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1 Introduction

1.1 Overview

Dynamical system models with delay are used in a variety of applications in science and
engineering where the dynamics are subject to propagation delay. Examples of such appli-
cation domains include packet level models of Internet rate control where the finiteness of
transmission times leads to delay in receipt of congestion signals or prices [25, 37], neuronal
models where the spatial distribution of neurons can result in delayed dynamics, epidemi-
ological models where incubation periods result in delayed transmission of disease [5], and
biochemical reactions in gene regulation where lengthy transcription and translation opera-
tions have been modeled with delayed dynamics [1, 4, 21]. There is an extensive literature,
both theoretical and applied on ordinary delay differential equations. The book [13] by Hale
and Lunel provides an introduction to this vast subject.

In some applications, the quantities of interest are naturally positive. For instance, rates
and prices in Internet models are positive, concentrations of ions or chemical species and pro-
portions of a population that are infected are all naturally positive quantities. In deterministic
differential equation models for the delayed dynamics of such quantities, the dynamics may
naturally keep the quantities positive or they may need to be adapted to be so, sometimes
leading to piecewise continuous delay differential dynamics, see e.g., [25, 26, 27, 28, 29]. There
is some literature, especially applied, on the latter, although less than for unconstrained delay
systems or naturally constrained ones.

Frequently in applications, noise is present in a system and it is desirable to understand
its effect on the dynamics. For unconstrained systems, one can consider ordinary delay
differential equations with an addition to the dynamics in the form of white noise or even
a state dependent noise. There is a sizeable literature on such stochastic delay differential
equations (SDDE) [2, 7, 11, 15, 19, 20, 22, 23, 30, 34, 35, 36]. To obtain the analogue of such
SDDE models with positivity constraints, in general, it is not simply a matter of adding a
noise term to the ordinary differential equation dynamics, as this will frequently not lead to
a solution respecting the state constraint, especially if the dispersion coefficient depends on
a delayed state.

As described above, there is natural motivation for considering stochastic differential
equations where all three features, delay, positivity constraints and noise, are present. How-
ever, there has been little work on systematically studying such equations. One exception is
the work of Kushner (see e.g., [17]), although this focuses on numerical methods for stochas-
tic delay differential equations (including those with state constraints), especially those with
bounded state space. We note that the behavior of constrained systems can be quite differ-
ent from that of unconstrained analogues, e.g., in the deterministic delay equation case, the
addition of a positivity constraint can turn an equation with unbounded oscillatory solutions
into one with bounded periodic solutions, and in the stochastic delay equation case, transient
behavior can be transformed into positive recurrence.

Here we seek conditions for existence and uniqueness of stationary distributions for
stochastic delay differential equations with positivity constraints of the form:

X(t) = X(0) +

∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dW (s) + Y (t), t ≥ 0, (1)
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where X(t) takes values in the closed positive orthant of some Euclidean space, τ ∈ [0,∞) is
the length of the delay period, Xs = {X(s+u) : −τ ≤ u ≤ 0} tracks the history of the process
over the delay period, W is a standard (multi-dimensional) Brownian motion noise source
and the stochastic integral with respect to W is an Itô integral, and Y is a vector-valued
non-decreasing process which ensures that the positivity constraints on X are enforced. In
particular, the ith component of Y can increase only when the ith component of X is zero.
We refer to equations of the form (1) as stochastic delay differential equations with reflection,
where the action of Y is termed reflection (at the boundary of the orthant).

This paper is organized as follows. Our assumptions on the coefficients b and σ for
well-posedness of (1), the rigorous definition of a solution of (1), and some properties of
solutions are given in Section 2.1. Our main result giving sufficient conditions for existence
and uniqueness of stationary distributions for (1) is stated in Section 2.2, and some examples
of applications of the result are given in Section 2.3. In preparation for Section 3, a useful
a priori moment bound on solutions to (1) is given in Section 2.4. Section 3 focuses on
establishing sufficient conditions for existence of stationary distributions. A general condition
guaranteeing existence is described in Section 3.1. This condition is in terms of uniform
moment bounds, and it is fairly standard. Such bounds for second moments are shown to
hold in Sections 3.4 and 3.5, under certain conditions on b and σ. The results of Sections 3.1,
3.4 and 3.5 are combined to give sufficient conditions for existence of a stationary distribution
in Section 3.6. Our proofs of the moment bounds use stochastic Lyapunov/Razumikhin-type
arguments applied to suitable functions of an overshoot process which is introduced in Section
3.2. For these arguments, the positive oscillation of a path, which is introduced in Section
3.3, proves to be a useful refinement of the usual notion of oscillation of a path. While
our main results in Section 3 are new, we do use some results and adapt some techniques
developed by Itô and Nisio [15] and Mao [20] for stochastic delay differential equations without
reflection. Conditions for uniqueness of a stationary distribution are given in Section 4. Our
proofs in that section are an adaptation of methods developed recently by Hairer, Mattingly
and Scheutzow [12] for proving uniqueness of stationary distributions for stochastic delay
differential equations without reflection. An important new aspect of the results in [12] is
that they enable one to obtain uniqueness of stationary distributions for stochastic delay
differential equations when the dispersion coefficient depends on the history of the process
over the delay period, in contrast to prior results on uniqueness of stationary distributions
for stochastic delay differential equations which often restricted to cases where the dispersion
coefficient depended only on the current state X(t) of the process [7, 17, 34, 36], with notable
exceptions being [15, 30]. The important feature that distinguishes the results of [12] from
those of [15, 30] is that the authors of [12] obtain uniqueness of the stationary distribution
without requiring the existence of a unique random fixed point; see Section 4 for further
discussion of this point. Appendix A states some well-known facts about reflection, and
Appendix B covers some inequalities that appear frequently throughout this work.

