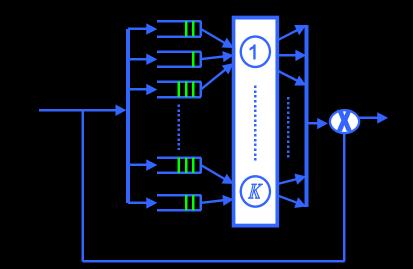
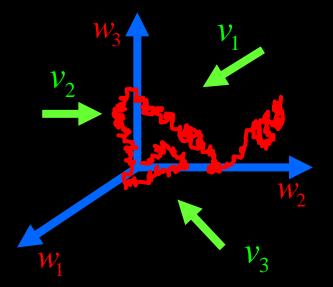
MULTICLASS QUEUEING NETWORKS AND SRBMS IN THE ORTHANT





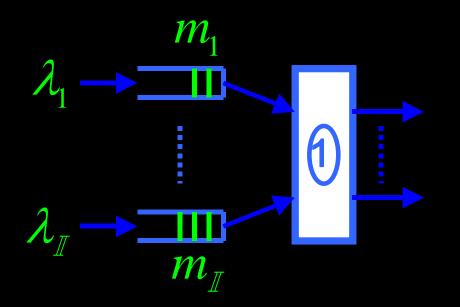
Ruth J. Williams University of California, San Diego

Outline

- SIMPLE MULTICLASS EXAMPLE
- OPEN MULTICLASS HL NETWORK (CONJECTURES)
 HISTORY
- SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS IN THE ORTHANT
- FURTHER DEVELOPMENTS

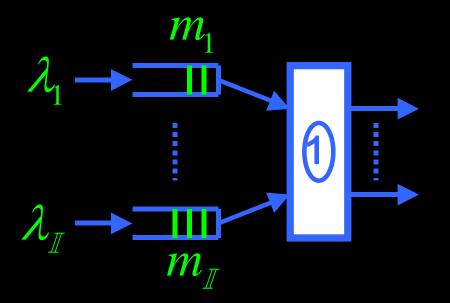
SIMPLE MULTICLASS EXAMPLE

Multiclass FIFO Station



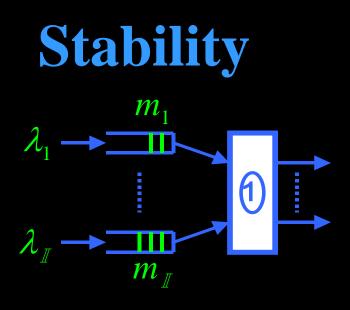
Renewal arrivals to class *i* at rate \$\lambda_i\$
i.i.d. service times for class *i*, mean \$\mathbb{m}_i\$
Service discipline: FIFO across all classes

Performance Processes



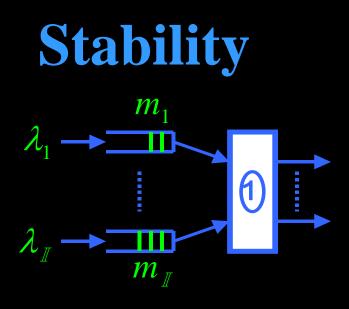
•Queuelength for class *i*: *Q*_i
•Workload: *W*

