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OUTLINE
What is a Stochastic Processing Network?
Applications
Questions
A Simple Example
Approximations
Perspective
Two Motivating Examples
Main Topics for Remaining Lectures
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Stochastic Processing Networks (cf. Harrison ‘00)

 

I buffers 
(classes)

K servers      
(resources)

 J activities

An activity consumes from certain classes, 
produces for certain (possibly different) classes, 
and uses certain servers.
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Stochastic Processing Networks

 
 

 
 

 
 

 
 

SPN Activities are Very General 

 
 

 
 

Queueing network

Flexible servers,    
alternate routing

Simultaneous actions
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Semiconductor Wafer Fab: P. R. Kumar
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Multiclass Queueing Network
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Call Center: First Direct (branchless retail banking)
Larreche et al., INSEAD ‘97 (see also Gans, Koole, Mandelbaum ‘93)
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Differentiated Service Center
(Parallel server system, alternate routing)
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NxN Input Queued Packet Switch: Prabhakar
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2x2 Input Queued Packet Switch 
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Data Network (Roberts and Massoulie, ‘00)

Link  

Route          
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Simultaneous Resource Possession
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Stochastic Processing Networks
APPLICATIONS

Complex manufacturing, telecommunications, 
computer systems, service networks 

FEATURES
Multiclass, service discipline, alternate routing, 
complex feedback, heavily loaded

PERFORMANCE MEASURES
Queuelength,  workload and server idletime



17

QUESTIONS

STABILITY

PERFORMANCE ANALYSIS (when heavily loaded)

CONTROL (involves performance analysis for 
“good” controls)
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A  SIMPLE  EXAMPLE:
SINGLE SERVER  QUEUE
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M/M/1 Queue

Poisson arrivals at rate      (independent of service times) 
i.i.d. exponential service times mean
FIFO order of service, infinite buffer
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M/M/1 Queue

Poisson arrivals at rate      (independent of service times) 
i.i.d. exponential service times mean
FIFO order of service, infinite buffer

Traffic intensity
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M/M/1 Queue

Poisson arrivals at rate      (independent of service times) 
i.i.d. exponential service times mean
FIFO order of service, infinite buffer

Traffic intensity
Queuelength is a birth-death process (Markov)
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M/M/1 Queue

Poisson arrivals at rate      (independent of service times) 
i.i.d. exponential service times mean
FIFO order of service, infinite buffer

Traffic intensity
Queuelength is a birth-death process (Markov)
Positive recurrent (stable) iff
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M/M/1 Queue

Poisson arrivals at rate      (independent of service times) 
i.i.d. exponential service times mean
FIFO order of service, infinite buffer

Traffic intensity
Queuelength is a birth-death process (Markov)
Positive recurrent (stable) iff
Stationary distribution
Mean steady-state queuelength
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λ

m

m

mρ λ=

1ρ <
(1 ), 0,1, 2,i

i iπ ρ ρ= − = …
/(1 )L ρ ρ= −
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M/M/1 Queue

Poisson arrivals at rate      (independent of service times) 
i.i.d. exponential service times mean
FIFO order of service, infinite buffer

Traffic intensity
Queuelength is a birth-death process (Markov)
Positive recurrent (stable) iff
Stationary distribution
Mean steady-state queuelength
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λ

m

m

mρ λ=

1ρ <
(1 ), 0,1, 2,i

i iπ ρ ρ= − = …
/(1 )L Wρ ρ λ= − =
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M/GI/1 Queue

 λ
2, sm σ
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Mean steady-state queuelength

M/GI/1 Queue

 λ
2, sm σ

2 2 2

2(1 )
sL ρ λ σρ

ρ
+

= +
−

(Pollaczek-Khintchine)
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GI/GI/1 Queue (+mild reg. assumptions)

2, aλ σ
2, sm σ
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GI/GI/1 Queue (+mild reg. assumptions)

2 2 2( )(1 )
2

a sL λ σ σρ +
− ≈

(Smith ‘53, Kingman, ‘61)

for 1ρ

2, aλ σ
2, sm σ
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M/M/1 Queue
(Simulation of Dynamics)

 λ m 0.9524ρ λ= =
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M/M/1 Queue
(Simulation of Dynamics)