1.2 Notation and Terminology

We shall use the following notation and terminology throughout this work.
For a real number a, we shall say that a is positive if a ≥ 0 and we shall say that a is

strictly positive if a > 0. For each strictly positive integer d, let Rd denote d-dimensional
Euclidean space, and let Rd

+ = {v ∈ Rd : vi ≥ 0 for i = 1, . . . , d} denote the closed positive
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orthant in Rd. When d = 1, we suppress the d and write R for (−∞,∞) and R+ for [0,∞).
For each i = 1, . . . , d, the ith component of a column vector v ∈ Rd will be denoted by vi.
For two vectors u, v ∈ Rd, the statement u ≥ v will mean that ui ≥ vi for each i = 1, . . . , d.
For each r ∈ R, define r+ = max{r, 0} and r− = max{−r, 0}. For any real numbers r, s, δr,s
denotes the Kronecker delta, i.e., it is one if r = s and zero otherwise.

Unless specified otherwise, we treat vectors v ∈ Rd as column vectors, i.e., v = (v1, . . . , vd)′.

For u, v ∈ Rd, u ·v =
d
∑

i=1
uivi denotes the dot product of u with v. Given v ∈ Rd, |v| = (v ·v) 1

2 ,

the Euclidean norm of v. Let Md×m denote the set of d×m matrices with real entries. For a
given matrix A ∈ Md×m, Ai

j denotes the entry of the ith row and the jth column, Ai denotes

the ith row, and Aj denotes the jth column. The notation Id will denote the (d× d)-identity

matrix. Given a d×m matrix A, |A| :=

(

d
∑

i=1

m
∑

j=1
(Ai

j)
2

)
1
2

denotes the Frobenius norm of A.

For any metric space E with metric ρ, we use B(x, r) (where x ∈ E and r > 0) to denote
the open ball {y ∈ E : ρ(x, y) < r} of radius r around x, and we use B(E) to denote the
associated collection of Borel sets of E. The set of bounded, continuous real-valued functions
on E will be denoted by Cb(E).

For any two metric spaces E1,E2, let C(E1,E2) denote the set of continuous functions
from E1 into E2. Here, E1 will often be a closed interval F ⊂ (−∞,∞), and E2 will often be
Rd or Rd

+ for various dimensions d.
For any integer d and closed interval I in (−∞,∞), we endow C(I,Rd) and C(I,Rd

+) with
the topologies of uniform convergence on compact intervals in I. These are Polish spaces. In
the case of C(I,Rd

+), we use MI to denote the associated Borel σ-algebra. We shall also use
the abbreviations CI = C(I,R+) and Cd

I = C(I,Rd
+).

For a closed interval I in (−∞,∞), a1 ≤ a2 in I and a path x = (x1, . . . , xd)′ ∈ C(I,Rd)
we define the oscillation of x over [a1, a2] by

Osc(x, [a1, a2]) :=
d

max
i=1

sup
s,t∈[a1,a2]

|xi(t) − xi(s)|, (2)

the modulus of continuity of x over I by

wI(x, δ) :=
d

max
i=1

sup
s,t∈I

|s−t|<δ

|xi(t) − xi(s)|, δ > 0, (3)

and the supremum norm of x over I by

‖x‖I = sup
t∈I

|x(t)|.

Throughout this work, we fix τ ∈ (0,∞), which will be referred to as the delay. Define
I = [−τ, 0] and J = [−τ,∞). As a subset of the vector space C(I,Rd), Cd

I
has norm

‖x‖ := ‖x‖I, x ∈ C
d
I ,

that induces its topology of uniform convergence on compact intervals. The associated Borel
σ-algebra is MI. For x ∈ Cd

J
and t ≥ 0, define xt ∈ Cd

I
by xt(s) = x(t + s) for all s ∈ I. It

4



should be emphasized that x(t) ∈ Rd
+ is a point, while xt ∈ Cd

I
is a continuous function on I

taking values in Rd
+. For each t ∈ R+, we define the projection pt : Cd

J
→ Cd

I
by pt(x) := xt

for each x ∈ Cd
J
.

By a filtered probability space, we mean a quadruple (Ω,F , {Ft, t ≥ 0}, P ), where F is
a σ-algebra on the outcome space Ω, P is a probability measure on the measurable space
(Ω,F), and {Ft, t ≥ 0} is a filtration of sub-σ-algebras of F where the usual conditions are
satisfied, i.e., (Ω,F , P ) is a complete probability space, and for each t ≥ 0, Ft contains all
P -null sets of F and Ft+ := ∩

s>t
Fs = Ft. Given two σ-finite measures µ, ν on a measurable

space (Ω,F), the notation µ ∼ ν will mean that µ and ν are mutually absolutely continuous,
i.e., for any Λ ∈ F , µ(Λ) = 0 if and only if ν(Λ) = 0. By a continuous process, we mean a
process with all paths continuous.

