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Generators for Markov processes

An E-valued process is Markov wrt {Ft} if X is {Ft}-adapted and

E[f(X(t+ s))|Ft] = E[f(X(t+ s))|X(t)] ≡ T (s)f(X(t)), f ∈ B(E)

E[f(X(t+ s+ r))|Ft] = T (s+ r)f(X(t))

= E[E[f(X(t+ s+ r))|Ft+s]|Ft]
= E[T (r)f(X(t+ s))|Ft]
= T (s)T (r)f(X(t))

{T (t), t ≥ 0} is a semigroup of bounded operators on B(E). The
generator for {T (t)} satisfies

T (t)f = f +

∫ t

0

AT (s)fds = f +

∫ t

0

T (s)Afds

for f in a domain D(A).

Dynkin (1965), Ethier and Kurtz (1986)
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Martingale properties

The second equality T (t)f = f +
∫ t
0 T (s)Afds can be written as

E[f(X(r + t))|X(r)] = E[f(X(r + t))|Fr]

= f(X(r)) + E[
∫ r+t

r

Af(X(s))ds|Fr]

which gives

E[f(X(r + t))− f(X(r))−
∫ r+t

r

Af(X(s))ds|Fr] = 0

and in turn implies

Mf(t) = f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds

is a martingale, that is E[Mf(t+ r)|Fr] =Mf(r).

This martingale property can be used to characterize the correspond-
ing Markov process. (Stroock and Varadhan (1979))
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The martingale problem for A
X is a solution for the martingale problem for (A, ν0), ν0 ∈ P(E), if
PX(0)−1 = ν0 and there exists a filtration {Ft} such that

f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds

is an {Ft}-martingale for all f ∈ D(A).

Theorem 1 If any two solutions of the martingale problem forA satisfying
PX1(0)

−1 = PX2(0)
−1 also satisfy PX1(t)

−1 = PX2(t)
−1 for all t ≥ 0,

then the f.d.d. of a solution X are uniquely determined by PX(0)−1

If X is a solution of the MGP for A and Ya(t) = X(a+ t), then Ya is a
solution of the MGP for A.

Theorem 2 If the conclusion of the above theorem holds, then any solution
of the martingale problem for A is a Markov process.
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Forward equations

Let νt be the distribution of X(t) where X is a solution of the martin-
gale problem for A. Then the fact that

f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds

is a martingale (and hence has expectation zero) implies

νtf = ν0f +

∫ t

0

νsAf, f ∈ D(A),

νtf =

∫
fdνt

Of course, if A generates a semigroup,

νtf = ν0T (t)f
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Examples of generators

Poisson process (E = {0, 1, 2 . . .}, D(A) = B(E))

Af(k) = λ(f(k + 1)− f(k))

Pure jump process (E arbitrary)

Af(x) = λ(x)

∫
E

(f(y)− f(x))µ(x, dy)

Diffusion process (E = Rd, D(A) = C2
c (Rd))

Af(x) =
1

2

∑
i,j

aij(x)
∂2

∂xi∂xj
f(x) +

∑
i

bi(x)
∂

∂xi
f(x)

ODE Ẋ = F (X) (E = Rd, D(A) = C1
c (Rd))

Af(x) = F (x) · ∇f(x)
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Stochastic differential equations for diffusions

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds

where W is a standard Brownian motion corresponds to

Af(x) =
1

2

∑
i,j

aij(x)
∂2

∂xi∂xj
f(x) +

∑
i

bi(x)
∂

∂xi
f(x)

where a(x) = σ(x)σ(x)T .
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Stochastic equations for jump processes

X(t) = X(0) +

∫
[0,t]×[0,∞)×[0,1]

1[0,λ(X(s−)](u)(H(X(s−), v)−X(s−))

×ξ(ds, du, dv)

where ξ is a Poisson random measure with mean measure ds× du×
dv (i.e., Lebesgue measure) on [0,∞) × [0,∞) × [0, 1]. The equation
corresponds to

Af(x) = λ(x)

∫
E

(f(y)− f(x))µ(x, dy)

provided for ζ uniform [0, 1],

P{H(x, ζ) ∈ C} = µ(x,C)
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Equivalence theorem: First direction

Theorem 3 Every solution of the stochastic equation gives a solution of
the martingale problem. Every solution of the martingale problem gives a
solution of the forward equation.

