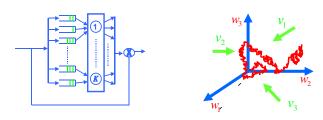
MULTICLASS QUEUEING NETWORKS AND SRBMS IN THE ORTHANT



Ruth J. Williams
University of California, San Diego

Outline

- SIMPLE MULTICLASS EXAMPLE
- OPEN MULTICLASS HL NETWORK (CONJECTURES)
- **HISTORY**
- SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS IN THE ORTHANT
- FURTHER DEVELOPMENTS

2

SIMPLE MULTICLASS EXAMPLE

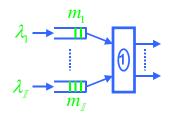
•Renewal arrivals to class i at rate λ_i

•i.i.d. service times for class $\emph{i}_{\emph{i}}$ mean $\emph{m}_{\emph{i}}$

Multiclass FIFO Station

•Service discipline: FIFO across all classes

Performance Processes



•Queuelength for class *i*: Q_i

•Workload: $\it W$

•Idletime: Y

Stability

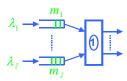
$$\lambda_1 \longrightarrow m_1$$
 $\lambda_2 \longrightarrow m_2$

•Traffic Intensity $\rho_1 = \sum_{i=1}^{\mathbb{Z}} \lambda_i m_i$

•Stability iff $\rho_1 < 1$

5

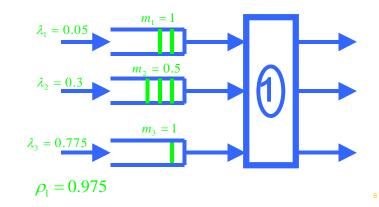
Stability



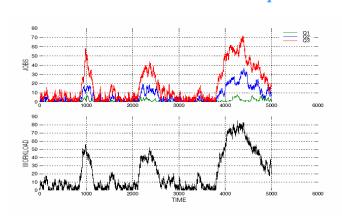
- •Traffic Intensity $\rho_1 = \sum_{i=1}^{\mathbb{Z}} \lambda_i m_i$
- •Stability iff $\rho_1 < 1$
- •Heavy traffic $\rho_1 \approx 1$

Simulation of a Multiclass FIFO queue

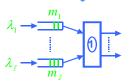
(Poisson arrivals, exponential service times)



Simulation of a Multiclass FIFO queue



Stability



•Traffic Intensity $\rho_1 = \sum_{i=1}^{\mathbb{Z}} \lambda_i m_i$

•Stability iff $\rho_1 < 1$

•Heavy traffic $\rho_1 \approx 1$ (assume $\rho_1 = 1$ for simplicity)

10

Heavy Traffic Diffusion Approximation

$$\hat{W}^{r}(t) = W(r^{2}t)/r, \quad \hat{Y}^{r}(t) = Y(r^{2}t)/r,$$

 $\hat{Q}_{i}^{r}(t) = Q_{i}(r^{2}t)/r, \ i = 1,..., \mathbb{Z}$

Theorem (Whitt '71) $(\hat{W}^r, \hat{Y}^r, \hat{Q}^r) \Rightarrow (W^*, Y^*, Q^*)$ where W^* is a one-dimensional reflecting Brownian motion with local time Y^* and $Q^* = \lambda W^*$ (state space collapse).

$$W^*(t) = X^*(t) + Y^*(t)$$

 $Y^*(t) = \sup\{-X^*(s) : 0 \le s \le t\}$
 $X^* = \text{Brownian motion}$

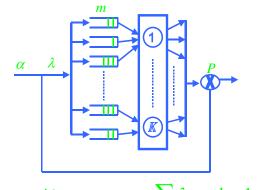
OPEN MULTICLASS

HL NETWORK

(CONJECTURES)

Assumptions

- Open: jobs enter the system from outside and eventually leave the network. Assume infinite capacity buffers.
- HL: jobs within a buffer are stored in the order in which they arrived and service is always given to the job at the head-of-the-line. Also, the discipline is non-idling.
- Primitive arrival, service and routing processes are assumed to satisfy functional central limit theorems



Open Multiclass HL Queueing Network

First order parameters

 $\lambda = \alpha + P'\lambda$ $\rho_k =$

 $\rho_k = \sum_{i=k} \lambda_i m_i, \ k = 1, ..., \mathbb{K}$

Natural Conjectures

- <u>Stability</u>: Network is stable provided $\rho_k < 1$ for each k = 1,...,K
- Heavy traffic diffusion approximation: If $\rho_k \approx 1$, $k = 1, ..., \mathbb{K}$, then $(\hat{W}^r, \hat{Y}^r, \hat{Q}^r) \approx (W^*, Y^*, Q^*)$ where $Q^* = \Delta W^*$ for some $\mathbb{K} \mathbb{K}$ lifting matrix Δ (that depends on the HL service discipline), and $W^* = X^* + RY^*$ is a reflecting Brownian motion (RBM) in the \mathbb{K} -dimensional orthant.

HISTORY

16

Affirmative Answers

(Refs. are for diffusion approximations through early 1990s)

- SINGLE CLASS (FIFO):
 - Single station: Borovkov ('67), Iglehart-Whitt ('70)
 - Acyclic network: Iglehart-Whitt ('70), Tandem queue: Harrison ('78)
 - Network: Reiman ('84), Chen-Mandelbaum ('91)
- MULTICLASS:
 - Single station, priorities: Whitt ('71), Harrison ('73)
 - Network, priorities: Johnson ('83, SP), Peterson ('91, feedforward)
 - Single station, feedback, round robin & FIFO: Reiman ('88), Dai-Kurtz ('95)

Rely on continuous mapping construction of SRBM and do not cover multiclass networks with general feedback.

