

Diffusion Workload Cone for a 3-node Linear Network under a Fair Bandwidth Sharing Policy

Outline

SRBMs in Domains with Piecewise Smooth Boundaries

R. J. Williams

Department of Mathematics University of California, San Diego

(1) Data for an SRBM

- (2) Definition of an SRBM
- (3) Assumptions on Data
- (4) Invariance Principle
- (5) Applications
- (6) Open Problems

RBMs in Domains with Piecewise Smooth Boundaries

SRBM Data

• G a non-empty domain in \mathbb{R}^d with piecewise smooth boundary:

 $G = \bigcap_{i \in \mathcal{I}} G_i$, where \mathcal{I} is a finite index set and $G_i \neq \mathbb{R}^d$ is a domain with C^1 boundary, $i \in \mathcal{I}$.

- Denote the inward unit normal vector field on ∂G_i by n^i , $i \in \mathcal{I}$
- γ^i is a uniformly Lipschitz continuous unit length vector field on $\partial G_i, i \in \mathcal{I}$
- $\mu \in \mathbb{R}^d$, Γ is a symmetric positive definite $d \times d$ matrix
- ν is a Borel probability measure on \overline{G}

Assumptions on G

(A1) For each $\varepsilon \in (0,1)$ there exists $R(\varepsilon) > 0$ such that for each $i \in \mathcal{I}$, $x \in \partial G_i \cap \partial G$ and $y \in \overline{G}_i \cap \overline{G}$ satisfying $||x - y|| < R(\varepsilon)$, we have

$$\langle n^i(x), y - x \rangle \ge -\varepsilon ||y - x||.$$

(A2) $D(r) \rightarrow 0$ as $r \rightarrow 0$ where

$$D(r) = \sup_{\emptyset \neq \mathcal{J} \subset \mathcal{I}} \sup \left\{ \mathsf{dist} \left(x, \bigcap_{j \in \mathcal{J}} (\partial G_j \cap \partial G) \right) : \mathsf{dist}(x, (\partial G_j \cap \partial G)) \leq r, \text{ for all } j \in \mathcal{J} \right\}$$

SRBM with data $(G, \mu, \Gamma, \{\gamma^i\}, \nu)$

An adapted, continuous *d*-dimensional process *W* defined on some filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, P)$ such that

- (i) *P*-a.s., for all $t \ge 0$, $W(t) \in \overline{G}$ and $W(t) = W(0) + X(t) + \sum_{i \in \mathcal{I}} \int_{(0,t]} \gamma^i(W(s)) dY_i(s)$, and under *P*, W(0) has distribution ν ,
- (ii) under P, X is a (μ, Γ) -Brownian motion starting from the origin and $\{X(t) \mu t, \mathcal{F}_t, t \ge 0\}$ is a martingale,
- (iii) for each *i*, *Y_i* is a continuous, increasing adapted, one-dimensional process starting from zero, such that *P*-a.s., $Y_i(t) = \int_{(0,t]} 1_{\{W(s) \in \partial G_i \cap \partial G\}} dY_i(s), t \ge 0.$

SRBMs in Domains with Piecewise Smooth Boundaries - p.4/

Notes

- 1. $\mathcal{I}(x) = \{i \in \mathcal{I} : x \in \partial G_i\}$ is upper semi-continuous as a function of $x \in \partial G$.
- 2. If G is bounded or convex, then (A1) holds.
- 3. If G is bounded or a convex polyhedron, then (A2) holds.

