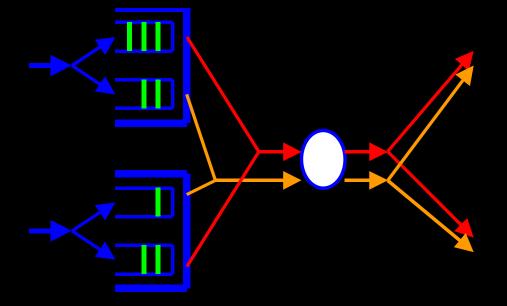
Stochastic Processing Networks



Ruth J. Williams University of California, San Diego http://www.math.ucsd.edu/~williams

Maurice Belz (1897-1975)

Founding Professor of Statistics, University of Melbourne, 1955-1963

National Library of Australia

nla.pic-an23208394-v

Maurice Belz (1897-1975)

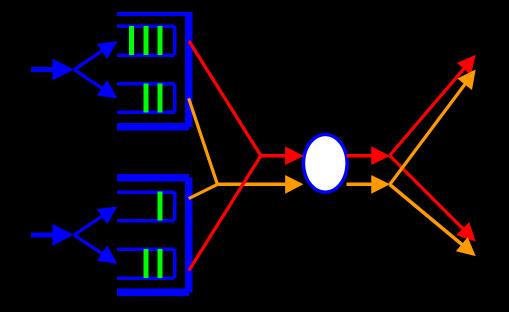
Founding Professor of Statistics, University of Melbourne (1955-1963)

National Library of Australia

nla.pic-an23208394-v

Statistical Methods for the Process Industries (1973)

Stochastic Processing Networks: What, Why and How?

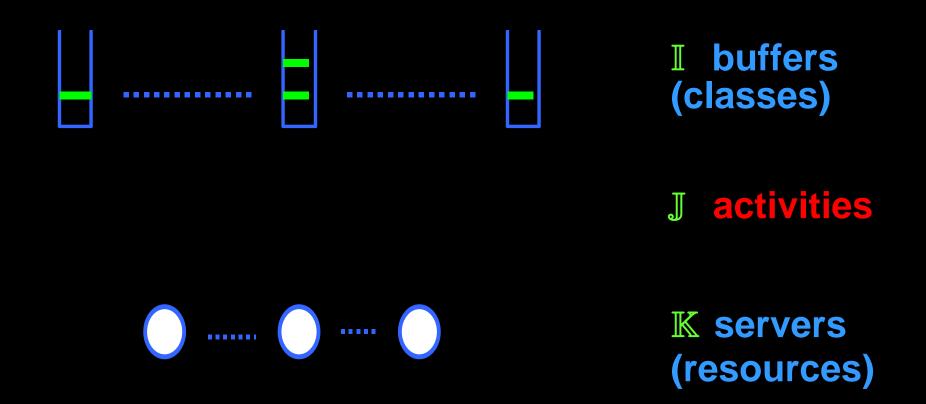


Ruth J. Williams University of California, San Diego http://www.math.ucsd.edu/~williams

OUTLINE

- What is a Stochastic Processing Network?
- Applications
- Questions
- A Simple Example
- Approximations
- Perspective
- Two Motivating Examples
- Main Topics for Remaining Lectures

