A RANDOM WALK THROUGH ANALYSIS, NETWORKS AND BIOLOGY

In this series of three lectures, I will describe some connections between probability and other fields. I will begin by introducing the fundamental stochastic process of Brownian motion and will illustrate some connections to partial differential equations via Ito's stochastic calculus. I will then introduce a variant called reflecting Brownian motion which arises in applications to queueing networks. Finally, I will illustrate a connection between the probability theory of queues and synthetic biology.

A RANDOM WALK THROUGH ANALYSIS, NETWORKS AND BIOLOGY

Ruth J Williams
G C Steward Visiting Fellow
Gonville and Caius College
April 2010

CONNECTIONS

CONNECTIONS

- Brownian motion and analysis
- Reflecting Brownian motion and queuing networks
- Queues and biology

BROWNIAN MOTION

RANDOM WALK SIMULATIONS

RANDOM WALK SIMULATIONS

RANDOM WALK SIMULATIONS

RESCALED RANDOM WALK CONVERGES TO BROWNIAN MOTION

$$\hat{S}^m(\cdot) \triangleq \frac{S(m\cdot)}{\sqrt{m}} \Longrightarrow B(\cdot) \text{ as } m \to \infty$$

• Consider a partition π^n of [0,t]: $0 = t_0^n < t_1^n < ... < t_n^n = t$

$$\sum_{t_i^n, t_{i+1}^n \in \pi^n} \left| B(t_{i+1}^n) - B(t_i^n) \right| \to \infty \text{ as } \left| \pi^n \right| \to 0$$

• Consider a partition π^n of [0,t]: $0 = t_0^n < t_1^n < ... < t_n^n = t$

$$\sum_{t_i^n, t_{i+1}^n \in \pi^n} \left| B(t_{i+1}^n) - B(t_i^n) \right| \to \infty \text{ as } \left| \pi^n \right| \to 0$$

$$\sum_{t_i^n, t_{i+1}^n \in \pi^n} \left(B(t_{i+1}^n) - B(t_i^n) \right)^2 \to t \text{ as } \left| \pi^n \right| \to 0$$

• Consider a partition π^n of [0,t]: $0 = t_0^n < t_1^n < ... < t_n^n = t$

$$\sum_{t_i^n, t_{i+1}^n \in \pi^n} \left| B(t_{i+1}^n) - B(t_i^n) \right| \to \infty \text{ as } \left| \pi^n \right| \to 0$$

$$\sum_{t_i^n, t_{i+1}^n \in \pi^n} \left(B(t_{i+1}^n) - B(t_i^n) \right)^2 \to t \text{ as } \left| \pi^n \right| \to 0$$

 Brownian paths are not of finite variation but they are of finite quadratic variation

• Consider a partition π^n of [0,t]: $0 = t_0^n < t_1^n < ... < t_n^n = t$

$$\sum_{t_i^n, t_{i+1}^n \in \pi^n} \left| B(t_{i+1}^n) - B(t_i^n) \right| \to \infty \text{ as } \left| \pi^n \right| \to 0$$

$$\sum_{t_i^n, t_{i+1}^n \in \pi^n} \left(B(t_{i+1}^n) - B(t_i^n) \right)^2 \to t \text{ as } \left| \pi^n \right| \to 0$$

 Brownian paths are not of finite variation but they are of finite quadratic variation

Formally: $(dB)^2 = dt$

BROWNIAN MOTION

- Limit of renormalized random walks
- Scaling property: $B(a \cdot) = a^{1/2}B(\cdot), a > 0$
- Continuous sample paths, Markov process
- Used as the source of randomness in many models in applications (e.g., neuroscience, communications, finance)

ITO's STOCHASTIC CALCULUS

STOCHASTIC CALCULUS

Let $f: \mathbb{R} \to \mathbb{R}$ be twice continuously differentiable

$$f(B(t)) - f(B(0)) = \sum_{\substack{t_{i+1}^n, t_i^n \in \pi^n}} (f(B(t_{i+1}^n) - f(B(t_i^n)))$$