•Idletime: Y



•Traffic Intensity $\rho_1 = \sum_{i=1}^{I} \lambda_i m_i$ i=1

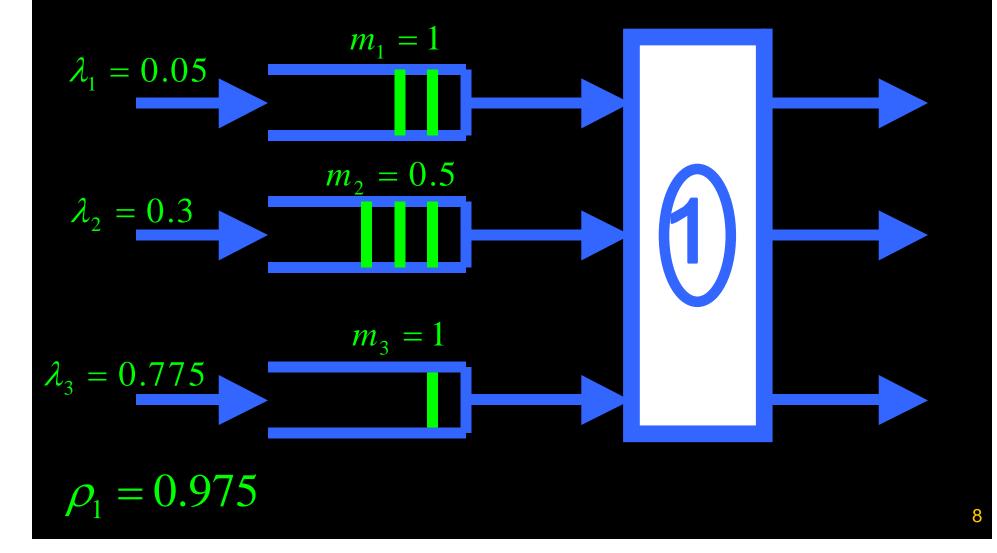
•Stability iff $\rho_1 < 1$



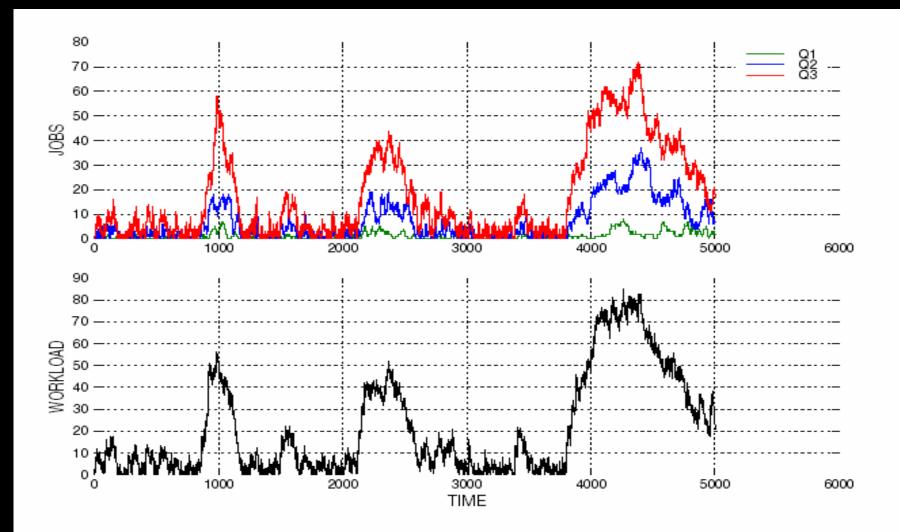
•Stability iff $\rho_1 < 1$ •Heavy traffic $\rho_1 \approx 1$

Simulation of a Multiclass FIFO queue

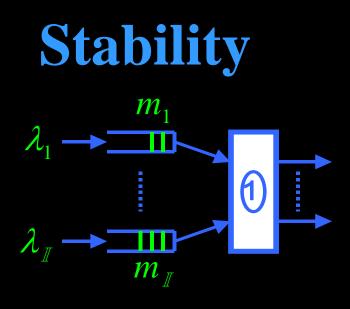
(Poisson arrivals, exponential service times)



Simulation of a Multiclass FIFO queue



S



•Traffic Intensity
$$\rho_1 = \sum_{i=1}^{\mathbb{Z}} \lambda_i m_i$$

•Stability iff $\rho_1 < 1$ •Heavy traffic $\rho_1 \approx 1$ (assume $\rho_1 = 1$ for simplicity) Heavy Traffic Diffusion Approximation $\hat{W}^r(t) = W(r^2 t)/r, \quad \hat{Y}^r(t) = Y(r^2 t)/r,$ $\hat{Q}^r_i(t) = Q_i (r^2 t)/r, \quad i = 1, ..., \mathbb{I}$

<u>Theorem (Whitt '71)</u> $(\hat{W}^r, \hat{Y}^r, \hat{Q}^r) \Rightarrow (W^*, Y^*, Q^*)$ where W^* is a one-dimensional reflecting Brownian motion with local time Y^* and $Q^* = \lambda W^*$ (state space collapse).