 λ m 0.9524ρ λ= =
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M/M/1 Queue
(Simulation of Dynamics)

 λ m 0.9524ρ λ= =
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GI/GI/1 Queue (Dynamics)
 

2, aλ σ 2, sm σ

Theorem (A. Borovkov ‘67, Iglehart-Whitt ‘70): For            
where       

is a one-dimensional reflecting Brownian motion
with drift           and variance parameter   

2 *(1 ) ( /(1 ) ) ( )Q Qρ ρ− ⋅ − ≈ ⋅ *( )Q ⋅

Q(t) = queuelength at time t
Start system empty (for simplicity)

3 2 3 2
a smλ σ σ−+1m−−

1,ρ ≈
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One-dimensional Reflecting Brownian Motion

*( )Q t

t

** *( )( ) ( )Q ttt YX= +

** sup ( 0) { ) : }( X tY st s− ≤ ≤=

* Brownian motionX =
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APPROXIMATE  DYNAMIC  MODELS

Most SPNs cannot be analyzed exactly
Consider approximate models (valid under 
some scaling limit, e.g., heavily loaded, many 
sources, many servers, large networks)
Two main classes of approximate models:

– Fluid models (functional law of large numbers)
– Diffusion models (functional central limit theorem)
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ANSWERS
(OPEN MULTICLASS HL QUEUEING NETWORKS)

Last 15 years: development of a theory for 
establishing stability and heavy traffic diffusion 
approximations for open multiclass queueing
networks with non-idling head-of-the-line (HL) 
service disciplines.

Head-of-the-line: service allocated to a buffer 
goes to the job at the head-of-the-line (jobs within 
buffers are in FIFO order).
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PERSPECTIVE
MQN                                     SPN

Sufficient conditions for e.g., parallel server system,

HL   stability and diffusion packet switch
approximations                                

Non- e.g., LIFO, Processor Sharing e.g., Internet congestion    

HL       (single station,                                control / bandwidth sharing   
PS: network stability)                       model
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MOTIVATING EXAMPLES
Stability
Performance
Control
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Two-Station Priority Queueing Network 
(Rybko-Stolyar ‘92)

 

 

1m 2m

3m4m

1 1λ =

3 1λ =
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Two-Station Priority Queueing Network 
(Rybko-Stolyar ‘92)

 

 

•Poisson arrivals at rate 1 to buffers 1 and 3
•Exponential service times:        mean rate of service for buffer i
•Preemptive resume priority:  * denotes high priority classes  

im

1m 2m

3m4m

1 1λ =

3 1λ =
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Two-Station Priority Queueing Network 
(Rybko-Stolyar ‘92)

 

 

•Poisson arrivals at rate 1 to buffers 1 and 3
•Exponential service times:        mean rate of service for buffer i
•Preemptive resume priority:  * denotes high priority classes  
•Simulation:
•Traffic intensities:                                        

im

1m 2m

3m4m

1 3 2 40.33, 0.66m m m m= = = =

1 1 4 2 2 30.99       0.99m m m mρ ρ= + = = + =

1 1λ =

3 1λ =
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Two-Station Priority Queueing Network 
(Rybko-Stolyar ‘92)

--- Server 1  (sum of queues 1 &  4)           --- Server 2 (sum of queues 2 & 3)
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Parallel Server System  
 

1m 2m 3m
4m

1λ 3λ2λ

1 2 30.05,  1.2,  0.35λ λ λ= = =

1 2 3 40.5,  1,  1,  2m m m m= = = =
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Parallel Server System  
Simulation with static priority discipline: 
server 1 gives priority to buffer 1, server 2 gives priority to buffer 2

Queuelengths for buffer 1 ---, buffer 2 ---, buffer 3 --- versus time                    
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Parallel Server System  
Simulation with dynamic priority discipline: 
server 1 gives priority to buffer 1, server 2 gives priority to buffer 2, except 
when queue 2 goes below threshold of size 10

Queuelengths for buffer 1 ---, buffer 2 ---, buffer 3 --- versus time                    
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MAIN TOPICS FOR REMAINING LECTURES

Open Multiclass HL Queueing Networks: Stability 
and Performance

Control of Stochastic Processing Networks: 
Some Theory and Examples 
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