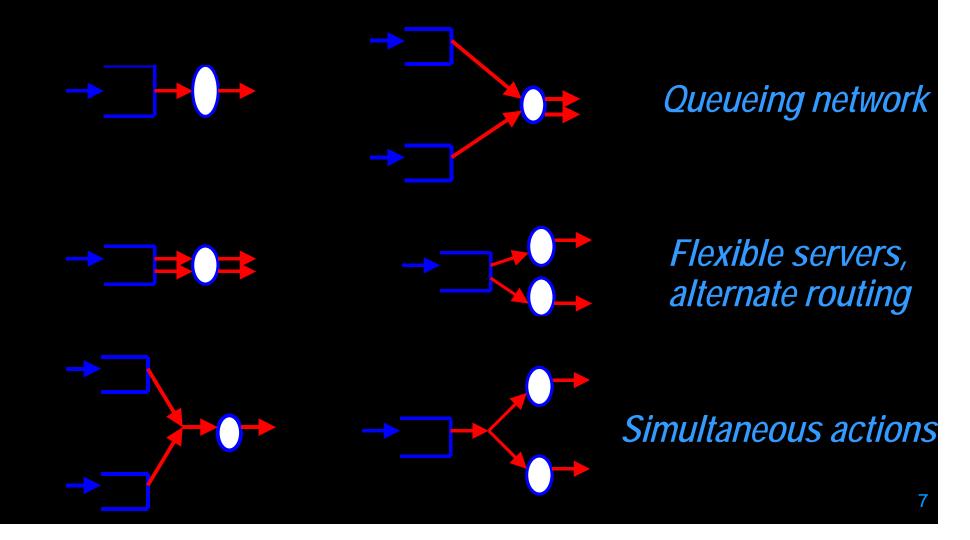
Stochastic Processing Networks (cf. Harrison '00)



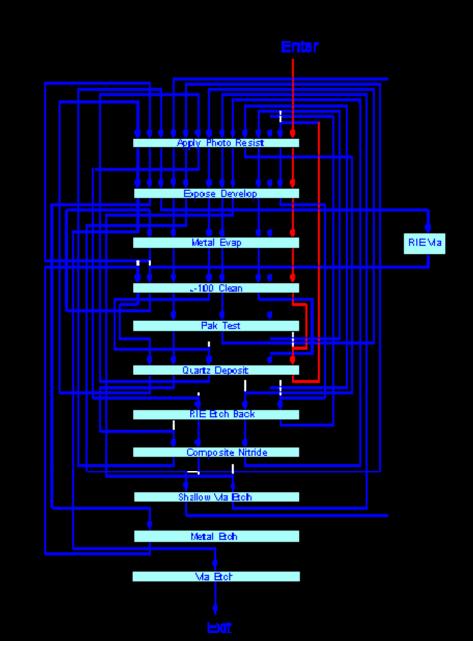
An activity consumes from certain classes, produces for certain (possibly different) classes, and uses certain servers.