Counterexamples

(two-stations, deterministic routing)

STABILITY

- Kumar and Seidman ('90): clearing policy.
- Lu and Kumar ('91): static priorities, deterministic interarrival and service times
- Rybko and Stolyar ('92): static priorities, exponential interarrival and service times. (See also Botvitch and Zamyatin ('92))
- Seidman ('94): FIFO, deterministic interarrival and service times
- Bramson ('94): FIFO, exponential interarrival and service times.

DIFFUSION APPROXIMATION

Dai-Wang ('93): FIFO, exponential interarrival and service times.

1

HL MQN: Sufficient Conditions

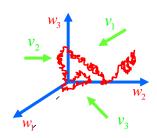
- STABILITY
 - Subcritical fluid models
- PERFORMANCE ANALYSIS (in heavy traffic)
 - Reflecting diffusions and state space collapse via critical fluid models

SEMIMARTINGALE REFLECTING
BROWNIAN MOTIONS
(SRBMs)

19

SRBM DATA

- State space: $\mathbb{R}_{+}^{\mathbb{K}}$
- Brownian statistics: drift θ_i covariance matrix Γ
- Reflection matrix: $R = (v_1, ..., v_K)$



21

SRBM DEFINITION (w/starting point χ_0)

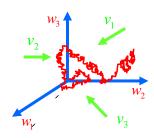
A continuous K-dimensional process W such that

- (i) W = X + RY
- (ii) W has paths in $\mathbb{R}_{+}^{\mathbb{K}}$
- (iii) for $k=1,\ldots,K$, $Y_k(0)=0$, Y_k is continuous, non-decreasing, and it can increase only when $W_k=0$ (iv) X is a (θ,Γ) BM s.t. $X(0)=x_0$,
- $\{X(t) \theta t, t \ge 0\}$ is a martingale relative to the filtration generated by (W, X, Y)

22

Necessary Condition for Existence

<u>Defn</u>: R is completely-S iff for each principal submatrix \tilde{R} of R there is $\tilde{y} > 0$: $\tilde{R}\tilde{y} > 0$



$$R = (v_1, ..., v_{\mathbb{K}})$$

Existence and Uniqueness in Law

Theorem (Reiman-W '88, Taylor-W '93)

There is an SRBM W starting from each point x_0 in $\mathbb{R}_+^\mathbb{K}$ iff R is completely-S. In this case, each such SRBM is unique in law and these laws define a continuous strong Markov process.

Oscillation Inequality

Assume that R is completely-S. There is a constant C>0 such that whenever $\delta>0$, $0 \leq t_1 < t_2 < \infty$, and $W, \mathcal{X}, \mathcal{Y}$ are r.c.l.l. satisfying

(i)
$$w(t) = x(t) + Ry(t)$$
 for $t \in [t_1, t_2]$

(ii) w lives in $\mathbb{R}_+^{\mathbb{K}}$

(iii) for k=1,...,K, $y_k(t_1) \ge 0$, y_k is continuous, non-decreasing, and can increase only when $w_k < \delta$,

Then

$$Osc(\mathbf{w}, [t_1, t_2]) + Osc(\mathbf{y}, [t_1, t_2]) \le C(Osc(\mathbf{x}, [t_1, t_2]) + \delta)$$

Cts case: Bernard-El Kharroubi '91, discts case: W '98

Analysis of multidimensional SRBMs

Sufficient conditions for positive recurrence
 Dupuis-W '94, Chen '96, Budhiraja-Dupuis '99, El Kharroubi-Ben Tahar-Yaacoubi '00

Stationary distribution

- Characterization: Harrison-W '87, Dai-Harrison '92, Dai-Kurtz '98

 Analytic solutions -two-dimensions: Foddy '84, Trefethen-W '86, Harrison '06

-product form: Harrison-W '87

Numerical methods: Dai-Harrison '91,'92, Shen-Chen-Dai-Dai '02,

Large deviations

Majewski '98,'00, Avram-Dai-Hasenbein '01, Dupuis-Ramanan '02,

26

Some Related Work on RBMs & Queueing Networks

- <u>Capacitated queues</u> (convex polyhedral domains)
 - Dai-Williams '95, Dai-Dai '99
- HT limits that are not SRBMs (& have no state space collapse)
 - Single station-polling: Coffman-Puhalskii-Reiman '95
 - Dynamic HLPS: Dupuis-Ramanan '99, Ramanan-Reiman '03
- Non-HL service disciplines

(Markovian state descriptor is typically infinite dimensional)

- LIFO preemptive resume: Single station: Limic '00, '01
- Processor sharing: Single station (Gromoll-Puha-W '01, Puha-W '03, Gromoll '03); network (stability: Bramson '04)
- EDF: Single station (Doytchinov-Lehoczky-Shreve '01), acyclic network (Kruk-Lehoczky-Shreve-Yeung '03), network (stability: Bramson '01)

PERSPECTIVE

	MQN	SPN
HL	Sufficient conditions for stability and diffusion approximations	e.g., parallel server system, packet switch
Non- HL	e.g., LIFO, Processor Sharing (single station, PS: network stability)	e.g., Internet congestion control / bandwidth sharing model