A RANDOM WALK THROUGH ANALYSIS, NETWORKS AND BIOLOGY Lecture 2

Ruth J Williams
G C Steward Visiting Fellow
Gonville and Caius College
April 2010

CONNECTIONS

- Brownian motion and analysis
- Reflecting Brownian motion and queueing networks
- Queues and biology

QUEUES

Photograph courtesy of Ilze Ziedins

SINGLE SERVER QUEUE

M/M/1 Queue

- Poisson arrivals at rate λ
- i.i.d. exponential service times mean μ^{-1}

M/M/1 Queue

- Poisson arrivals at rate λ
- i.i.d. exponential service times mean μ^{-1}
- FIFO order of service, infinite buffer

M/M/1 Queue

- Poisson arrivals at rate λ
- i.i.d. exponential service times mean μ^{-1}
- FIFO order of service, infinite buffer
- $Q(t)=q u e u e l e n g t h$ at time t (includes customer being served)

M/M/1 queue (Java simulation applet)

- http://homepages.inf.ed.ac.uk/jeh/Simjava/queueing/mm1 q/mm1 q.html

Balanced M/M/1 Queue

- Poisson arrivals at rate λ
- i.i.d. exponential service times mean μ^{-1}
- FIFO order of service, infinite buffer
- $Q(t)=q u e u e l e n g t h$ at time t (includes customer being served)
- Balanced $\lambda=\mu$ (heavy traffic)

Balanced M/M/1 Queue

(Simulation)

$\xrightarrow{\lambda} \xrightarrow{\mu}(1) \quad \lambda=1, \mu=1$

Simulations in R courtesy of Nam H. Lee

Balanced M/M/1 Queue

(Simulation)
$\xrightarrow{\lambda} \xrightarrow{\mu}(1) \longrightarrow \quad \lambda=1, \mu=1$

Simulations in R courtesy of Nam H. Lee

Balanced M/M/1 Queue

(Simulation)
$\xrightarrow{\lambda} \xrightarrow{\mu}(1) \quad \lambda=1, \quad \mu=1$

Balanced M/M/1 Queue

$$
\begin{gathered}
\xrightarrow{\lambda} \xrightarrow{\mu} \xrightarrow{\mu} \quad \lambda=\mu \\
\hat{Q}^{m}(\cdot) \triangleq \frac{1}{\sqrt{m}} Q(m \cdot) \Rightarrow Z \quad \text { as } m \rightarrow \infty
\end{gathered}
$$

where Z is a reflecting Brownian motion - RBM (with variance parameter 2λ)

Balanced GI/GI/1 Queue

$$
\lambda=\mu
$$

i.i.d. interarrival times and i.i.d. service times

Balanced GI/GI/1 Queue

$$
\lambda, \sigma_{a}^{2} \xrightarrow{\mu, \sigma_{s}^{2}} \xrightarrow{\square} \quad \lambda=\mu
$$

i.i.d. interarrival times and i.i.d. service times

Theorem (A. Borovkov '67, Iglehart-Whitt '70)

$$
\hat{Q}^{m}(\cdot) \triangleq \frac{1}{\sqrt{m}} Q(m \cdot) \Rightarrow Z \quad \text { as } m \rightarrow \infty
$$

where Z is a reflecting Brownian motion with variance parameter $\lambda^{3}\left(\sigma_{a}^{2}+\sigma_{s}^{2}\right)$

Reflecting Brownian Motion

$$
Z(t)=B(t)+Y(t)
$$

Brownian motion

$$
Y(t)=\max \{-B(s): 0 \leq s \leq t\}
$$

Law of the Iterated Logarithm

$$
\limsup _{t \rightarrow \infty} \frac{Z(t)}{\sqrt{t \log \log t}}=2 \sqrt{\lambda} \text { a.s. }
$$

QUEUEING NETWORKS

QUEUEING NETWORKS

- Applications to manufacturing, telecommunications, computer systems, service networks

TANDEM QUEUE

TANDEM QUEUE

TANDEM QUEUE

BALANCED TANDEM QUEUE

Balance condition (heavy traffic)

$$
\lambda=\mu_{1}=\mu_{2}
$$

Queuelength process

$Q_{i}(t)=$ length of queue at station i at time t

BALANCED TANDEM QUEUE

$$
\hat{Q}^{m}(\cdot) \triangleq \frac{1}{\sqrt{m}} Q(m \cdot) \Rightarrow Z \quad \text { as } m \rightarrow \infty
$$

where Z is a two-dimensional reflecting Brownian motion (Iglehart \& Whitt ${ }^{7} 7$)

BALANCED TANDEM QUEUE

$$
\hat{Q}^{m}(\cdot) \triangleq \frac{1}{\sqrt{m}} Q(m \cdot) \Rightarrow Z \quad \text { as } m \rightarrow \infty
$$

where Z is a two-dimensional reflecting Brownian motion

BALANCED TANDEM QUEUE

$$
\hat{Q}^{m}(\cdot) \triangleq \frac{1}{\sqrt{m}} Q(m \cdot) \Rightarrow Z \quad \text { as } m \rightarrow \infty
$$

where Z is a two-dimensional reflecting Brownian motion

TANDEM QUEUE WITH FEEDBACK

TANDEM QUEUE WITH FEEDBACK

Effective arrival rate to station 1

$$
\lambda=\alpha+p \lambda
$$

Balance condition (heavy traffic)

$$
\lambda=\mu_{1}=\mu_{2}
$$

TWO-DIMENSIONAL REFLECTING BROWNIAN MOTION

TWO-DIMENSIONAL REFLECTING BROWNIAN MOTION

Some questions:
-Does Z hit the origin?
-For more general directions of reflection, does Z escape from the origin (uniquely)?

TWO-DIMENSIONAL REFLECTING BROWNIAN MOTION

Some questions:
-Does Z hit the origin?
-For more general directions of reflection, does Z escape from the origin (uniquely)?

RBM HITS THE CORNER?

RBM HITS THE CORNER?

RBM HITS THE CORNER?

$$
u(r, \theta)=r^{\alpha} \cos \left(\alpha \theta-\theta_{1}\right) \quad \alpha=\left(\theta_{1}+\theta_{2}\right) / \xi
$$

RBM HITS THE CORNER?

$u(r, \theta)=r^{\alpha} \cos \left(\alpha \theta-\theta_{1}\right) \quad \alpha=\left(\theta_{1}+\theta_{2}\right) / \xi$

Hit the corner with probability one or zero according to whether $\alpha>0$ or $\alpha \leq 0$

MULTIDIMENSIONAL REFLECTING BROWNIAN MOTION

- In higher dimensions, is Z well defined?
- How does it behave?

CONNECTIONS

- Brownian motion and analysis
- Reflecting Brownian motion and queuing networks
- Queues and biology
- Webpage:
http://www.math.ucsd.edu/~williams/talks/caius/gcsteward2010.html

THANK YOU