Stochastic Processing Networks

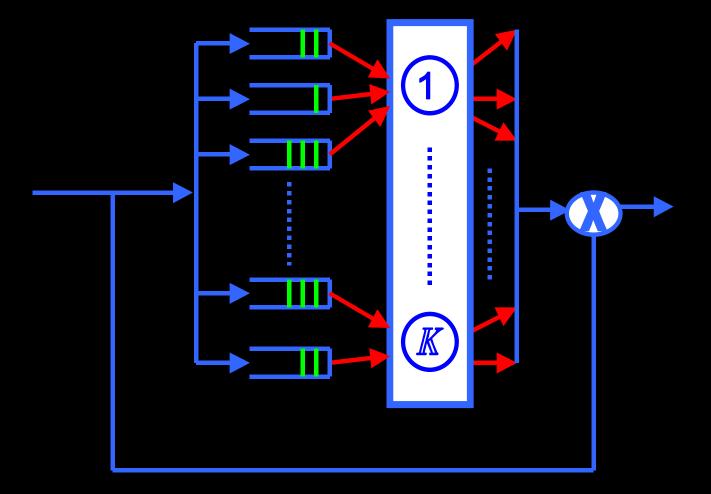
SPN Activities are Very General



Semiconductor Wafer Fab: P. R. Kumar

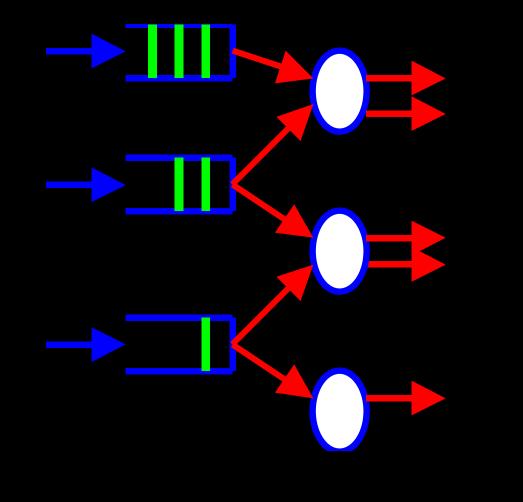


Multiclass Queueing Network

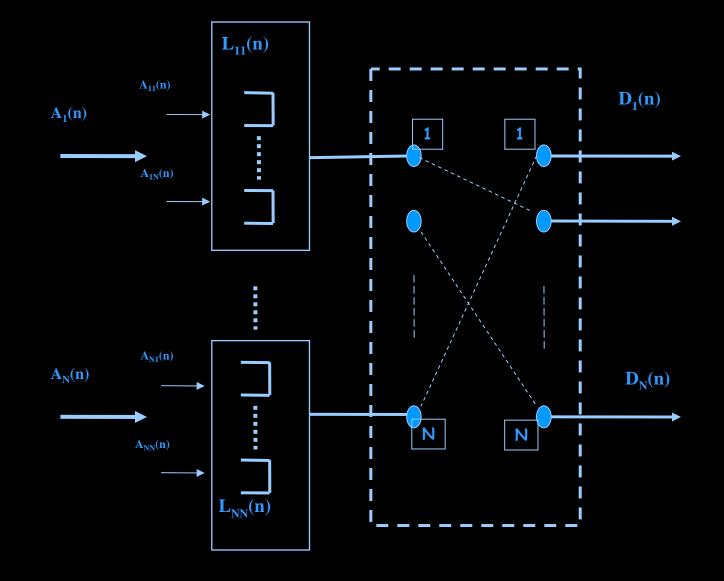


Call Center: First Direct (branchless retail banking) Larreche et al., INSEAD '97 (see also Gans, Koole, Mandelbaum '93)

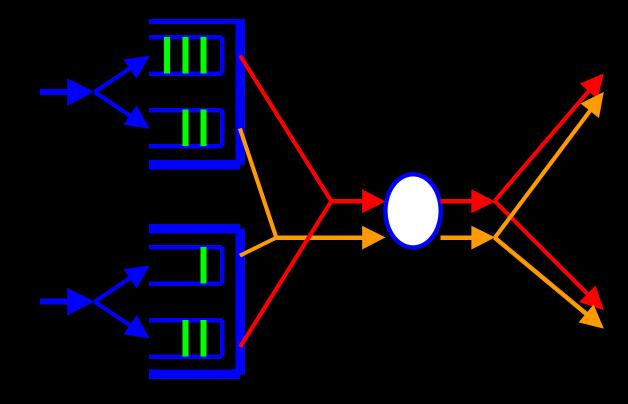
Differentiated Service Center (Parallel server system, alternate routing)



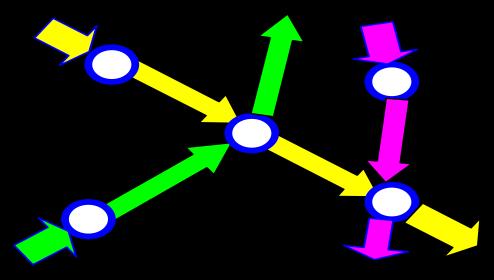
NxN Input Queued Packet Switch: Prabhakar