Given a positive integer m, by a standard m-dimensional Brownian motion, we mean a
continuous process {W (t) = (W 1(t), . . . ,Wm(t))′, t ≥ 0} taking values in Rm such that

(i) W (0) = 0 a.s.,

(ii) the coordinate processes, W 1, . . . ,Wm, are independent,

(iii) for each i = 1, . . . ,m, positive integer n and 0 ≤ t1 < t2 < · · · < tn <∞, the increments:
W i(t2) −W i(t1),W

i(t3) −W i(t2), . . . ,W
i(tn) −W i(tn−1), are independent, and

(iv) for each i = 1, . . . ,m and 0 ≤ s < t < ∞, W i(t) −W i(s) is normally distributed with
mean zero and variance t− s.

Given a function f : {1, 2, . . . } → R and a ∈ (−∞,∞], the notation f(n) ր a as n→ ∞
means that lim

n→∞
f(n) = a and f(n) ≤ f(n+ 1) for each n = 1, 2, . . ..

2 Stochastic Delay Differential Equations with Reflection

In this section, we define our assumptions and the notion of a solution to equation (1)
precisely. We state our main result and give some examples of its application. We also derive
some useful properties of solutions to (1).

2.1 Definition of a Solution

Recall from Section 1.2 that we are fixing a τ ∈ (0,∞), which will be referred to as the delay,
and we define I = [−τ, 0], J = [−τ,∞), Cd

I
= C(I,Rd

+) and Cd
J

= C(J,Rd
+). Furthermore, we

fix positive integers d and m, and functions b : Cd
I
→ Rd and σ : Cd

I
→ Md×m that satisfy the

following uniform Lipschitz assumption. Although we do not need as strong an assumption as
this for well-posedness of (1), we will use this condition in proving uniqueness of stationary
distributions. Accordingly, we shall assume the following condition holds throughout this
work.

Assumption 2.1. There exists a constant κL > 0 such that

|b(x) − b(y)|2 + |σ(x) − σ(y)|2 ≤ κL‖x− y‖2 for all x, y ∈ C
d
I . (4)
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Remark. A simple consequence of the Lipschitz condition (4) is that there exist strictly
positive constants C1, C2, C3 and C4 such that for each x ∈ Cd

I
,

|b(x)| ≤ C1 + C2‖x‖, and (5)

|σ(x)|2 ≤ C3 + C4‖x‖2. (6)

Definition 2.1.1. Given a standard m-dimensional Brownian motion martingale W =
{W (t), t ≥ 0} on a filtered probability space (Ω,F , {Ft, t ≥ 0}, P ), a solution of the stochastic
delay differential equation with reflection (SDDER) associated with (b, σ) is a d-dimensional
continuous process X = {X(t), t ∈ J} on (Ω,F , P ) that P -a.s. satisfies (1), where

(i) X(t) is F0-measurable for each t ∈ I, X(t) is Ft-measurable for each t > 0, and
X(t) ∈ Rd

+ for all t ∈ J,

(ii) Y = {Y (t), t ≥ 0} is a d-dimensional continuous and non-decreasing process such that
Y (0) = 0 and Y (t) is Ft-measurable for each t ≥ 0,

(iii)
∫ t
0 X(s) · dY (s) = 0 for all t ≥ 0, i.e., Y i can increase only when Xi is at zero for
i = 1, . . . , d.

The natural initial condition is an initial segment X0 = x ∈ Cd
I
, or more generally, an

initial distribution µ on (Cd
I
,MI), i.e., P (X0 ∈ Λ) = µ(Λ) for each Λ ∈ MI.

Remark. As a consequence of condition (i) and the continuity of the paths of X, {Xt, t ≥ 0}
is adapted to {Ft, t ≥ 0}, and t → Xt(ω) is continuous from R+ into Cd

I
for each ω ∈ Ω.

It follows that the mapping F : R+ × Ω → Cd
I
, where F (t, ω) = Xt(ω), is progressively

measurable, being continuous in t and adapted (see Lemma II.73.10 of [32]). Continuity of σ

now implies that
{

∫ t
0 σ(Xs)dW (s),Ft, t ≥ 0

}

is a continuous d-dimensional local martingale;

also, condition (ii) and continuity of b implies that {X(0) +
∫ t
0 b(Xs)ds+ Y (t),Ft, t ≥ 0} is a

continuous adapted process that is locally of bounded variation. Therefore, {X(t), t ≥ 0} is
a continuous semimartingale with respect to {Ft, t ≥ 0}.

For notational convenience, given a continuous adapted stochastic process {ξ(t), t ≥ −τ}
taking values in Rd

+ and an m-dimensional Brownian motion W , all defined on some filtered
probability space (Ω,F , {Ft}, P ), we define

I(ξ)(t) := ξ(0) +

∫ t

0
b(ξs)ds +

∫ t

0
σ(ξs)dW (s), t ≥ 0. (7)

For a solution X of the SDDER, X(t) = I(X)(t) + Y (t), t ≥ 0, where the regulator term, Y ,
has the following explicit formula in terms of I(X): for each i = 1, . . . , d,

Y i(t) = max
s∈[0,t]

(

(

I(X)
)i

(s)
)−

, t ≥ 0.

