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Controlled martingle problems
Let E and U be compact and

A ⊂ Cb(E)× Cb(E × U)

The martingale problem: Find a control process u and a state process
X for which there exists a filtration {Ft} such that u and X are {Ft}-
adapted and for each f ∈ D(A)

Mf(t) = f(X(t))− f(X(0))−
∫ t

0

Af(X(s), u(s))ds (1)

is a {Ft}-martingale. Let SA be the collection of all such solutions.

Cost minimization: For example: Find a solution that achieves

min
(X,U)

E[

∫ ∞
0

e−αsc(X(s), u(s))ds] (2)

In what, if any, sense is the collection of solutions compact?
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Relative compactness
Let Xn be a solution of the martingale problem for An, in particular,
for f ∈ D(An),

Mn
f (t) = f(Xn(t))− f(Xn(0))−

∫ t

0

Anf(Xn(s))ds

is a martingale.

Theorem 1 Suppose E is compact (for example, E = Rd ∪ {∞}) and for
each f in some dense subset D ⊂ C(E) there exist fn ∈ D(An) such that
fn → f uniformly and supn ‖Anfn‖ <∞, then {Xn} is relatively compact
in DE[0,∞).

Proof. The result follows from Theorems 3.9.4 and 3.9.1 of Ethier and
Kurtz (1986). �
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Measure determined by control

Λ([0, t]× C) =

∫ t

0

1C(u(s))ds, t ≥ 0, C ∈ B(U). (3)

A bounded collections of measures on a compact set K is relatively
compact in the weak topology, that is, there is a sequence of measures
µn in the bounded collection such that there exists µ ∈ Mf(K) such
that ∫

K

f(z)µn(dz)→
∫
K

f(z)µ(dz).

So for a sequence {Λn} of the form (3), there exists a measure Λ and
a subsequence of {Λn} such that for each f ∈ C([0,∞) × U) with
f(t, u) = 0 for t > tf ,∫

[0,∞)×U
f(s, u)Λn(ds× du)→

∫
[0,∞)×U

f(s, u)Λ(ds× du)
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Relaxed controls
Let Lm(U) be the collection of measures on [0,∞) × U satisfying
λ([0, t] × U) = t, then Lm(U) (with the topology described above)
is compact.

The collection Π0 ⊂ P(DE[0,∞) × Lm(U)) of distributions of solu-
tions of the controlled martingale problem of the form (1) is relatively
compact and every limit point has the property that there exists a fil-
tration {Ft} such that for each f ∈ D(A)

Mf(t) = f(X(t))− f(X(0))−
∫ t

0

Af(X(s), u)Λ(ds× du)

= f(X(t))− f(X(0))−
∫ t

0

Af(X(s), u(s))Λs(du)ds

is a {Ft}-martingale. Let Π be the closure of Π0.
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Controlled forward equations
For P ∈ Π, let µt(dx× du) be the measure determined by∫

E×U
f(x, u)µt(dx× du) = EP [

∫
U

f(X(t), u)Λt(du)],

and let νt be the E-marginal. Then {µt} satisfies the controlled for-
ward equation

νtf = ν0f +

∫ t

0

µsAfds

and under essentially the same technical conditions as in the uncon-
trolled case, in particular, D(A) closed under multiplication and sep-
arates points and (1, 0) ∈ A, every solution of the forward equation
corresponds to a solution of the controlled martingale problem.

Kurtz and Stockbridge (1998, 1999, 2001)
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A linear programming problem
Assuming existence for the controlled martingale problem (say with
piecewise constant controls), the optimal solution corresponds to the
solution of a linear programing problem: Find µ : [0,∞)→ P(E×U)
that minimizes ∫ ∞

0

e−αtµtcdt

subject to the requirements that

νtf = ν0f +

∫ t

0

µsAfds,

where νt is the E-marginal of µt.

Manne (1960); Kurtz and Stockbridge (1998, 1999, 2001)
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Equivalent form

inf
π̂∈P(E×U)

1

α

∫
E×U

c(x, u)π̂(dx× du)

subject to∫
E×U

(
Af(x, u) + α

[∫
E

f(y)ν0(dy)− f(x)

])
π̂(dx×du) = 0, f ∈ D(A).
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Constrained martingale problems

E compact (think E = Rd ∪ {∞}), E0 ⊂ E, open, A, the generator for
a Markov process on E. For example,

Af(x) =
1

2

∑
i,j

aij(x)
∂2

∂xi∂xj
f(x)+

∑
i

bi(x)
∂

∂xi
f(x), D(A) = C2

c (Rd).

A determines the behavior of the process in E0.