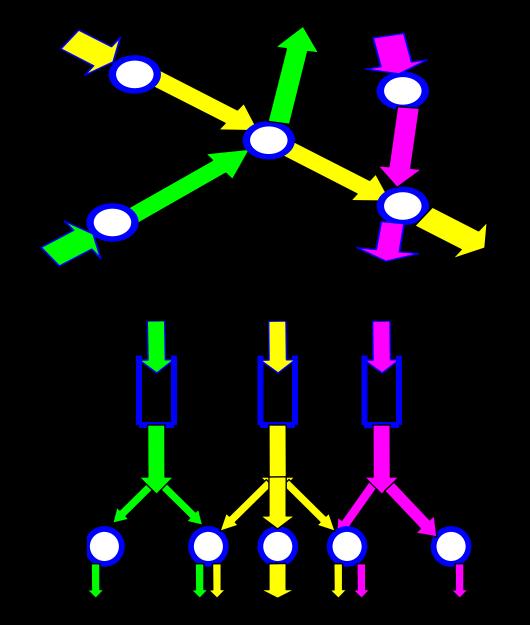
2x2 Input Queued Packet Switch



Data Network (Roberts and Massoulie, '00)



Simultaneous Resource Possession



Stochastic Processing Networks

APPLICATIONS

Complex manufacturing, telecommunications, computer systems, service networks

FEATURES

Multiclass, service discipline, alternate routing, complex feedback, heavily loaded

PERFORMANCE MEASURES Queuelength, workload and server idletime

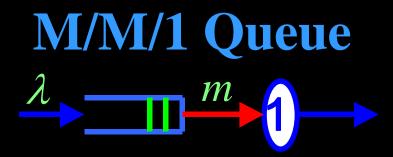
QUESTIONS

STABILITY

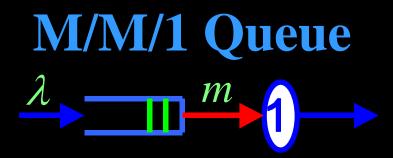
PERFORMANCE ANALYSIS (when heavily loaded)

CONTROL (involves performance analysis for "good" controls)

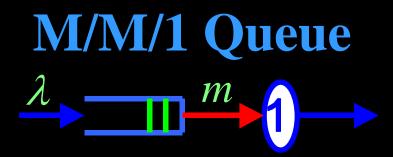
A SIMPLE EXAMPLE: SINGLE SERVER QUEUE



- Poisson arrivals at rate λ (independent of service times)
- i.i.d. exponential service times mean *m*
- FIFO order of service, infinite buffer

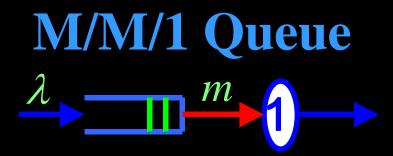


• Traffic intensity $\rho = \lambda m$



• Traffic intensity $\rho = \lambda m$

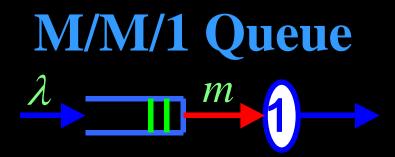
Queuelength is a birth-death process (Markov)



• Traffic intensity $\rho = \lambda m$

Queuelength is a birth-death process (Markov)

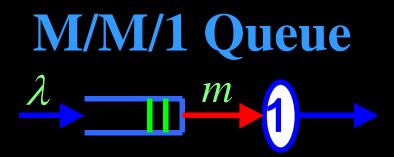
• Positive recurrent (stable) iff $\rho < 1$



• Traffic intensity $\rho = \lambda m$

- Queuelength is a birth-death process (Markov)
- Positive recurrent (stable) iff $\rho < 1$
- Stationary distribution $\pi_i = \rho^i (1 \rho), \quad i = 0, 1, 2, ...$

• Mean steady-state queuelength $L = \rho / (1 - \rho)$

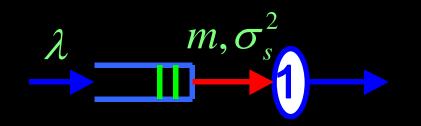


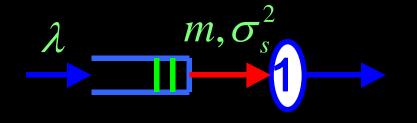
• Traffic intensity $\rho = \lambda m$

- Queuelength is a birth-death process (Markov)
- Positive recurrent (stable) iff $\rho < 1$
- Stationary distribution $\pi_i = \rho^i (1 \rho), \quad i = 0, 1, 2, ...$