In the notation of Appendix A, X = φ(I(X)) and Y = ψ(I(X)), because of the uniqueness
of solutions to the Skorokhod problem; thus, Y is a function of X (cf. (108)). Then as a
consequence of Proposition A.0.1(i), we have the following.
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Proposition 2.1.1. For any 0 ≤ a < b <∞

Osc(X, [a, b]) ≤ Osc(I(X), [a, b]). (8)

Strong existence and uniqueness of a solution to (1) is a consequence of Assumption 2.1.
We state this as a proposition. The proof is fairly standard and so we just sketch it.

Proposition 2.1.2. Given a Brownian motion martingale {W (t), t ≥ 0} on a filtered prob-
ability space (Ω,F , {Ft, t ≥ 0}, P ) and an F0-measurable Cd

I
-valued random element ξ, there

exists a unique solution X to the SDDER (1) with initial condition X0 = ξ and driving
Brownian motion W . Let Xx denote the solution with X0 = x in Cd

I
. Then the associated

family
{Pt(x,Λ) := P (Xx

t ∈ Λ), t ≥ 0, x ∈ C
d
I ,Λ ∈ MI}

of transition functions is Markovian and Feller continuous.

Sketch of proof. As a consequence of Proposition 2.1.1 and the uniform Lipschitz properties
of b, σ and φ, if X(t), X̃(t),X†(t), X̃†(t), t ≥ −τ and Y (t), Y †(t), t ≥ 0 are continuous Rd

+-

valued processes such that X0 = X̃0, X
†
0 = X̃†

0 and (X|R+ , Y ) solves the Skorokhod problem

for I(X̃) and (X† |R+ , Y
†) solves the Skorokhod problem for I(X̃†), then for each T > 0 there

exist constants KT ,K
′
T ≥ 0 such that for all stopping times η,

E
[

‖X −X†‖2
[0,T∧η]

]

≤ KTE
[

‖X0 −X†
0‖2
]

+K ′
T

∫ T

0
E
[

‖X̃ − X̃†‖2
[0,r∧η]

]

dr. (9)

By truncating the initial condition, we can reduce the proof of existence to the case where
E[‖ξ‖2] <∞. Existence in this case then follows by a standard Picard iteration using (9) (see,
e.g., Chapter 10 of [6]). Gronwall’s inequality is used to prove uniqueness. Feller continuity
follows from the standard argument that given a sequence of deterministic initial conditions
{xn}∞n=1 such that lim

n→∞
xn = x ∈ Cd

I
, the sequence of distributions {P (Xxn ∈ ·)}∞n=1 on

(Cd
J
,MJ) is tight, and any weak limit point is the distribution of the solution Xx. The

Markov property for the transition functions then follows from the uniqueness of solutions of
(1).

Remark. It should be noted that global Lipschitz continuity is more than necessary to have
a well-defined and Feller continuous family of Markovian transition functions associated with
(1). One can obtain this same conclusion if the coefficients b and σ are continuous and obey
(5) and (6), and weak existence and uniqueness in law of solutions to (1) holds.

2.2 Main Result

We begin by defining a stationary distribution.

Definition 2.2.1. A stationary distribution for (1) is a probability measure π on (Cd
I
,MI)

such that π(Λ) = (πPt)(Λ) :=
∫

Cd
I

Pt(x,Λ)π(dx) for all t ≥ 0 and Λ ∈ MI.
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It is well-known that (non-delayed) Ornstein-Uhlenbeck processes have (unique) station-
ary distributions, and it is not hard to show that the reflected analogues also have stationary
distributions. The following condition for delayed systems is motivated by these facts.

Assumption 2.2. There exist positive constants B0, B1, B1,1, . . . , B1,d, B2,1, . . . , B2,d, C0,
C2,1, . . . , C2,d, M , constants q1 ∈ (0, 1], q2 ∈ (0, 2], probability measures µ1

1, . . . , µ
d
1, µ

1
2, . . . , µ

d
2

on (I,B(I)), and a measurable function ℓ : Cd
I
→ Rd

+, such that for each x ∈ Cd
I

and i =
1, . . . , d, ℓi(x) ∈ xi(I) := {xi(s), s ∈ I} for each i, and

(i) whenever xi(0) ≥M , we have

bi(x) ≤ B0 −B1x
i(0) −B1,iℓ

i(x) +B2,i

∫ 0

−τ
|x(r)|q1µi

1(dr), (10)

(ii) whenever xi(0) ≥M , we have

∣

∣σi(x)
∣

∣

2 ≤ C0 +C2,i

∫ 0

−τ
|x(r)|q2µi

2(dr), (11)

(iii) for B1 := min
i
B1,i and B̃2 :=

(

d
∑

i=1
B2

2,i

)

1
2

, we have

B1 +B1 >



τ

(

d
∑

i=1

(B1,iB2,i)
2

)

1
2

+ B̃2



δq1,1 +





1

2

d
∑

i=1

C2,i + 4
√
τ

(

d
∑

i=1

C2,iB
2
1,i

)

1
2



δq2,2.