 $W^*(t)$

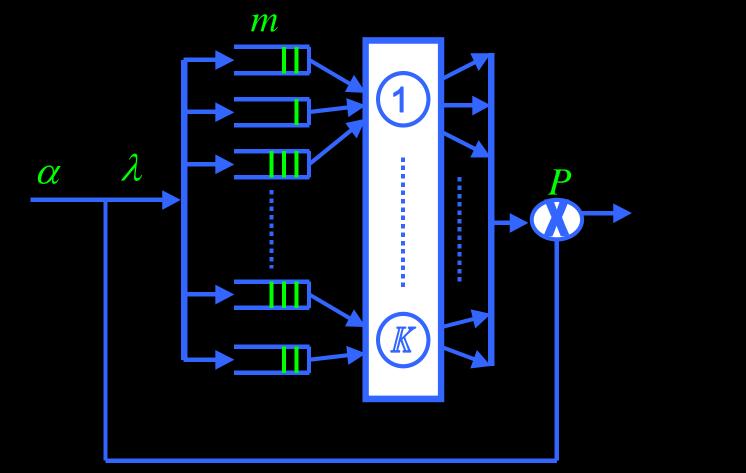
 $W^{*}(t) = X^{*}(t) + Y^{*}(t)$ $Y^{*}(t) = \sup\{-X^{*}(s) : 0 \le s \le t\}$ $X^{*} = \text{Brownian motion} \qquad 11$ OPEN MULTICLASS HL NETWORK (CONJECTURES)

Assumptions

- Open: jobs enter the system from outside and eventually leave the network. Assume infinite capacity buffers.
- HL: jobs within a buffer are stored in the order in which they arrived and service is always given to the job at the head-of-the-line. Also, the discipline is non-idling.
- Primitive arrival, service and routing processes are assumed to satisfy functional central limit theorems.

Open Multiclass HL Queueing Network

First order parameters



 $\lambda = \alpha + P'\lambda$

 $\rho_k = \sum \lambda_i m_i, \ k = 1, ..., \mathbb{K}$

Natural Conjectures

• Stability: Network is stable provided $\rho_k < 1$ for each $k = 1, ..., \mathbb{K}$

• Heavy traffic diffusion approximation: If $\rho_k \approx 1$, $k = 1, ..., \mathbb{K}$, then $(\hat{W}^r, \hat{Y}^r, \hat{Q}^r) \approx (W^*, Y^*, Q^*)$ where $Q^* = \Delta W^*$ for some $\mathbb{I}_X \mathbb{K}$ lifting matrix Δ (that depends on the HL service discipline), and $W^* = X^* + RY^*$ is a reflecting Brownian motion (RBM) in the \mathbb{K} -dimensional orthant.

HISTORY

Affirmative Answers

(Refs. are for diffusion approximations through early 1990s)

SINGLE CLASS (FIFO):

- Single station: Borovkov ('67), Iglehart-Whitt ('70)
- Acyclic network: Iglehart-Whitt ('70), Tandem queue: Harrison ('78)
- Network: Reiman ('84), Chen-Mandelbaum ('91)

MULTICLASS:

- Single station, priorities: Whitt ('71), Harrison ('73)
- Network, priorities: Johnson ('83, SP), Peterson ('91, feedforward)
- Single station, feedback, round robin & FIFO: Reiman ('88), Dai-Kurtz ('95)

Rely on continuous mapping construction of SRBM and do not cover multiclass networks with general feedback.

Counterexamples

(two-stations, deterministic routing)STABILITY

- Kumar and Seidman ('90): clearing policy.
- Lu and Kumar ('91): static priorities, deterministic interarrival and service times.
- Rybko and Stolyar ('92): static priorities, exponential interarrival and service times. (See also Botvitch and Zamyatin ('92))
- Seidman ('94): FIFO, deterministic interarrival and service times.
- Bramson ('94): FIFO, exponential interarrival and service times.

DIFFUSION APPROXIMATION

- Dai-Wang ('93): FIFO, exponential interarrival and service times.

HL MQN: Sufficient Conditions

STABILITY

- Subcritical fluid models

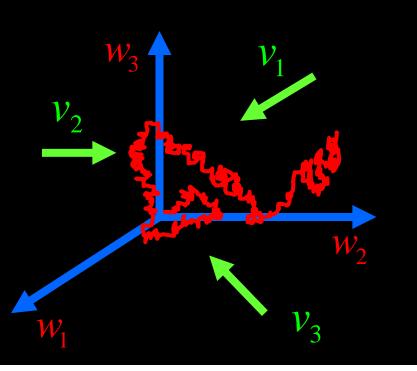
PERFORMANCE ANALYSIS (in heavy traffic)

 Reflecting diffusions and state space collapse via critical fluid models

SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS (SRBMs)

SRBM DATA

State space: \$\mathbb{R}_+^\mathbb{K}\$
Brownian statistics: drift \$\theta_1\$, covariance matrix \$\Gamma\$
Reflection matrix: \$\mathbb{R} = (v_1, ..., v_k\$)\$