• Mean steady-state queuelength $L = \rho / (1 - \rho) = \lambda W$

M/GI/1 Queue



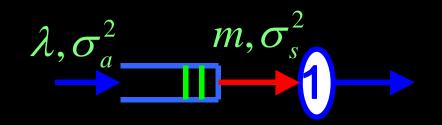


Mean steady-state queuelength

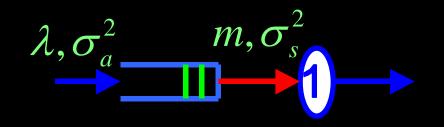
$$L = \rho + \frac{\rho^2 + \lambda^2 \sigma_s^2}{2(1-\rho)}$$

(Pollaczek-Khintchine)

GI/GI/1 Queue (+mild reg. assumptions)



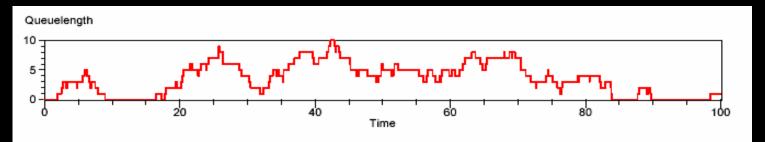
GI/GI/1 Queue (+mild reg. assumptions)



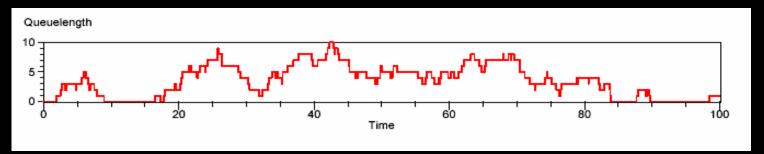
 $(1-\rho)L \approx \frac{\lambda^2(\sigma_a^2 + \sigma_s^2)}{2}$

for $\rho \simeq 1$ (Smith '53, Kingman, '61)

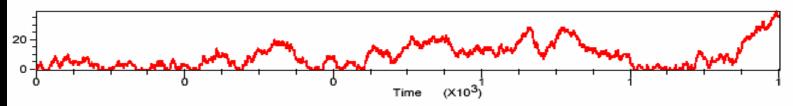
M/M/1 Queue (Simulation of Dynamics) $\lambda \longrightarrow m$ $\rho = \lambda = 0.9524$



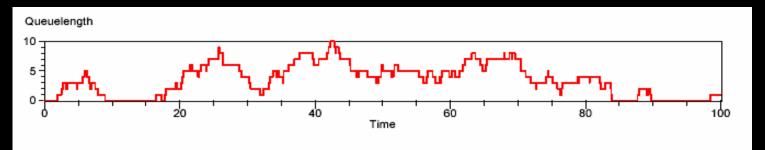
M/M/1 Queue (Simulation of Dynamics) $\lambda \qquad m \qquad 1 \rightarrow \rho = \lambda = 0.9524$



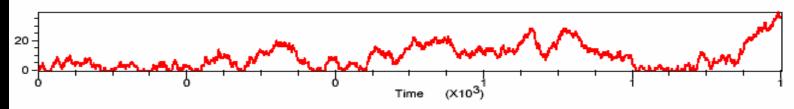
Queuelength



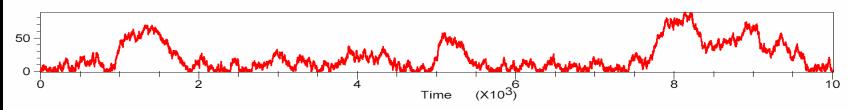
M/M/1 Queue (Simulation of Dynamics) $\lambda \longrightarrow m$ $\rho = \lambda = 0.9524$