Remark. Note that parts (i) and (ii) restrict bi and σi only on {x ∈ Cd
I

: xi(0) ≥ M}, and
the control on bi is only one-sided. However, b and σ will always be required to satisfy the
Lipschitz condition (4), which implies the linear growth bounds (5) and (6). These restrict

the growth of b and σ for all x ∈ Cd
I
, though, on

d∪
i=1

{x ∈ Cd
I

: xi(0) ≥M}, this growth control

on b and |σ| is weaker than the at-most-integral-linear growth imposed by parts (i) and (ii)
of the above assumption.

It is well-known that reflected Brownian motion on the half-line with strictly negative
drift has a (unique) stationary distribution. The following assumption (which is distinct
from Assumption 2.2) is sufficient for a stationary distribution for (1) to exist and the form
of this condition is motivated by the aforementioned fact.

Assumption 2.3. There exist positive constants Ku,M , strictly positive constants Kd,Kσ,
and a measurable function ℓ : Cd

I
→ Rd

+, such that for each x ∈ Cd
I

and i = 1, . . . , d,
ℓi(x) ∈ xi(I), and whenever xi(0) ≥M , we have:

(i) bi(x) ≤ Ku1[0,M ](ℓ
i(x)) −Kd1[M,∞)(ℓ

i(x)), and

(ii) |σi(x)|2 ≤ Kσ.
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Remark. Assumption 2.3 requires bi and |σi| to be bounded above on the set {x ∈ Cd
I

:
xi(0) ≥ M}, but this does not necessarily imply that they are bounded above on Cd

I
. Also,

note that unlike (iii) of Assumption 2.2, Assumption 2.3 has no restrictions on the size of the
constants M , Ku, Kd, Kσ (beyond strict positivity of Kd and Kσ).

The following assumption is using in proving uniqueness of a stationary distribution.

Assumption 2.4. The diffusion matrix σσ′ is uniformly elliptic, i.e., there is a constant
a > 0 such that v′σ(x)(σ(x))′v ≥ a|v|2 for all x ∈ Cd

I
and v ∈ Rd.

We shall use the following consequence of Assumption 2.4 in our proofs.

Proposition 2.2.1. Under the Lipschitz condition (4) and Assumption 2.4, the dispersion
coefficient σ has a continuous bounded right inverse, i.e., there is a constant Cσ > 0 and
a continuous function σ† : Cd

I
→ Mm×d such that for all x ∈ Cd

I
, σ(x)σ†(x) = Id, and

|σ†(x)| ≤ Cσ for all x ∈ Cd
I
.

Proof. Under the assumptions of the proposition, since σσ′ is continuous and uniformly
strictly positive definite, it follows by standard arguments that (σσ′)−1 is a well-defined,
continuous and bounded function on Cd

I
. Then σ† := σ′(σσ′)−1 is continuous and is a right

inverse for σ. The (uniform) boundedness of σ† follows from the fact that

|σ†v|2 = v′(σσ′)−1σσ′(σσ′)−1v = v′(σσ′)−1v ≤ Cσ|v|2,

where Cσ is a bound on the norm of (σσ′)−1.

Our main result is the following theorem.

Theorem 2.2.1. Under Assumption 2.1, if Assumption 2.4 and either Assumption 2.2 or
2.3 hold, then there exists a unique stationary distribution for the SDDER (1).

Proof. The result follows from Theorems 3.6.1 and 4.3.1 below.

2.3 Examples

Example 2.3.1. Differential delay equations with linear or affine coefficients are used often
in engineering. We consider the following example of an SDDER with affine coefficients. For
x ∈ CI, let

b(x) := b0 − b1x(0) −
n
∑

i=2

bix(−ri) +

n′
∑

i=n+1

bix(−ri), (12)

and

σ(x) := a0 +

n′′
∑

i=1

aix(−si), (13)

where 0 ≤ ri ≤ τ and 0 ≤ si ≤ τ for each i, n′ ≥ n ≥ 1, n′′ ≥ 0, b0 ∈ R and
b1, . . . , bn′ , a0, . . . , an′′ ≥ 0. If a0 > 0 and

n
∑

i=1

bi >

(

n′
∑

i=n+1

bi

)(

1 + τ

n
∑

i=2

bi

)

+
1

2

(

n′′
∑

i=1

ai

)2

+ 4
√
τ

n′′
∑

i=1

ai

n
∑

i=2

bi,
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then the one-dimensional SDDER associated with (b, σ) has a unique stationary distribution.
This follows from Theorem 2.2.1: the coefficients are clearly uniformly Lipschitz continuous,

Assumption 2.2 holds with M = 0, B0 = (b0)
+, B1 = b1, B1,1 =

n
∑

i=2
bi, B2,1 =

n′
∑

i=n+1
bi, q1 = 1,

q2 = 2, ℓ(x) = B−1
1,1

n
∑

i=2

bix(−ri) if B1,1 > 0,

µ1 =

n′
∑

i=n+1

biδ{−ri}

B2,1
if B2,1 > 0, µ2 =

n′′
∑

i=1

aiδ{−si}

n′′
∑

i=1

ai

if C2,1 > 0, (14)

where for γ > 1 sufficiently small, by (111) and the Cauchy-Schwarz inequality, we may take

C0 = K(a0, γ, 2) and C2,1 = γ

(

n′′
∑

i=1

ai

)2

,

and Assumption 2.4 holds because σ is uniformly positive definite when a0 > 0.

