A RANDOM WALK THROUGH ANALYSIS,
NETWORKS AND BIOLOGY

In this series of three lectures, | will describe
some connections between probability and other
fields. | will begin by introducing the fundamental
stochastic process of Brownian motion and will
illustrate some connections to partial differential
equations via Ito's stochastic calculus. | will then
introduce a variant called reflecting Brownian
motion which arises in applications to queueing
networks. Finally, | will illustrate a connection
between the probability theory of queues and
synthetic biology.
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CONNECTIONS

e Brownian motion and analysis

e Reflecting Brownian motion and queuing
networks

e Queues and biology



BROWNIAN MOTION



RANDOM WALK SIMULATIONS
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RANDOM WALK SIMULATIONS
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RESCALED RANDOM WALK
CONVERGES TO BROWNIAN MOTION
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VARIATION OF BROWNIAN PATHS

* Consider a partition T of [0,t]: 0=¢] <t/ <..<t' =t
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VARIATION OF BROWNIAN PATHS

* Consider a partition T of [0,t]: 0 =1, <t <..<t' =t

> BB > as |7 >0
Y (BL,)-B@) -t as |n"|—0
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 Brownian paths are not of finite variation but they
are of finite quadratic variation



VARIATION OF BROWNIAN PATHS

* Consider a partition T of [0,t]: 0 =1, <t <..<t' =t

> BB > as |7 >0
Y (BL,)-B@) -t as |n"|—0
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 Brownian paths are not of finite variation but they
are of finite quadratic variation

Formally: "(dB)* =dt"



BROWNIAN MOTION

Limit of renormalized random walks

d
Scaling property: B(a)=a"’B()), a>0
Continuous sample paths, Markov process

Used as the source of randomness in many
models in applications (e.g., neuroscience,
communications, finance)



ITO’s STOCHASTIC CALCULUS




STOCHASTIC CALCULUS

Let f: R — R be twice continuously differentiable

F(B@) = f(BO)= Y (f(B@E.)— f(BE)
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STOCHASTIC CALCULUS

Let f: R— R be twice continuously differentiable

FB@®)— f(BO)= D, (F(B@E.,)— f(BE")
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ITO'S FORMULA

For f :IR — IR twice continuously differentiable

F(B@)— f(BO) = | f'(B(s)dB(s)+4 [ f"(B(s))ds



MULTIDIMENSIONAL BROWNIAN
MOTION

 d-dimensional Brownian motion B=(B,,...,B,)

where B,,...,B, are independent one
dimensional Brownian motions
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MULTIDIMENSIONAL ITO FORMULA
For f e C*(R"),

F(B@)— f(BO) = [VF(B(s))-dB(s)+ 1 | Af(B(s))ds
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MULTIDIMENSIONAL ITO FORMULA

For f e C°(R"),

F(B)~ f(BO)= [Vf(B(s))-dB(s)+1 [ Af(B(s))ds

If Vf is bounded, then for all >0,

E,| [Vf(B(s))-dB(s)|=0




A PARTIAL DIFFERENTIAL
EQUATION CONNECTION



DIRICHLET PROBLEM

e Given a smooth bounded domain D in R*
 Given g a continuous function on the boundary 0D
e Seek f continuous on D satisfying

Af =0 in D
f=g onodD




AN EXAMPLE OF SOLUTION OF THE DIRICHLET
PROBLEM ON AN ANNULUS
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Source: Wikipedia post by Davidian Skitzou



SOLUTION VIA BROWNIAN MOTION

T=1inf{t >0: B(t) ¢ D}

B(7)




SOLUTION VIA BROWNIAN MOTION

T=1inf{t >0: B(t) ¢ D}

B(7)

f(x)=E [g(B(T))]



SOLUTION

Theorem

A function f is a solution of the Dirichlet
problem if and only if

f(x)=E [g(B(1))] forallxe D



ldea of proof of probabilistic
representation

e Let f be a (smooth) solution of the Dirichlet
problem



ldea of proof of probabilistic
representation

e Let f be a (smooth) solution of the Dirichlet
problem

e By Ito’s formula, for all t,

F(B@) = f(BO)+ [VF(B(s))-dB(s)+1% | Af(B(s))ds



ldea of proof of probabilistic
representation

e Let f be a (smooth) solution of the Dirichlet
problem

e By Ito’s formula, for all t,
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ldea of proof of probabilistic
representation

e Let f be a (smooth) solution of the Dirichlet
problem

e By Ito’s formula, for all t,
J(B(1)) = f(B(0))+ JVf (B(s))-dB(s)+ %fAf (B(s))ds
o SO, 0 0

F(B(t AT = F(BO)+ [ VF(B(s)dB(s)+1 | Aﬁ%s»ds
0 0 O



ldea of proof of probabilistic
representation

Let f be a (smooth) solution of the Dirichlet
problem

By Ito’s formula, for all ¢,

F(B(1) = f<B<0>>+ij<B<s>> dB(s) + & j AF(B(s)ds
SO (AT AT

B AT)= f(BO)+ [ Vf(B(s)-dB(s)+7 | A}%s»ds
Taking expectations:o :

ELf(BEAT)]=ELf(BO)]= f(x)



ldea of proof of probabilistic

representation

Let f be a (smooth) solution of the Dirichlet

problem

By Ito’s formula, for all t,
J(B(t))= f(B(0))+ JVf (B(s))-dB(s)+ 5 JAf (B(s))ds

So,

INT

INT

F(B(t AT))= f(B0))+ JVf(B(s)) dB(s)+ j
Taking expectatlons

ELf(BEAD)]=E,Lf(BO)]= f(x)

Let ¥ > o

9

ELf(B(T)]= f(x)

Af\&(f))ds



CONNECTIONS

e Brownian motion and analysis
http://www.math.ucsd.edu/~williams/talks/caius/gcsteward2010.html

e Reflecting Brownian motion and queuing
networks

e Queues and biology
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