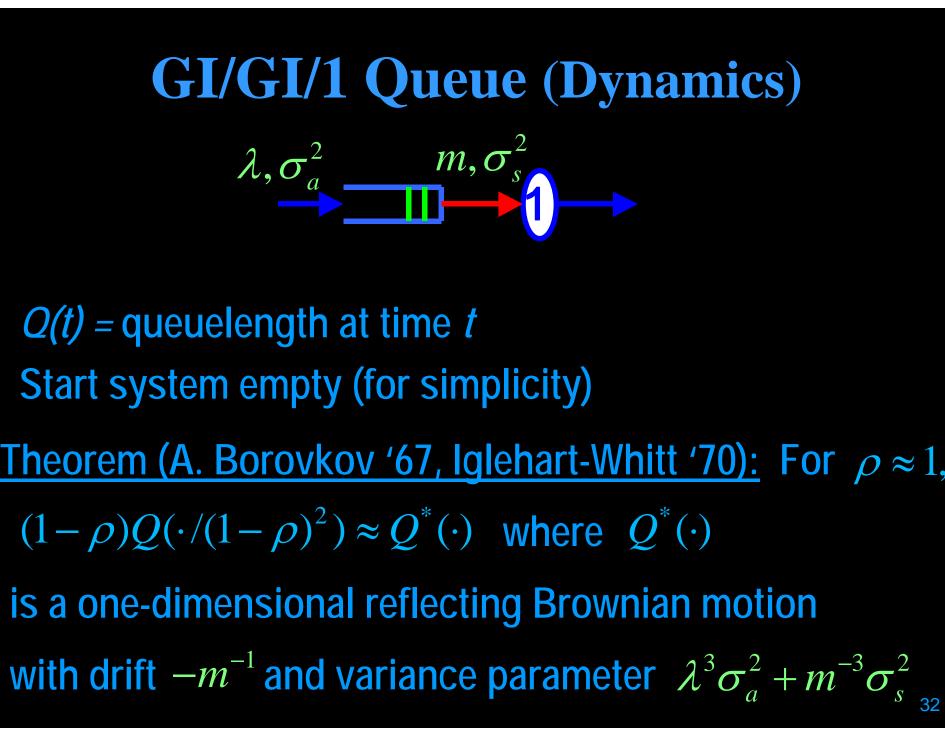


Queuelength



Queuelength

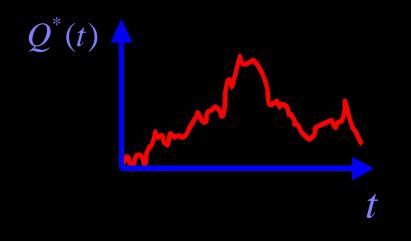




One-dimensional Reflecting Brownian Motion

 $Q^{*}(t) = X^{*}(t) + Y^{*}(t)$ $Y^{*}(t) = \sup\{-X^{*}(s) : 0 \le s \le t\}$

 X^* = Brownian motion



APPROXIMATE DYNAMIC MODELS

- Most SPNs cannot be analyzed exactly
- Consider approximate models (valid under some scaling limit, e.g., heavily loaded, many sources, many servers, large networks)
- Two main classes of approximate models:
 - Fluid models (functional law of large numbers)
 - Diffusion models (functional central limit theorem)

ANSWERS

(OPEN MULTICLASS HL QUEUEING NETWORKS)

Last 15 years: development of a theory for establishing stability and heavy traffic diffusion approximations for open multiclass queueing networks with non-idling head-of-the-line (HL) service disciplines.

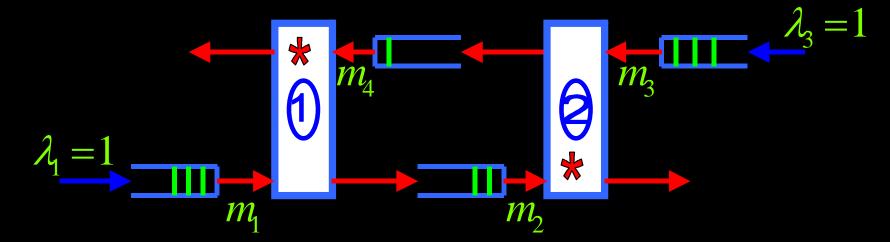
Head-of-the-line: service allocated to a buffer goes to the job at the head-of-the-line (jobs within buffers are in FIFO order).