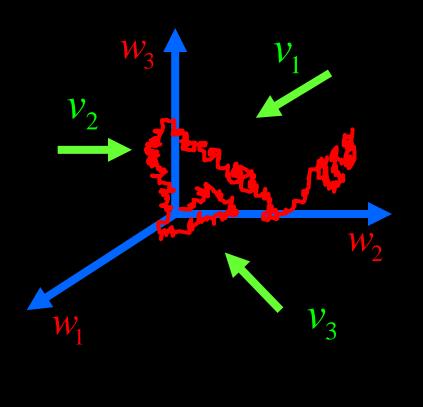


SRBM DEFINITION (w/starting point x_0)

A continuous *K*-dimensional process *W* such that (i) W = X + RY(ii) W has paths in $\mathbb{R}_+^{\mathbb{K}}$ (iii) for $k=1,...,\mathbb{K}$, $Y_k(0)=0$, Y_k is continuous, non-decreasing, and it can increase only when $W_{\mu} = 0$ (iv) X is a (θ, Γ) BM s.t. $X(0) = x_0$, $\{X(t) - \theta t, t \ge 0\}$ is a martingale relative to the filtration generated by (W, X, Y)

Necessary Condition for Existence

<u>Defn</u>: *R* is completely-*S* iff for each principal submatrix \tilde{R} of *R* there is $\tilde{y} > 0 : \tilde{R}\tilde{y} > 0$



 $R = (v_1, \dots, v_{\mathbb{K}})$

Existence and Uniqueness in Law

<u>Theorem</u> (Reiman-W '88, Taylor-W '93) There is an SRBM *W* starting from each point x_0 in $\mathbb{R}_+^{\mathbb{K}}$ iff *R* is completely-*S*. In this case, each such SRBM is unique in law and these laws define a continuous strong Markov process.

Oscillation Inequality

Assume that *R* is completely-*S*. There is a constant C > 0 such that whenever $\delta > 0$, $0 \le t_1 < t_2 < \infty$, and $\mathcal{W}, \mathcal{X}, \mathcal{Y}$ are r.c.l.l. satisfying (i) w(t) = x(t) + Ry(t) for $t \in [t_1, t_2]$ (ii) *w* lives in $\mathbb{R}^{\mathbb{K}}_+$ (iii) for k=1,...,K, $y_k(t_1) \ge 0$, y_k is continuous, non-decreasing, and can increase only when $w_{\mu} < \delta$, Then $Osc(w, [t_1, t_2]) + Osc(y, [t_1, t_2]) \le C(Osc(x, [t_1, t_2]) + \delta)$

Cts case: Bernard-El Kharroubi '91, discts case: W '98

Analysis of multidimensional SRBMs

- Sufficient conditions for positive recurrence Dupuis-W '94, Chen '96, Budhiraja-Dupuis '99, El Kharroubi-Ben Tahar-Yaacoubi '00
- Stationary distribution
 - Characterization: Harrison-W '87, Dai-Harrison '92, Dai-Kurtz '98
 - Analytic solutions -two-dimensions: Foddy '84, Trefethen-W '86, Harrison '06

-product form: Harrison-W '87

- *Numerical methods:* Dai-Harrison '91,'92, Shen-Chen-Dai-Dai '02,

Schwerer '01

Large deviations

Majewski '98,'00, Avram-Dai-Hasenbein '01, Dupuis-Ramanan '02,

Some Related Work on RBMs & Queueing Networks

- <u>Capacitated queues</u> (convex polyhedral domains)
 - Dai-Williams '95, Dai-Dai '99
- HT limits that are not SRBMs (& have no state space collapse)
 - Single station-polling: Coffman-Puhalskii-Reiman '95
 - Dynamic HLPS: Dupuis-Ramanan '99, Ramanan-Reiman '03
- Non-HL service disciplines

(Markovian state descriptor is typically infinite dimensional)

- LIFO preemptive resume: Single station: Limic '00, '01
- Processor sharing: Single station (Gromoll-Puha-W '01, Puha-W '03, Gromoll '03); network (stability: Bramson '04)
- EDF: Single station (Doytchinov-Lehoczky-Shreve '01), acyclic network (Kruk-Lehoczky-Shreve-Yeung '03), network (stability: Bramson '01)

PERSPECTIVE

	MQN	SPN
	Sufficient conditions for	e.g., parallel server system,
HL	stability and diffusion approximations	packet switch
Non- HL	e.g., LIFO, Processor Sharing (single station, PS: network stability)	e.g., Internet congestion control / bandwidth sharing model