Proof. For example, for diffusion processes Itô’s formula implies

f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds =

∫ t

0

σ(X(s))dW (s)

�
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Itô for the jump process

Let ξ̃ be the Poisson random measure on [0,∞)2 × [0, 1] centered by
its mean measure, that is, for A ∈ B([0,∞)2 × [0, 1]

ξ̃(A) = ξ(A)− `3(A)

Since

f(X(t))− f(X(0))

=

∫
[0,t]×[0,∞)×[0,1]

1[0,λ(X(s−)](u)(f(H(X(s−), v))− f(X(s−)))ξ(ds, du, dv),

we have

f(X(t))− f(X(0))−
∫ t

0

λ(X(s))(f(y)− f(X(s))µ(X(s), dy)

=

∫
[0,t]×[0,∞)×[0,1]

1[0,λ(X(s−)](u)(f(H(X(s−), v))− f(X(s−)))ξ̃(ds, du, dv)
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Technical conditions

Condition 4 a) (1, 0) ∈ A ⊂ Cb(E)× Cb(E)

b) D(A) is closed under multiplication and separates points.

c) There exists A0 ⊂ A such that A0 is countable and every solution of
the martingale problem for A0 is a solution of the martingale problem
for A.

d) A is a pre-generator, that is A is dissipative and for each x there exist
λxn > 0 and µxn ∈ P(E) such that for each (f, g) ∈ A

g(x) = lim
n→∞

λxn

∫
E

(f(y)− f(x))µxn(dy).



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 12

Equivalence theorem: Other direction

Theorem 5 Suppose A satisfies Condition 4. Then every solution of the
forward equation corresponds to a solution of the martingale problem and
every solution of the martingale problem corresponds to a solution of the
stochastic equation.

Proof. Existence of solutions of the martingale problem correspond-
ing to solutions of the forward equations follows from work by Echev-
errı́a (1982); Ethier and Kurtz (1986); Bhatt and Karandikar (1993);
Kurtz and Stockbridge (2001).

For diffusions, existence of solutions to stochastic equations corre-
sponding to solutions of the martingale problem was given by Stroock
and Varadhan (1979). For general Markov processes in Rd, see Kurtz
(2011). For reflecting diffusions determined by submartingale prob-
lems, see Kang and Ramanan (2017). For generators given as infinite
sums of bounded generators, see Etheridge and Kurtz (2018). �
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Second fundamental theorem of filtering

Theorem 6 Kurtz and Nappo (2011)
Assume that A satisfies Condition 4. Suppose that Y is a cadlag process
(sample paths are right continuous with left limits) with no fixed points of
discontinuity in a complete, separable metric space V , and {πt} is a cadlag
P(E)-valued stochastic process adapted to the filtration {FY

t } generated by
Y . If for each f ∈ D(A) ⊂ Cb(E)

MFY

f (t) = πtf − π0f −
∫ t

0

πsAfds

is a {FY
t }-martingale, then there exists a filtration {F̃t} a processX adapted

to {F̃t}, and a {F̃t}-adapted process Ỹ such that for each f ∈ D(A)

Mf(t) = f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds

is a {F̃t}-martingale, and (π̃, Ỹ ) with π̃t(C) = P{X(t) ∈ C|F̃ Ỹ
t }, C ∈

B(E), t ≥ 0, has the same finite dimensional distributions as (π, Y ).
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Equivalence of SDE and MGP Stroock and Varadhan (1979)

If

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds,

then for f ∈ Rd, by Itô’s formula

f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds =

∫ t

0

∇f(X(s))Tσ(X(s))dW (s)

for

Af(x) =
1

2

∑
ij

aij(x)
∂2

∂xi∂xj
f(x) +

∑
i

bi(x)
∂

∂xi
f(x)

where ((aij)) = σσT . Consequently, X is a solution of the martingale
problem for A.
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Converse

If X is a solution of the MGP for A, then X is a weak solution of the
SDE. If σ is invertible, then

W (t) =

∫ t

0

σ−1(X(s))dX(s)−
∫ t

0

σ−1(X(s))b(X(s))ds

and hence∫ t

0

σ(X(s))dW (s) = X(t)−X(0)−
∫ t

0

b(X(s))ds
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Generator for general Markov process in Rd

Assuming S = S1 ∪ S2 and∫
S

λ(x, u)(1S1
(u)|γ(x, u)|2 + 1S2

(u))ν(du) <∞,

Then

Af(x) =
1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
f(x) + b(x) · ∇f(x) (1)