Example 2.3.2. Fix α, γ, ε, C > 0. For x ∈ CI, define

b(x) = α
“

1+ x(−τ)
C

”2 − γ, and σ(x) = ε
√

α
“

1+ x(−τ)
C

”2 + γ .

The SDDER associated with this pair (b, σ) is a noisy version of a simple model used in the
study of biochemical reaction systems [21]. In this model, a lengthy transcription/translation
procedure leads to delayed negative feedback in the deterministic dynamics.

It is straightforward to verify that b, σ satisfy the uniform Lipschitz Assumption 2.1. If

x ∈ CI such that x(−τ) ≥ C
√

2α
γ , then b(x) ≤ −γ

2 . The dispersion coefficient is bounded

by ε
√
α+ γ. Therefore, Assumption 2.3 is satisfied with ℓ(x) = x(−τ), Kd = γ

2 , Ku = α,

Kσ = ε2(α + γ) and M = C
√

2α
γ . Also, σ is uniformly positive definite and so Assumption

2.4 holds. Therefore by Theorem 2.2.1, the SDDER associated with this (b, σ) has a unique
stationary distribution.

Example 2.3.3. Deterministic delay differential equations have been used in modeling the
dynamics of data transmission rates and prices in Internet congestion control [37]. In this
context, the finiteness of transmission times results in delayed congestion signals and leads
to differential dynamics with delayed negative feedback. There is a considerable body of work
on obtaining sufficient conditions for stability of equilibrium points (see e.g., [8, 26, 27, 28,
29, 38, 39, 41]) for such models. It is natural to ask about the properties of noisy versions
of these deterministic models and in particular to inquire about the existence and uniqueness
of stationary distributions for such models. Here, as an illustration, we consider a noisy
version of a model studied by Paganini and Wang [26], Peet and Lall [29], Papachristadolou
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[27] and Papachristadolou, Doyle and Low [28]. This model has d links and d′ sources. In
the deterministic model the dynamics are given by

dX(t) = b̂(Xt)dt, (15)

where the ith component of X(t) represents the price at time t that link i charges for the
transmission of a packet through it. The discontinuous drift b̂ is given for each i = 1, . . . , d
and x ∈ Cd

I
by

b̂i(x) =























−1 +
d′
∑

j=1
Aij exp

(

−Bj

d
∑

k=1

AkjCkjx
k(−rijk)

)

if xi(0) > 0,

(

−1 +
d′
∑

j=1
Aij exp

(

−Bj

d
∑

k=1

AkjCkjx
k(−rijk)

)

)+

if xi(0) = 0,

(16)

for some B1, . . . , Bd > 0 Aij ≥ 0, Ckj > 0 and rijk > 0 for all i, k ∈ {1, . . . , d} and
j ∈ {1, . . . , d′}. The matrix A, which is related to routing in the network model, is assumed
to have full row rank and to be such that for each i, Aij > 0 for some j, indicating that each
source must use at least one link. The solutions of (15) remain in the positive orthant by the
form of b̂ (for the meaning of a solution with such a discontinuous right hand side, see, e.g.,
[10]). Various authors (see e.g., [26, 27, 28, 29]) have given sufficient conditions, principally
in terms of smallness of the components of the gain parameter B, for there to be a unique
globally asymptotically stable equilibrium point for (16). We now consider a noisy version of
(16) and ask when it has a unique stationary distribution.

By uniqueness of solutions, the solutions of the SDDER associated with σ ≡ 0 coincide
with the solutions of (15) when the drift b in (1) is defined by

bi(x) := −1 +
d′
∑

j=1

Aij exp

(

−Bj

d
∑

k=1

AkjCkjx
k(−rijk)

)

, i = 1, . . . , d.

Allowing σ to be non-zero yields a noisy version of (16). For this noisy version, we assume
that m ≥ d and that σ : Cd

I
→ Md×m is uniformly Lipschitz continuous and satisfies

a1|v|2 ≤ v′σ(x)σ(x)′v ≤ a2|v|2 for all x ∈ C
d
I and v ∈ R

d, (17)

for some 0 < a1 < a2 < ∞. It is easily verified that b is uniformly Lipschitz continuous and
for each i = 1, . . . , d,

bi(x) ≤ −1 +

d′
∑

j=1

Aij exp
(

−BjAijCijx
i(−riji)

)

≤ −1

2
(18)

whenever
d′
∑

j=1
Aij exp

(

−BjAijCijx
i(−riji)

)

≤ 1
2 . The latter holds if

d′

min
j=1

xi(−riji) ≥
ln

(

2d′
d′

max
j=1

Aij

)

min
j:Aij 6=0

BjAijCij
.