B, the generator of a Markov process (almost) which determines the
behavior of the process in Ec

0 and “constrains” the process to stay in
E0. For example,

Bf(x) = γ(x) · ∇f(x),

where γ determines the direction a constraining “force” pushes when
the process is on ∂E0.
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A controlled martingale problem Kurtz (1991); Costantini and
Kurtz (2019)

Let Cf(y, u, v) = vAf(y) + (1− v)Bf(y, u) with controls (u, v) ∈ U ×
[0, 1]. We allow relaxed controls so the formulation of the martingale
problem becomes

Definition 2 (Y, V, µ), with Y ∈ DE[0,∞), and µ a P(U)-valued process,
is a solution of the controlled martingale problem if there exists a filtration
{Ft} such that (Y, V, µ) is {Ft}-adapted and

f(Y (t))− f(Y (0))−
∫ t

0

V (s)Af(Y (s))ds−
∫ t

0

∫
U

(1− V (s))Bf(Y (s), u)µs(du)ds

is an {Ft}-martingale for all f ∈ D ≡ D(A) ∩ D(B).

The choice of controls must be restricted so that V (t) = 1 if Y (t) ∈ E0,
V (t) = 0 if Y (t) ∈ Ec

0, 0 ≤ V (t) ≤ 1 if Y (t) ∈ ∂E0, and∫
U

1Ξ(Y (s))(u)µs(du) = 1.
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Reflecting diffusions

Suppose

Af(x) =
∑
i,j

1

2
aij(x)∂i∂jf(x) +

∑
i

bi(x)∂if(x)

and Bf(x, u) = u · ∇f(x). Let

λ0(t) =

∫ t

0

V (s)ds λ1(t) =

∫ t

0

(1− V (s))ds

Then the martingale is

f(Y (t))−f(Y (0))−
∫ t

0

Af(Y (s))dλ0(s)−
∫ t

0

∫
U

uµs(du)·∇f(Y (s))dλ1(s).

Of course
λ0(t) + λ1(t) = t.
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Time change

Assuming Ξ(y) = {κ(y)}, we have martingales

f(Y (t))−f(Y (0))−
∫ t

0

Af(Y (s))dλ0(s)−
∫ t

0

κ(Y (s)) ·∇f(Y (s))dλ1(s),

where λ0(t) + λ1(t) = t. If the boundary is smooth with n(y) the
inward normal at y ∈ ∂E0, and κ(y) · n(y) > 0, y ∈ ∂E0, then λ0 is
strictly increasing and τ(t) = inf{s : λ0(s) > t} is continuous. Define
X(t) = Y (τ(t)) and λ(t) = λ1(τ(t)). Then

f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds−
∫ t

0

κ(X(s)) · ∇f(X(s))dλ(s)

is a {Fτ(t)}-martingale (or perhaps a local martingale).
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Controlled stochastic differential equation

The corresponding SDE should be

Y (t) = Y (0) +

∫ t

0

√
V (s)

∑
j

σj(Y (s))dWj(s) +

∫ t

0

V (s)b(Y (s))ds

+

∫ t

0

(1− V (s))κ(Y (s))ds,

and by the same arguments used in Stroock and Varadhan (1979)
or those in Kurtz (2011), every solution of the controlled martingale
problem corresponds to a solution of the SDE.
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Stochastic differential equation

Inverting λ0 as above, τ(t) = inf{s : λ0(s) > t},

X(t) = X(0) +

∫ t

0

∑
j

σj(X(s))dW V
j (s) +

∫ t

0

b(X(s))ds

+

∫ t

0

κ(X(s))dλ(s),

where the

W V
j (s) =

∫ τ(t)

0

√
V (s)dWj(s)

are independent standard Brownian motions.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 15

Nonlocal boundary conditions

As before

Af(x) =
1

2

∑
i,j

aij(x)
∂2

∂xi∂xj
f(x)+

∑
i

bi(x)
∂

∂xi
f(x), D(A) = C2

c (Rd),

but now take

Bf(x) =

∫
E0

(f(y)− f(x))µ(x, dy)

where we assume µ(x,E0) = 1. The controlled martingale then be-
comes

f(Y (t))− f(Y (0))−
∫ t

0

V (s)Af(Y (s))ds−
∫ t

0

(1− V (s))Bf(Y (s))ds.

or

f(Y (t))− f(Y (0))−
∫ t

0

Af(Y (s))dλ0(s)−
∫ t

0

Bf(Y (s))dλ1(s).
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Corresponding SDE

The controlled process will satisfy

Y (t) = Y (0) +

∫ t

0

√
V (s)

