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SIMPLE  MULTICLASS  EXAMPLE
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Multiclass FIFO Station
 

•Renewal arrivals to class i at rate 

•i.i.d. service times for class i, mean

•Service discipline: FIFO across all classes
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Performance Processes
 

•Queuelength for class i:
•Workload:

•Idletime:
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Stability

•Traffic Intensity

•Stability iff
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Stability

•Traffic Intensity

•Stability iff
•Heavy traffic                   
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Simulation of a Multiclass FIFO queue
(Poisson arrivals, exponential service times)
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Simulation of a Multiclass FIFO queue
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Stability

•Traffic Intensity

•Stability iff
•Heavy traffic                (assume                for simplicity)
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Heavy Traffic Diffusion Approximation

Theorem (Whitt ‘71)
where        is a one-dimensional reflecting Brownian 
motion with local time      and                    (state 
space collapse).
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OPEN  MULTICLASS  

HL  NETWORK

(CONJECTURES)    
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Assumptions

Open: jobs enter the system from outside and 
eventually leave the network. Assume infinite 
capacity buffers.
HL: jobs within a buffer are stored in the order in 
which they arrived and service is always given to 
the job at the head-of-the-line. Also, the discipline 
is non-idling.
Primitive arrival, service and routing processes 
are assumed to satisfy functional central limit 
theorems.
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Open Multiclass HL Queueing Network

First order parameters
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Natural Conjectures

Stability: Network is stable provided

Heavy traffic diffusion approximation: 
If                                      then                    
where                     for some IxK lifting matrix       
(that depends on the HL service discipline), and            

is a reflecting Brownian motion 
(RBM) in the K-dimensional orthant. 

1 for each  1, ,k kρ < = … K

1,  1, , ,k kρ ≈ = … K * * *ˆˆ ˆ( , , ) ( , , )r r rW Y Q W Y Q≈
Δ

** *YXW R= +
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HISTORY    
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Affirmative Answers
(Refs. are for diffusion approximations through early 1990s)

SINGLE CLASS (FIFO):
– Single station: Borovkov (‘67), Iglehart-Whitt (‘70)
– Acyclic network: Iglehart-Whitt (‘70), Tandem queue: Harrison (‘78)
– Network: Reiman (‘84), Chen-Mandelbaum (‘91)    

MULTICLASS:
– Single station, priorities: Whitt (‘71), Harrison (‘73)                       
– Network, priorities: Johnson (‘83, SP),  Peterson (‘91, feedforward) 
– Single station, feedback, round robin & FIFO: Reiman (‘88), Dai-

Kurtz (‘95)
Rely on continuous mapping construction of SRBM and do 

not cover multiclass networks with general feedback.
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Counterexamples
(two-stations, deterministic routing)

STABILITY
– Kumar and Seidman (‘90): clearing policy. 
– Lu and Kumar (‘91): static priorities, deterministic interarrival and 

service times.
– Rybko and Stolyar (‘92): static priorities, exponential interarrival and 

service times. (See also Botvitch and Zamyatin (’92))
– Seidman (‘94): FIFO, deterministic interarrival and service times.
– Bramson ('94): FIFO, exponential interarrival and service times. 

DIFFUSION APPROXIMATION
– Dai-Wang (‘93): FIFO, exponential interarrival and service times.
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HL MQN: Sufficient Conditions

STABILITY
– Subcritical fluid models

PERFORMANCE ANALYSIS (in heavy traffic)
– Reflecting diffusions and state space collapse via   

critical fluid models
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SEMIMARTINGALE  REFLECTING 
BROWNIAN  MOTIONS  

(SRBMs)
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SRBM  DATA

State space:
Brownian statistics: drift    ,  covariance matrix
Reflection matrix:
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SRBM  DEFINITION  (w/starting point     )

A continuous K-dimensional process such that 
(i)
(ii) has paths in
(iii) for k=1,...,K, is continuous, 
non-decreasing, and it can increase only when 
(iv) is a             BM  s.t.

is a martingale relative to the
filtration generated by 

+
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kY(0) 0,kY =
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Necessary Condition for Existence

Defn:      is completely-S iff for each principal 
submatrix of      there isR

R
R 0 : 0y Ry> >
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Existence and Uniqueness in Law

Theorem (Reiman-W ‘88, Taylor-W ‘93)
There is an SRBM        starting from each point        
in          iff is completely-S. In this case, each 
such SRBM is unique in law and these laws define 
a continuous strong Markov process. 

W 0x

+
KR R



25

Oscillation Inequality
Assume that R is completely-S.  There is a constant C>0 such 
that whenever                                                and are  
r.c.l.l. satisfying
(i)
(ii) lives in
(iii) for k=1,...,K, is continuous, non-decreasing, 

and can increase only when                 ,
Then

Cts case: Bernard-El Kharroubi ’91, discts case: W ‘98

1 20,   0 ,t tδ > ≤ < < ∞ ,,w x y

1 2( ) ( ) for ( ) [ , ] R t t tw t tt yx= + ∈
w +

KR

1( ) 0,ky t ≥ ky

kw δ<

1 2 1 2 1 2( ,[ , ]) ( ,[ , ]) ( ( ,[ , ]) )Osc t t Osc t t C Osc t ty xw δ+ ≤ +
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Analysis of multidimensional SRBMs

Sufficient conditions for positive recurrence
Dupuis-W ‘94, Chen ‘96, Budhiraja-Dupuis ‘99, El Kharroubi-Ben Tahar-
Yaacoubi ‘00
Stationary distribution
– Characterization: Harrison-W ‘87, Dai-Harrison ‘92, Dai-Kurtz ‘98
– Analytic solutions -two-dimensions: Foddy ‘84, Trefethen-W ’86,  

Harrison ‘06
-product form: Harrison-W ‘87

– Numerical methods: Dai-Harrison ‘91,’92, Shen-Chen-Dai-Dai ‘02,
Schwerer ‘01

Large deviations
Majewski ‘98,’00, Avram-Dai-Hasenbein ’01, Dupuis-Ramanan ’02, 
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Some Related Work on RBMs & Queueing Networks
Capacitated queues (convex polyhedral domains)

– Dai-Williams ’95, Dai-Dai ‘99

HT limits that are not SRBMs (& have no state space collapse) 
– Single station-polling: Coffman-Puhalskii-Reiman ‘95
– Dynamic HLPS: Dupuis-Ramanan ’99, Ramanan-Reiman ‘03

Non-HL service disciplines
(Markovian state descriptor is typically infinite dimensional)

– LIFO preemptive resume: Single station: Limic ‘00, ‘01
– Processor sharing:  Single station (Gromoll-Puha-W ‘01, 

Puha-W ‘03, Gromoll ‘03); network (stability: Bramson ‘04)
– EDF: Single station (Doytchinov-Lehoczky-Shreve ‘01), 

acyclic network  (Kruk-Lehoczky-Shreve-Yeung ‘03), network 
(stability: Bramson ‘01)
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PERSPECTIVE
MQN                                     SPN

Sufficient conditions for e.g., parallel server system,

HL   stability and diffusion packet switch
approximations                                

Non- e.g., LIFO, Processor Sharing e.g., Internet congestion    

HL       (single station,                                control / bandwidth sharing   
PS: network stability)                       model