Assumptions on $\{\gamma^i\}$	Invariance Principle: Informally
(A3) There is $a > 0$ such that for each $x \in \partial G$, there are convex combinations $\gamma(x)$ of $\gamma^i(x)$ and $n(x)$ of $n^i(x)$ for $i \in \mathcal{I}(x)$ such that (i) $\langle \gamma(x), n^i(x) \rangle > a$ for all $i \in \mathcal{I}(x)$, (ii) $\langle n(x), \gamma^i(x) \rangle > a$ for all $i \in \mathcal{I}(x)$.	Assume (A1)-(A3). A sequence of processes that satisfies suitably perturbed versions of the SRBM conditions is <i>C</i> -tight. In addition, if uniqueness in law holds for the SRBM, then the sequence of processes converges to the SRBM. (Formal theorem —Kang-W '07)
SRBMs in Domains with Piecewise Smooth Boundaries – p.7/1+	SRBMs in Domains with Plecewise Smooth Boundaries – p.8/14
Applications: Existence	Applications: Approximation
• Under (A1)-(A3), there exists an SRBM with the data $(G, \mu, \Gamma, \{\gamma^i\}, \nu).$	 A process that satisfies a perturbed version of the SRBM conditions is close in distribution to the SRBM under the following condition: <i>G</i> is a convex polyhedron with minimal description. For each <i>i</i> ∈ <i>I</i>, <i>γⁱ</i> is a constant vector field and {<i>γⁱ</i>} satisfies (A3). (Uniqueness in law of SRBMs holds by Dai-W '95)
SRBMs in Domains with Piecewise Smooth Boundaries – p.9/1-	SRBMs in Domains with Piecewise Smooth Boundaries – p.10/1/
Approximation Continued	Invariance Principle: Hypotheses
A process that satisfies a perturbed version of the SRBM conditions is close in distribution to the SRBM under the following condition: • <i>G</i> is a bounded domain with piecewise smooth boundary. The vector fields $\gamma^i, i \in \mathcal{I}$ are continuously differentiable with locally Lipschitz first partial derivatives and there is $a \in (0, 1)$ such that for each $x \in \partial G$ there are non-negative $(b_i(x) : i \in \mathcal{I}(x))$ such that $\sum_{i \in \mathcal{I}(x)} b_i(x) = 1$ and for each $i \in \mathcal{I}(x)$: $b_i(x) \langle n^i(x), \gamma^i(x) \rangle \geq a + \sum_{j \in \mathcal{I}(x) \setminus \{i\}} b_j(x) \langle n^j(x), \gamma^i(x) \rangle .$ (Pathwise uniqueness of SRBM holds by Dupuis-Ishii	Suppose that $\{\delta^n\}_{n=1}^{\infty}$ is a sequence of positive constants, and for each positive integer n , d -dimensional processes W^n, X^n, α^n , and I-dimensional processes Y^n, β^n are all defined on some probability space $(\Omega^n, \mathcal{F}^n, P^n)$ such that (i) for $\widetilde{W}^n \equiv W^n + \alpha^n$, P^n -a.s., dist $(\widetilde{W}^n(t), \overline{G}) \leq \delta^n$ for all $t \geq 0$, (ii) P^n -a.s., $W^n(t) = X^n(t) + \sum_{i \in \mathcal{I}} \int_{(0,t]} \gamma^{i,n}(W^n(s-), W^n(s)) dY_i^n(s)$ for all $t \geq 0$, where $\gamma^{i,n} : \mathbb{R}^d \to \mathbb{R}^d$ is Borel measurable and $ \gamma^{i,n}(y, x) = 1$ for all $y, x \in \mathbb{R}^d$ and each $i \in \mathcal{I}$, (iii) X^n converges in distribution as $n \to \infty$ to a (μ, Γ) -Brownian motion with initial distribution ν ,
'93) SRBMs in Domains with Piecewise Smooth Boundaries - p.11/1-	SRBMs in Domains with Plecewise Smooth Boundaries - p.12/1/

Hypotheses Continued ...

- (iv) β^n is locally of bounded variation and for $\widetilde{Y}^n \equiv Y^n + \beta^n$, P^n -a.s., for each $i \in \mathcal{I}$,
 - (a) $\widetilde{Y}_{i}^{n}(0) = 0$,
 - (b) \widetilde{Y}_i^n is increasing and $\Delta \widetilde{Y}_i^n(t) \leq \delta^n$ for all t > 0,
 - (c) $\widetilde{Y}_i^n(t) = \int_{(0,t]} 1_{\{\operatorname{dist}\left(\widetilde{W}^n(s), \partial G_i \cap \partial G\right) \leq \delta^n\}} d\widetilde{Y}_i^n(s) \ \forall \ t \geq 0,$
- (v) $\delta^n \to 0$ as $n \to \infty$, and for each $\varepsilon > 0$, there is $\eta_{\varepsilon} > 0$ and $n_{\varepsilon} > 0$ such that for each $i \in \mathcal{I}$, $\|\gamma^{i,n}(y,x) \gamma^i(x)\| < \varepsilon$ whenever $\|x y\| < \eta_{\varepsilon}$ and $n \ge n_{\varepsilon}$,
- (vi) $\alpha^n \to \mathbf{0}$ and $\mathcal{V}(\beta^n) \to \mathbf{0}$ in probability as $n \to \infty$, where for each $t \ge 0$, $\mathcal{V}(\beta^n)(t)$ is the total variation of β^n on [0,t].

Is in Domains with Piecewise Smooth Boundaries - p.1

<figure>

Open Problems

- More general sufficient conditions for (weak) uniqueness of SRBMs
- Treatment of domains with cusp-like boundary interfaces
- Treatment of domains with smooth meetings of boundaries

Invariance Principle (Kang-W '07)

Define $\mathcal{Z}^n = (W^n, X^n, Y^n)$ for each n. The sequence of processes $\{\mathcal{Z}^n\}_{n=1}^{\infty}$ is C-tight. Any (weak) limit point of this sequence is of the form $\mathcal{Z} = (W, X, Y)$ where all properties of the SRBM Definition hold, except possibly the martingale property, with $\mathcal{F}_t = \sigma\{\mathcal{Z}(s): 0 \le s \le t\}, t \ge 0$.

Furthermore, if the following conditions (vii) and (viii) hold, then $W^n \Rightarrow W$ as $n \to \infty$ where W is an SRBM.

- (vii) For each (weak) limit point $\mathcal{Z} = (W, X, Y)$ of $\{\mathcal{Z}^n\}_{n=1}^{\infty}$, $\{X(t) \mu t, \ \mathcal{F}_t, \ t \ge 0\}$ is a martingale.
- (viii) If a process W satisfies the SRBM Definition, then the law of W is unique.

Diffusion Workload Cone for a 3-node Linear Network under another Fair Bandwidth Sharing Policy