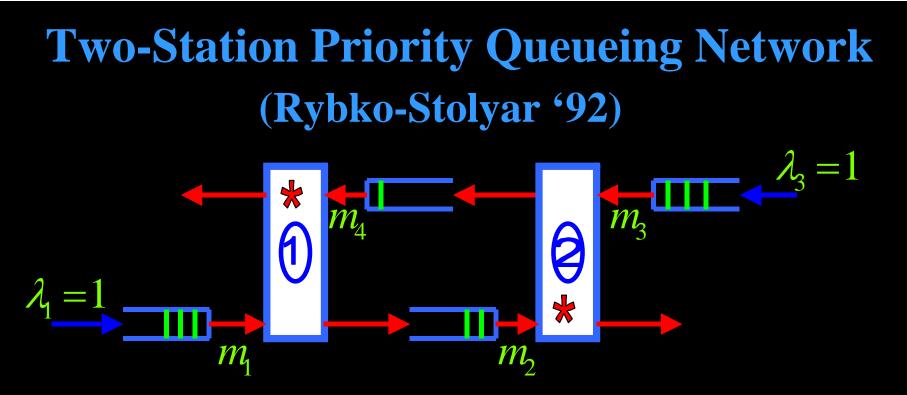
PERSPECTIVE

	MQN	SPN
	Sufficient conditions for	e.g., parallel server system,
HL	stability and diffusion approximations	packet switch
Non- HL	e.g., LIFO, Processor Sharing (single station, PS: network stability)	e.g., Internet congestion control / bandwidth sharing model

MOTIVATING EXAMPLES Stability Performance Control

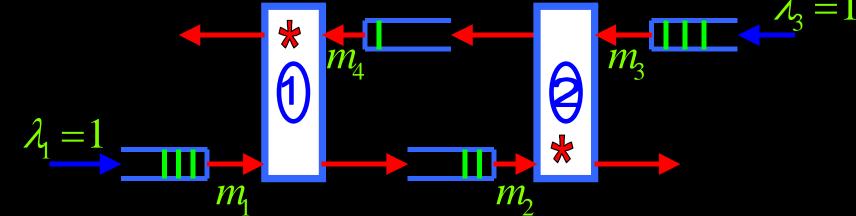
Two-Station Priority Queueing Network (Rybko-Stolyar '92)





- •Poisson arrivals at rate 1 to buffers 1 and 3
- •Exponential service times: m_i mean rate of service for buffer *i*
- Preemptive resume priority: * denotes high priority classes

Two-Station Priority Queueing Network (Rybko-Stolyar '92)



•Poisson arrivals at rate 1 to buffers 1 and 3

•Exponential service times: m_i mean rate of service for buffer *i*

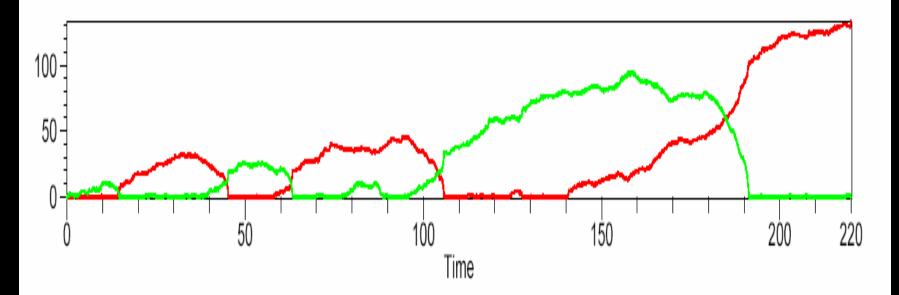
•Preemptive resume priority: * denotes high priority classes