+

∫
S

λ(x, u)(f(x+ γ(x, u))− f(x)− 1S1
(u)γ(x, u) · ∇f(x))ν(du).

for f ∈ C2
c (Rd).

c.f. Stroock (1975); Graham (1992); Kurtz (2011)
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Stochastic equation

Let ξ be a Poisson random measure on [0,∞)×S× [0,∞) with mean
measure m× ν ×m, and let ξ̃(A) = ξ(A)−m× ν ×m(A)

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds (2)

+

∫
[0,1]×S1×[0,t]

1[0,λ(X(s−),u)](v)γ(X(s−), u)ξ̃(dv × du× ds)

+

∫
[0,1]×S2×[0,t]

1[0,λ(X(s−),u)](v)γ(X(s−), u)ξ(dv × du× ds),

Stochastic equations of this form appeared first in Itô (1951). See also
Graham (1992); Kurtz and Protter (1996); Kurtz (2011)
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Alternative approach Kurtz (2011)

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds

in d = 1. Define
Z(t) = Z(0) +W (t) mod 1,

where Z(0) is uniformly distributed on [0, 1] and independent of W .
Then (X,Z) is a solution of the MGP for

Ãf(x, z) =
1

2
a(x)

∂2

∂x2
f(x, z) + σ(x)

∂2

∂x∂z
f(x, z)

+
1

2

∂2

∂z2
f(x, z) + b(x)

∂

∂x
f(x, z),

where we take f ∈ C2
c (R × [0, 1]) and periodic in z with period 1. If

(X,Z) is a solution of the martingale problem for Ã, then the corre-
spondingW can be recovered from Z andX is a weak solution of the
SDE.
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Equivalence to original MGP

Let X be a solution of the martingale problem for A, and define
f(x) =

∫ 1

0 f(x, z)dz and πt = δX(t)(dx)dz. Then

πtf =

∫ 1

0

f(X(t), z)dz = f(X(t))

and
πtÃ = Af(X(t)),

so

πtf − π0f −
∫ t

0

πsÃfds = f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds

is a {FX
t }-martingale.
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Construction of the weak solution

By Theorem 6, for any solutionX of the MGP forA there is a solution
(X̃, Z̃) of the martingale problem for Ã such that X̃ has the same
distribution as X and Z̃ determines a Brownian motion W̃ such that.

X̃(t) = X̃(0) +

∫ t

0

σ(X̃(s))dW̃ (s) +

∫ t

0

b(X̃(s))ds,

that is, X is a weak solution of the SDE.
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Finite dimensional distributions determine a solution

X is a solution of the martingale problem for A if for each f ∈ D(A)
and all choice of h1, . . . , hk ∈ Cb(E)

E[(f(X(tk+1))− f(X(tk))−
∫ tk+1

tk

Af(X(s))ds)
k∏
i=1

hi(X(ti))] = 0

for all t1 < t2 < · · · < tk < tk+1.

Useful for convergence:

Theorem 7 Suppose Xn is a solution of the martingale problem for An and
for every f ∈ D(A) there exist fn ∈ D(An), fn → f , Anfn → Af , bound-
edly and uniformly on compacts. If {Xn} is relatively compact inDE[0,∞)
(space of cadlag functions), then every limit point is a solution of the mar-
tingale problems for A.
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Relative compactness

Theorem 8 Suppose E is compact (for example, E = Rd ∪ {∞}) and for
each f in some dense subset D ⊂ C(E) there exist fn ∈ D(An) such that
fn → f uniformly and supn ‖Anfn‖ <∞, then {Xn} is relatively compact
in DE[0,∞).

Proof. The result follows from Theorems 3.9.4 and 3.9.1 of Ethier and
Kurtz (1986). �
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Abstract
Generators, martingale problems, and stochastic equations

Classically, general Markov processes were studied through their relationship to operator semigroups. The
analytic challenges of operator semigroup theory helped motivate the development of alternative approaches
including stochastic equations as introduced by Ito and martingale problems as introduced by Stroock and
Varadhan. These approaches have dominated work on Markov processes in the mathematics literature while
the Kolmogorov forward equation that characterizes the one dimensional distributions of the process receives
much more attention in the physics literature (cf. Fokker-Planck equation, master equation). The talk will
include a brief over view of all these approaches paying particular attention to the equivalence of the different
approaches in characterizing Markov processes.