∑
j

σj(Y (s))dWj(s) +

∫ t

0

V (s)b(Y (s))ds

+

∫
[0,t]×[0,∞)×[0,1]

1[0,1−V (s)](u)(H(Y (s−), v)− Y (s−))ξ(ds, du, dv)

As before, every solution of the controlled martingale problem corre-
sponds to a solution of the controlled SDE, but λ0 need not be (prob-
ably isn’t) strictly increasing.
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Stochastic equation for X

If, for the diffusion corresponding to A, P{inf{t : Z(t) ∈ ∂E0} =
inf{t : Z(t) ∈ E

c
0} = 1, then Y (s) ∈ ∂E0 implies V (s) = 0 and

X(t) = Y (τ(t)) satisfies

X(t) = X(0) +

∫ t

0

∑
j

σj(X(s))dW V
j (s) +

∫ t

0

b(X(s))ds

+

∫ t

0

(H(X(s−), ξN(s))−X(s−))dN(s)

where N(t) counts the number times X hits ∂E0 by time t, ξk is the
v-coordinate at the kth jump time of Y (note that the ξk are indepen-
dent, uniform [0, 1]) and, as before,

W V
j (s) =

∫ τ(t)

0

√
V (s)dWj(s)

are independent standard Brownian motions.
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Markov selection Costantini and Kurtz (2019)

Under the compactness assumption on E, and assuming D is dense
in C(E), the set of solutions of the controlled martingale problem
will be compact, and solutions will exist for all ν ∈ P(E2) for some
E2 ⊃ E0. Specifically, let Πν ⊂ P(DE[0,∞) × C[0,∞)[0,∞)) be the
collection of distributions for (Y, λ0) where Y (0) has distribution ν.

Let {hk} ⊂ C(E0) and define Πh1
ν ⊂ Πν to be the set of P ∈ Πν such

that

EP [

∫ ∞
0

e−λ0(s)h1(Y (s))dλ0(s)] = sup
Q∈Πν

EQ[

∫ ∞
0

e−λ0(s)h1(Y (s))dλ0(s)],

and recursively define Πh1,...,hn
ν to be the set of P ∈ Π

h1,...,hn−1
ν such that

EP [

∫ ∞
0

e−λ0(s)hn(Y (s))dλ0(s)] = sup
Q∈Π

h1,...,hn−1
ν

EQ[

∫ ∞
0

e−λ0(s)h1(Y (s))dλ0(s)].

Define Π∞ν = ∩nΠh1,...,hn
ν .
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Martingale properties

Let Γ∞ be the collection of distributionsX(t) = Y (τ(t)), τ(t) = inf{s :
λ0(s) > t} for (Y, λ0) with distribution in Π∞ ≡ ∪ν∈P(E2)Π

∞
ν . For

P ∈ Π∞δx , define

uhn(x) ≡ E
P

[

∫ ∞
0

e−λ0(s)hn(Y (s))dλ0(s)] = EP [

∫ ∞
0

e−thn(X(s))ds].

Then for every X obtained from a P ∈ Π∞,

uhn(X(s))−
∫ t

0

(uhn(X(s))− hn(X(s)))ds

is a {FX
t }-martingale.
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A generator and a Markov process

Assuming the linear span of {hn} is bp dense inB(E0), for h ∈ B(E0),
define

uh(x) = EP [

∫ ∞
0

e−λ0(s)h(Y (s))dλ0(s)], P ∈ Π∞δx .

Then

uh(X(s))−
∫ t

0

(uh(X(s))− h(X(s)))ds

is a {FX
t }-martingale, and uniqueness holds for the martingale prob-

lem for
A = {(uh, uh − h) : h ∈ B(E0)}

which ensures that all such X are Markov.
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Viscosity solutions for the H-Y range condition
Costantini and Kurtz (2015)

For each solution Y of the controlled martingale problem

f(Y (t))−f(Y (0))−
∫ t

0

Af(Y (s))dλ0(s)−
∫ t

0

∫
Ξ(Y (s)

Bf(Y (s), u)µs(du)dλ1(s),

assuming λ0(s)→∞, let τ(t) = inf{s : λ0(s) > t}, and define

X(t) = Y (τ(t)).