STOCHASTIC CALCULUS

Let $f: \mathbb{R} \to \mathbb{R}$ be twice continuously differentiable

$$f(B(t)) - f(B(0)) = \sum_{\substack{t_{i+1}^n, t_i^n \in \pi^n \\ t_{i+1}^n, t_i^n \in \pi^n}} (f(B(t_{i+1}^n) - f(B(t_i^n)))$$

$$= \sum_{\substack{t_{i+1}^n, t_i^n \in \pi^n \\ t_{i+1}^n, t_i^n \in \pi^n}} \{f'(B(t_i^n))(B(t_{i+1}^n) - B(t_i^n))$$

$$+ \frac{1}{2} f''(B(\tilde{t}_i^n))(B(t_{i+1}^n) - B(t_i^n))^2 \}$$

STOCHASTIC CALCULUS

Let $f : \mathbb{R} \to \mathbb{R}$ be twice continuously differentiable

$$f(B(t)) - f(B(0)) = \sum_{\substack{t_{i+1}^n, t_i^n \in \pi^n \\ t_{i+1}^n, t_i^n \in \pi^n}} (f(B(t_{i+1}^n) - f(B(t_i^n)))$$

$$= \sum_{\substack{t_{i+1}^n, t_i^n \in \pi^n \\ t_{i+1}^n, t_i^n \in \pi^n}} \{f'(B(t_i^n)(B(t_{i+1}^n) - B(t_i^n))) + \frac{1}{2}f''(B(\tilde{t}_i^n))(B(t_{i+1}^n) - B(t_i^n))^2\}$$

$$\to \int_0^t f'(B(s)) dB(s) + \frac{1}{2} \int_0^t f''(B(s)) ds \text{ as } |\pi^n| \to 0$$

ITO'S FORMULA

For $f: \mathbb{R} \to \mathbb{R}$ twice continuously differentiable

$$f(B(t)) - f(B(0)) = \int_{0}^{t} f'(B(s)) dB(s) + \frac{1}{2} \int_{0}^{t} f''(B(s)) ds$$

MULTIDIMENSIONAL BROWNIAN MOTION

• *d*-dimensional Brownian motion $B = (B_1,...,B_d)$ where $B_1,...,B_d$ are independent one dimensional Brownian motions

MULTIDIMENSIONAL BROWNIAN MOTION

• *d*-dimensional Brownian motion $B = (B_1, ..., B_d)$ where $B_1, ..., B_d$ are independent one dimensional Brownian motions

MULTIDIMENSIONAL ITO FORMULA

For
$$f \in C^2(\mathbb{R}^d)$$
,

$$f(B(t)) - f(B(0)) = \int_{0}^{t} \nabla f(B(s)) \cdot dB(s) + \frac{1}{2} \int_{0}^{t} \Delta f(B(s)) ds$$

where
$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_d} \end{pmatrix}$$
 and $\Delta f = \sum_{i=1}^d \frac{\partial^2 f}{\partial x_i^2}$

MULTIDIMENSIONAL ITO FORMULA

For
$$f \in C^2(\mathbb{R}^d)$$
,

$$f(B(t)) - f(B(0)) = \int_{0}^{t} \nabla f(B(s)) \cdot dB(s) + \frac{1}{2} \int_{0}^{t} \Delta f(B(s)) ds$$

If ∇f is bounded, then for all $t \ge 0$,

$$E_{x} \left[\int_{0}^{t} \nabla f(B(s)) \cdot dB(s) \right] = 0$$

A PARTIAL DIFFERENTIAL EQUATION CONNECTION

DIRICHLET PROBLEM

- Given a smooth bounded domain D in \mathbb{R}^d
- Given g a continuous function on the boundary ∂D
- Seek f continuous on \bar{D} satisfying