- •Simulation: $m_1 = m_3 = 0.33, m_2 = m_4 = 0.66$
- •Traffic intensities: $\rho_1 = m_1 + m_4 = 0.99$ $\rho_2 = m_2 + m_3 = 0.99$

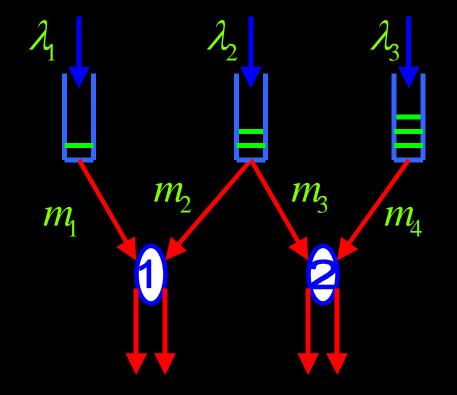
Two-Station Priority Queueing Network (Rybko-Stolyar '92)

Server 1 (sum of queues 1 & 4) ---- Server 2 (sum of queues 2 & 3)

Queuelength



Parallel Server System



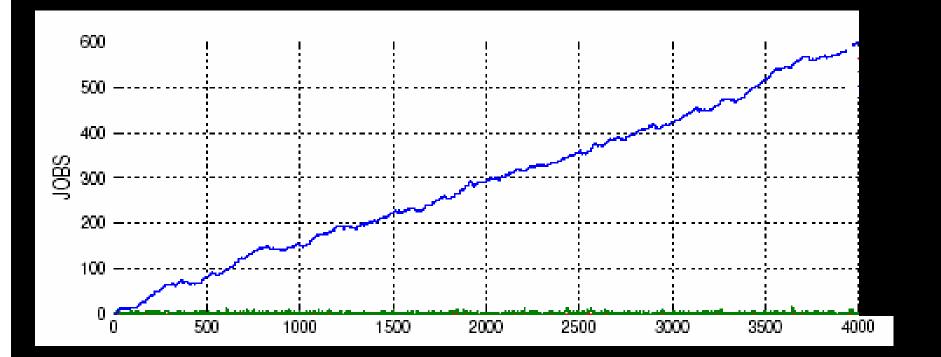
$$\lambda_1 = 0.05, \ \lambda_2 = 1.2, \ \lambda_3 = 0.35$$

 $m_1 = 0.5, \ m_2 = 1, \ m_3 = 1, \ m_4 = 2$

Parallel Server System

Simulation with static priority discipline:

server 1 gives priority to buffer 1, server 2 gives priority to buffer 2

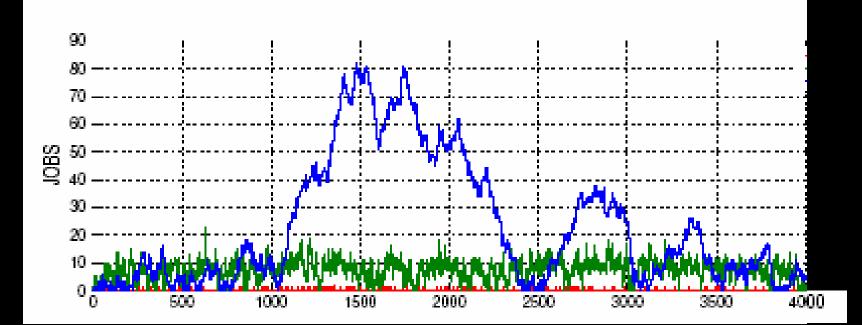


Queuelengths for buffer 1 ---, buffer 2 ---, buffer 3 --- versus time

Parallel Server System

Simulation with dynamic priority discipline:

server 1 gives priority to buffer 1, server 2 gives priority to buffer 2, except when queue 2 goes below threshold of size 10



Queuelengths for buffer 1 ---, buffer 2 ---, buffer 3 --- versus time

MAIN TOPICS FOR REMAINING LECTURES

Open Multiclass HL Queueing Networks: Stability and Performance

Control of Stochastic Processing Networks: Some Theory and Examples