Then
∫∞

0 e−λ0(s)h(Y (s))dλ0(s) =
∫∞

0 e−th(X(t))dt and for Y (0) = x,
we should have

E[

∫ ∞
0

e−λ0(s)h(Y (s))dλ0(s)] = E[

∫ ∞
0

e−th(X(t))dt] = (I − Â)−1h(x)

where Â is the generator for X ,

Â ⊃ {(f, Af) : Bf = 0}
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Sub and super solutions

Let Πx be the collection of distributions of solutions of the controlled
martingale problem (Y, λ0). Then assuming that for all x ∈ E0, Πx is
nonempty and compact and . . .

u+
h (x) ≡ sup

P∈Πx

E[

∫ ∞
0

e−λ0(s)h(Y (s))dλ0(s)]

is a subsolution of (I − Â)u = h in the sense that u+
h is upper semi-

continuous and if f ∈ D and x0 ∈ E0 satisfy

sup
x

(u+ − f)(x) = (u+ − f)(x0), (4)

then

λu+(x0)− Af(x0) ≤ h(x0), if x0 ∈ E0,

(λu+(x0)− Af(x0)− h(x0)) ∧ (− sup
u∈Ξ(x0)

Bf(x0, u)) ≤ 0, if x0 ∈ ∂E0.
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Wentzell boundary conditions

Let B be the generator of a diffusion process Z such that Z(0) ∈ E0

impliesZ(t) ∈ E0, t ≥ 0. The controlled martingale problem becomes

f(X(t))− f(X(0))−
∫ t

0

Af(X(s))dλ0(s)−
∫ t

0

Bf(X(s))dλ1(s)

where for D ≡ D(A) = D(B) = C2
c (Rd),

Af(x) =
1

2

∑
i,j

aij(x)
∂2

∂xi∂xj
f(x) +

∑
i

bi(x)
∂

∂xi
f(x)

and

Bf(x) =
1

2

∑
i,j

αij(x)
∂2

∂xi∂xj
f(x) +

∑
i

βi(x)
∂

∂xi
f(x).
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Existence

Let Y ε(0) have distribution µ ∈ P(E0) and evolve as a solution of the
martingale problem for A until the first time τ ε1 that Y ε hits ∂E0.

After time τ ε1 , let Y ε evolves as a solution of the martingale problem
for B until σε1 = inf{t > τ ε1 : infx∈∂E0

|Y ε(t)− x| ≥ ε.

By pasting, Y ε is constructed so that for f ∈ D,

f(Y ε(t))− f(Y (0))−
∫ t

0

(
∞∑
k=0

1[σεk,τ
ε
k+1)

(s)Af(Y ε(s)) +
∞∑
k=1

1[τεk,σ
ε
k)

(s)Bf(Y ε(s))

)
ds

is a martingale. Define λε0(t) =
∫ t

0

∑∞
k=0 1[σεk,τ

ε
k+1)(s)ds.

Then, {(Y ε, λε0, λ
ε
1), ε > 0} is relatively compact, and every limit point

(Y, λ0, λ1) will give a solution of the controlled martingale problem.
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Corresponding SDE Watanabe (1971); Anderson (1976)

The controlled process will satisfy

Y (t) = Y (0) +

∫ t

0

√
V (s)

∑
j

σj(Y (s))dWj(s) +

∫ t

0

V (s)b(Y (s))ds

+

∫ t

0

√
1− V (s)

∑
j

sj(Y (s))dBj(s) +

∫ t

0

(1− V (s))β(Y (s))ds

As before, every solution of the controlled martingale problem corre-
sponds to a solution of the controlled SDE, and inverting λ0 as above,

X(t) = X(0) +

∫ t

0

∑
j

σj(X(s))dW V
j (s) +

∫ t

0

b(X(s))ds

+

∫ t

0

∑
j

sj(X(s))dMλ
j (s) +

∫ t

0

β(X(s))dλ(s),
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Driving processes
As before,

W V
j (t) =

∫ τ(t)

0

√
V (s)dWj(s)

are independent standard Brownian motions, and now

Mλ
j (t) =

∫ τ(t)

0

√
1− V (s)dBj(s)

are martingales with [Mλ
j ]t =

∫ τ(t)

0 (1− V (s))ds = λ(t).
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Abstract
Controlled and constrained martingale problems
Most of the basic results on martingale problems extend to the setting in which
the generator depends on a control. The control could represent a random en-
vironment, or the generator could specify a classical stochastic control problem.
The equivalence between the martingale problem and forward equation (obtained
by taking expectations of the martingales) provides the tool for extending linear
programming methods introduced by Manne in the context of controlled finite
Markov chains to general Markov stochastic control problems. The controlled mar-
tingale problem can also be applied to the study of constrained Markov processes
(e.g., reflecting diffusions), the boundary process being treated as a control. Time
permitting: the relationship between the control formulation and viscosity solu-
tions of the corresponding resolvent equation will be discussed. Talk includes joint
work with Richard Stockbridge and with Cristina Costantini.