$$\Delta f = 0$$
 in D
 $f = g$ on ∂D

AN EXAMPLE OF SOLUTION OF THE DIRICHLET PROBLEM ON AN ANNULUS

SOLUTION VIA BROWNIAN MOTION

 $\tau = \inf\{t > 0 : B(t) \notin D\}$

SOLUTION VIA BROWNIAN MOTION

 $\tau = \inf\{t > 0 : B(t) \notin D\}$

$$f(x) = E_x[g(B(\tau))]$$

SOLUTION

Theorem

A function f is a solution of the Dirichlet problem if and only if

$$f(x) = E_x[g(B(\tau))]$$
 for all $x \in \overline{D}$

 Let f be a (smooth) solution of the Dirichlet problem

 Let f be a (smooth) solution of the Dirichlet problem

By Ito's formula, for all t,

$$f(B(t)) = f(B(0)) + \int_{0}^{t} \nabla f(B(s)) \cdot dB(s) + \frac{1}{2} \int_{0}^{t} \Delta f(B(s)) ds$$

 Let f be a (smooth) solution of the Dirichlet problem

By Ito's formula, for all t,

$$f(B(t)) = f(B(0)) + \int_{0}^{t} \nabla f(B(s)) \cdot dB(s) + \frac{1}{2} \int_{0}^{t} \Delta f(B(s)) ds$$

So,

$$f(B(t \wedge \tau)) = f(B(0)) + \int_{0}^{t \wedge \tau} \nabla f(B(s)) \cdot dB(s) + \frac{1}{2} \int_{0}^{t \wedge \tau} \Delta f(B(s)) ds$$

 Let f be a (smooth) solution of the Dirichlet problem

By Ito's formula, for all t,

$$f(B(t)) = f(B(0)) + \int_{0}^{t} \nabla f(B(s)) \cdot dB(s) + \frac{1}{2} \int_{0}^{t} \Delta f(B(s)) ds$$
So,

So,

$$f(B(t \wedge \tau)) = f(B(0)) + \int_{0}^{t \wedge \tau} \nabla f(B(s)) \cdot dB(s) + \frac{1}{2} \int_{0}^{t \wedge \tau} \Delta f(B(s)) ds$$

• Let f be a (smooth) solution of the Dirichlet problem

By Ito's formula, for all t,

$$f(B(t)) = f(B(0)) + \int_{0}^{t} \nabla f(B(s)) \cdot dB(s) + \frac{1}{2} \int_{0}^{t} \Delta f(B(s)) ds$$

 $f(B(t)) = f(B(0)) + \int_{0}^{t} \nabla f(B(s)) \cdot dB(s) + \frac{1}{2} \int_{0}^{t} \Delta f(B(s)) ds$ • So, $f(B(t \wedge \tau)) = f(B(0)) + \int_{0}^{t \wedge \tau} \nabla f(B(s)) \cdot dB(s) + \frac{1}{2} \int_{0}^{t \wedge \tau} \Delta f(B(s)) ds$ • Taking expectations:

$$E_{x}[f(B(t \wedge \tau))] = E_{x}[f(B(0))] = f(x)$$

• Let f be a (smooth) solution of the Dirichlet problem

By Ito's formula, for all t,

$$f(B(t)) = f(B(0)) + \int_{0}^{t} \nabla f(B(s)) \cdot dB(s) + \frac{1}{2} \int_{0}^{t} \Delta f(B(s)) ds$$

 $f(B(t)) = f(B(0)) + \int_{0}^{t} \nabla f(B(s)) \cdot dB(s) + \frac{1}{2} \int_{0}^{t} \Delta f(B(s)) ds$ • So, $f(B(t \wedge \tau)) = f(B(0)) + \int_{0}^{t \wedge \tau} \nabla f(B(s)) \cdot dB(s) + \frac{1}{2} \int_{0}^{t \wedge \tau} \Delta f(B(s)) ds$

• Taking expectations:

$$E_{x}[f(B(t \wedge \tau))] = E_{x}[f(B(0))] = f(x)$$

• Let $t \to \infty$, $E_r[f(B(\tau))] = f(x)$

CONNECTIONS

Brownian motion and analysis

http://www.math.ucsd.edu/~williams/talks/caius/gcsteward2010.html

- Reflecting Brownian motion and queuing networks
- Queues and biology

THANK YOU