11



(Recall that maxd′
j=1Aij > 0 by assumption.) It follows that b, σ satisfy Assumptions 2.1,

2.3 and 2.4 with τ := max
i,j,k

rijk, ℓ
i(x) =

d′

min
j=1

xi(−riji), Ku = max
i

d′
∑

j=1
Aij , Kd = 1

2 , Kσ = a2,

Cσ = 1√
a1

and

M =
d

max
i=1

ln

(

2d′
d′

max
j=1

Aij

)

min
j:Aij 6=0

BjAijCij
.

Then, by Theorem 2.2.1, the SDDER with these coefficients (b, σ) has a unique stationary
distribution. Thus, this noisy version of (16) has a unique stationary distribution without
imposing additional restrictions on the parameters. This is in contrast to the known conditions
for stability of the equilibrium solution in the deterministic equation (16).

Our results can be similarly applied to a slightly modified and noisy version of the Internet
rate control model studied by Vinnecombe [38, 39] and Srikant et al. [8, 41] to yield existence
and uniqueness of a stationary distribution for such a model without the strong conditions on
the parameters used to obtain stability of the deterministic model. In particular, consider the
deterministic delay model in equations (2)–(5) of [41] with ni,mi ≥ 0 and replace xni

i (t) by
xni

i (t)+ c for some c > 0 (to prevent blowup of the drift when xi reaches zero), replace xmi

i (t)
by g(xmi

i (t)) where g(s) = s for s ≤ K and g(s) = K for s ≥ K where K is a sufficiently
large positive constant, and truncate the feedback functions fl with an upper bound once
the argument of these functions gets to a high level. Then with a dispersion coefficient of the
same form as in (17) above one can prove that the associated SDDER has a unique stationary
distribution by verifying that Assumptions 2.1, 2.2 and 2.4 hold.

2.4 Moment Bounds over Compact Time Intervals

Under Assumption 2.1, any solution X of the SDDER (1) satisfies the following supremum
bound.

Lemma 2.4.1. For each p ∈ [2,∞), there exists a continuous function Fp : R+ × R+ → R+

that is non-decreasing in each argument and such that

E
[

‖X‖p
[−τ,T ]

]

≤ Fp(E[‖X0‖p], T ) for each T > 0. (19)

In fact,
Fp(r, s) = kp(s) + k̃p(s)r,

where the functions kp and k̃p are non-decreasing on (0,∞) and they depend only on p, the
dimensions d,m, and the linear growth constants C1, C2, C3, C4 from (5) and (6).

Sketch of proof. Inequality (110) and Proposition 2.1.1 can be used to obtain for any T > 0,

‖X‖p
[−τ,T ] ≤ 2p−1 (‖X0‖p + (dOsc(I(X), [0, T ]))p)

≤ 2p−1‖X0‖p + 22p−2dp

(

(
∫ T

0
|b(Xt)|dt

)p

+ 2p sup
s∈[0,T ]

∣

∣

∣

∣

∫ s

0
σ(Xt)dW (t)

∣

∣

∣

∣

p
)

.

The remainder of the proof follows from a standard argument (cf., Theorem 2.3 in Chapter 3 of
[19]) using the linear growth conditions (5) and (6), the Burkholder-Davis-Gundy inequalities
and a standard stopping argument allowing us to use Gronwall’s inequality.
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3 Existence of a Stationary Distribution

In this section, we prove that either Assumption 2.2 or 2.3 (in addition to Assumption 2.1) is
sufficient to imply the existence of a stationary distribution for the SDDER (1). Throughout
this section, we assume that X is a solution of the SDDER (1) with a possibly random initial
condition X0. When the initial condition for X is deterministic, we will sometimes use the
notation Xxo for the unique solution with the initial condition xo. We begin in Section 3.1 by
describing a general sufficient condition for existence of a stationary distribution in terms of
uniform (in t) moment bounds for ‖Xt‖. We then use stochastic Lyapunov/Razumikhin-type
arguments to verify that such bounds hold for second moments under either Assumption
2.2 or Assumption 2.3. Lyapunov-type functions are applied to an auxiliary process which
we call the overshoot process and which we introduce in Section 3.2. In Section 3.3 we
develop some preliminary results on the “positive oscillation” of a path. Sections 3.4 and 3.5
contain the key technical arguments for establishing the moment bounds under Assumption
2.2 and Assumption 2.3, respectively. Loosely speaking, each of these assumptions implies
that, for each i, the ith component of b has a term providing a push in the negative direction
(towards zero) on the set {x ∈ Cd

I
: |xi(0)| ≥ M} for some M > 0. The two assumptions

are distinguished by differences in the size of this “restoring force” and on the additional
terms composing b and the assumptions on σ. Assumption 2.2 allows the additional terms
in b to grow (in a sufficiently controlled manner) but requires the negative push in bi(x) to
be at least proportional to a value lying in the range of xi. For Assumption 2.3, |σ| and the
components of b are bounded above and the negative push is strictly negative and bounded
away from zero. In Section 3.6 we combine the results of the preceding subsections to obtain
the desired existence result.

