• G is a bounded domain with piecewise smooth boundary.
The vector fields γi, i ∈ I are continuously differentiable
with locally Lipschitz first partial derivatives and there is
a ∈ (0, 1) such that for each x ∈ ∂G there are
non-negative (bi(x) : i ∈ I(x)) such that

∑
i∈I(x) bi(x) = 1

and for each i ∈ I(x):

bi(x)〈ni(x), γi(x)〉 ≥ a +
∑

j∈I(x)\{i}

bj(x)|〈nj(x), γi(x)〉|.

(Pathwise uniqueness of SRBM holds by Dupuis-Ishii
’93) SRBMs in Domains with Piecewise Smooth Boundaries – p.11/14



Invariance Principle: Hypotheses

Suppose that {δn}∞n=1 is a sequence of positive constants,
and for each positive integer n, d-dimensional processes
Wn, Xn, αn, and I-dimensional processes Y n, βn are all
defined on some probability space (Ωn,Fn, Pn) such that

(i) for W̃n ≡ Wn + αn, Pn-a.s.,

dist
(
W̃n(t), G

)
≤ δn for all t ≥ 0,

(ii) Pn-a.s.,
Wn(t) = Xn(t) +

∑
i∈I

∫
(0,t] γ

i,n(Wn(s−),Wn(s))dY n
i (s)

for all t ≥ 0, where γi,n : IRd → IRd is Borel measurable
and ||γi,n(y, x)|| = 1 for all y, x ∈ IRd and each i ∈ I,

(iii) Xn converges in distribution as n → ∞ to a
(µ,Γ)-Brownian motion with initial distribution ν,
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Hypotheses Continued ...

(iv) βn is locally of bounded variation and for Ỹ n ≡ Y n + βn,
Pn-a.s., for each i ∈ I,

(a) Ỹ n
i (0) = 0,

(b) Ỹ n
i is increasing and ∆Ỹ n

i (t) ≤ δn for all t > 0,

(c) Ỹ n
i (t) =

∫
(0,t] 1{dist

“
fW n(s),∂Gi∩∂G

”
≤δn}

dỸ n
i (s) ∀ t ≥ 0,

(v) δn → 0 as n → ∞, and for each ε > 0, there is ηε > 0 and
nε > 0 such that for each i ∈ I, ‖γi,n(y, x) − γi(x)‖ < ε

whenever ‖x − y‖ < ηε and n ≥ nε,

(vi) αn → 0 and V(βn) → 0 in probability as n → ∞, where
for each t ≥ 0, V(βn)(t) is the total variation of βn on
[0, t].
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Invariance Principle (Kang-W ’07)

Define Zn = (Wn, Xn, Y n) for each n. The sequence of
processes {Zn}∞n=1 is C-tight. Any (weak) limit point of this
sequence is of the form Z = (W,X, Y ) where all properties
of the SRBM Definition hold, except possibly the martingale
property, with Ft = σ{Z(s) : 0 ≤ s ≤ t}, t ≥ 0.

Furthermore, if the following conditions (vii) and (viii) hold,
then Wn ⇒ W as n → ∞ where W is an SRBM.

(vii) For each (weak) limit point Z = (W,X, Y ) of {Zn}∞n=1,
{X(t) − µt, Ft, t ≥ 0} is a martingale.

(viii) If a process W satisfies the SRBM Definition, then the
law of W is unique.
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Diffusion Workload Cone for a 3-node Linear 
Network under a Fair Bandwidth Sharing Policy
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Diffusion Workload Cone   
(2 by 2 Switch using a Maximum Weight Matching algorithm)
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Open Problems

More general sufficient conditions for (weak) 
uniqueness of SRBMs
Treatment of domains with cusp-like 
boundary interfaces
Treatment of domains with smooth 
meetings of boundaries
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Diffusion Workload Cone for a 3-node Linear Network    
under another Fair Bandwidth Sharing Policy
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Diffusion Workload Cone   
(2 by 2 Switch using another  Maximum Weight Matching algorithm)
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