A RANDOM WALK THROUGH ANALYSIS, NETWORKS AND BIOLOGY Lecture 2

Ruth J Williams G C Steward Visiting Fellow Gonville and Caius College April 2010

CONNECTIONS

- Brownian motion and analysis
- Reflecting Brownian motion and queueing networks
- Queues and biology

QUEUES

Photograph courtesy of Ilze Ziedins

SINGLE SERVER QUEUE

M/M/1 Queue

$$\lambda$$

- Poisson arrivals at rate λ
- i.i.d. exponential service times mean μ^{-1}

M/M/1 Queue

$$\lambda$$

- Poisson arrivals at rate λ
- i.i.d. exponential service times mean μ^{-1}
- FIFO order of service, infinite buffer

M/M/1 Queue

$$\lambda$$

- Poisson arrivals at rate λ
- i.i.d. exponential service times mean μ^{-1}
- FIFO order of service, infinite buffer
- *Q(t)*=queuelength at time *t* (includes customer being served)

M/M/1 queue (Java simulation applet)

• http://homepages.inf.ed.ac.uk/jeh/Simjava/queueing/mm1_q/mm1_q.html

Balanced M/M/1 Queue

$$\lambda$$
 μ μ

- Poisson arrivals at rate λ
- i.i.d. exponential service times mean μ^{-1}
- FIFO order of service, infinite buffer
- *Q(t)*=queuelength at time *t* (includes customer being served)
- Balanced $\lambda = \mu$ (heavy traffic)

Balanced M/M/1 Queue (Simulation)

Simulations in R courtesy of Nam H. Lee

Balanced M/M/1 Queue (Simulation)

Time

Simulations in R courtesy of Nam H. Lee

Balanced M/M/1 Queue (Simulation)

Simulations in R courtesy of Nam H. Lee

Balanced M/M/1 Queue

$$\hat{Q}^{m}(\cdot) \triangleq \frac{1}{\sqrt{m}} Q(m \cdot) \Longrightarrow Z \text{ as } m \to \infty$$

where *Z* is a reflecting Brownian motion - RBM (with variance parameter 2λ)

Balanced GI/GI/1 Queue

 $\lambda = \mu$

i.i.d. interarrival times and i.i.d. service times

Balanced GI/GI/1 Queue

i.i.d. interarrival times and i.i.d. service times Theorem (A. Borovkov '67, Iglehart-Whitt '70)

$$\hat{Q}^{m}(\cdot) \triangleq \frac{1}{\sqrt{m}} Q(m \cdot) \Rightarrow Z \text{ as } m \to \infty$$

where *Z* is a reflecting Brownian motion with variance parameter $\lambda^3(\sigma_a^2 + \sigma_s^2)$ **Reflecting Brownian Motion**

Z(t) = B(t) + Y(t)

Brownian motion

 $Y(t) = \max\{-B(s): 0 \le s \le t\}$

Law of the Iterated Logarithm

$$\limsup_{t \to \infty} \frac{Z(t)}{\sqrt{t \log \log t}} = 2\sqrt{\lambda} \quad \text{a.s.}$$

QUEUEING NETWORKS

QUEUEING NETWORKS

 Applications to manufacturing, telecommunications, computer systems, service networks

TANDEM QUEUE

TANDEM QUEUE

TANDEM QUEUE

Balance condition (heavy traffic) $\lambda=\mu_1=\mu_2$

Queuelength process

 $Q_i(t)$ = length of queue at station *i* at time *t*

$$\hat{Q}^{m}(\cdot) \triangleq \frac{1}{\sqrt{m}} Q(m \cdot) \Rightarrow Z \text{ as } m \to \infty$$

where Z is a two-dimensional reflecting Brownian motion (Iglehart & Whitt `70)

$$\hat{Q}^{m}(\cdot) \triangleq \frac{1}{\sqrt{m}} Q(m \cdot) \Rightarrow Z \text{ as } m \to \infty$$

where Z is a two-dimensional reflecting Brownian motion

$$\hat{Q}^{m}(\cdot) \triangleq \frac{1}{\sqrt{m}} Q(m \cdot) \Rightarrow Z \text{ as } m \to \infty$$

where Z is a two-dimensional reflecting Brownian motion

TANDEM QUEUE WITH FEEDBACK

TANDEM QUEUE WITH FEEDBACK

Effective arrival rate to station 1 $\lambda = \alpha + p\lambda$ Balance condition (heavy traffic) $\lambda = \mu_1 = \mu_2$

TWO-DIMENSIONAL REFLECTING BROWNIAN MOTION

TWO-DIMENSIONAL REFLECTING BROWNIAN MOTION

Some questions:

- -Does Z hit the origin?
- -For more general directions of reflection,

does Z escape from the origin (uniquely)?

TWO-DIMENSIONAL REFLECTING BROWNIAN MOTION

Some questions:

- -Does Z hit the origin?
- -For more general directions of reflection,
- does Z escape from the origin (uniquely)?

RBM HITS THE CORNER?

RBM HITS THE CORNER?

 $u(r,\theta) = r^{\alpha} \cos(\alpha \theta - \theta_1)$ $\alpha = (\theta_1 + \theta_2) / \xi$

RBM HITS THE CORNER?

 $u(r,\theta) = r^{\alpha} \cos(\alpha \theta - \theta_1)$ $\alpha = (\theta_1 + \theta_2) / \xi$

Hit the corner with probability one or zero according to whether $\alpha > 0$ or $\alpha \le 0$

MULTIDIMENSIONAL REFLECTING BROWNIAN MOTION

- In higher dimensions, is Z well defined?
- How does it behave?

CONNECTIONS

- Brownian motion and analysis
- Reflecting Brownian motion and queuing networks
- Queues and biology

• Webpage:

http://www.math.ucsd.edu/~williams/talks/caius/gcsteward2010.html