Remark. Scrutiny of our proofs reveals that the results of this section still hold if Assumption
2.1 is replaced by the weaker assumptions that weak existence and uniqueness in law holds for
(1), and that the coefficients b and σ are continuous and satisfy the linear growth conditions
(5) and (6). As noted in the Remark following Proposition 2.1.2, under the latter conditions,
the solutions of (1) define a Feller continuous Markov process. As explained in Section 2, we
have assumed the stronger Assumption 2.1 throughout this paper because this assumption
will be used critically in our uniqueness proof.

3.1 Sufficient Conditions for Existence of a Stationary Distribution

A common method for showing the existence of a stationary distribution for a Markov process
is to exhibit a limit point of a sequence of Krylov-Bogulyubov measures [2, 7, 15, 30]. In light
of that, given xo ∈ Cd

I
and T > 0, we define the probability measure Qxo

T on (Cd
I
,MI) by

Qxo

T (Λ) :=
1

T

∫ T

0
Pu(xo,Λ)du for all Λ ∈ MI. (20)

Remark. The function u → Pu(xo,Λ) is measurable as a consequence of the stochastic con-
tinuity of the family {Pt(·, ·), t ≥ 0}, which follows from the continuity of the paths of Xxo .

The following theorem gives sufficient conditions for the existence of a stationary distri-
bution for the SDDER (1). Although we only use this result with p = 2 in this work, we give
the result for general p > 0 as the proof is similar for all p.
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Theorem 3.1.1. Fix xo ∈ Cd
I

and assume that sup
t≥0

E[‖Xxo
t ‖p] < ∞ for some p > 0. Then

for any sequence {Tn}∞n=1 in (0,∞) that increases to ∞, the sequence {Qxo

Tn
}∞n=1 of probability

measures is tight and any weak limit point is a stationary distribution for the SDDER (1).

Proof. By Markov’s inequality, for any T > 0 and a > 0,

Qxo

T

(

x ∈ C
d
I : |x(0)| > a

)

=
1

T

∫ T

0
P (|Xxo(s)| > a) ds ≤ 1

ap
sup
t≥0

E [|Xxo(t)|p] . (21)

The last term tends to zero as a→ ∞, independently of T .
Fix ε, λ > 0 and u ≥ τ , and recall the notation for the modulus of continuity from (3).

The linear growth condition (5) and Proposition 2.1.1 imply that for any δ > 0:

P (wI(X
xo
u , δ) ≥ λ) ≤ P

(

δ
(

C1 + C2‖Xxo‖[u−2τ,u]

)

≥ λ

2

)

+P






sup

u−τ≤s<t≤u
|s−t|<δ

max
i=1,...,d

∣

∣

∣

∣

∫ t

s
σi(Xxo

r )dW (r)

∣

∣

∣

∣

≥ λ

2






. (22)

By Markov’s inequality,

sup
t≥τ

P
(

‖Xxo‖[t−2τ,t] > a
)

≤ 2

ap
sup
t≥0

E [‖Xxo
t ‖p] ,

which approaches zero as a→ ∞. This implies that there is δ
(1)
ε,λ ∈ (0, λ

4C1
) such that

sup
u≥τ

P

(

δ
(

C1 + C2‖Xxo‖[u−2τ,u]

)

≥ λ

2

)

<
ε

4
for all δ ∈ (0, δ

(1)
ε,λ].

Since σ grows at most linearly, a standard time-change argument (see, e.g., Theorem 3.4.6

and Problem 3.4.7 of [16], or V.1.7 of [31]) implies that there is δ
(2)
ε,λ > 0 such that whenever

δ ∈ (0, δ
(2)
ε,λ] we have

sup
u≥τ

P






sup

u−τ≤s<t≤u
|s−t|<δ

max
i=1,...,d

∣

∣

∣

∣

∫ t

s
σi(Xxo

r )dW (r)

∣

∣

∣

∣

≥ λ

2






<

ε

4
. (23)

It follows that

P (wI(X
xo
u , δ) ≥ λ) <

ε

2
whenever 0 < δ < δε,λ := δ

(1)
ε,λ ∧ δ(2)ε,λ and u ≥ τ.

For any T ≥ 2τ
ε ∨ τ and 0 < δ < δε,λ, on combining the above we have

Qxo

T

(

x ∈ C
d
I : wI(x, δ) ≥ λ

)

=
1

T

∫ τ

0
P (wI(X

xo
u , δ) ≥ λ) du+

1

T

∫ T

τ
P (wI(X

xo
u , δ) ≥ λ) du

< ε. (24)

Tightness of {Qxo

Tn
}∞n=1 follows from (21) and (24), by Theorem 7.3 of [3].

The fact that any weak limit point of {Qxo

Tn
}∞n=1 is a stationary distribution is a conse-

quence of Theorem 1.2 of [3] and the Feller continuity of the associated family {Pt(·, ·), t ≥ 0}
of Markovian transition functions.
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3.2 Overshoot Process

Let M̃ ≥ 0. For each i = 1, . . . , d, define the overshoot, Zi, of Xi by

Zi(t) :=
(

Xi(t) − M̃
)+

, for t ≥ −τ. (25)

Part (iii) of Definition 2.1.1 implies that
∫ t
0 1{Xi(s)>M̃}dY

i(s) = 0 for each t ≥ 0. Thus, by

(1) and Tanaka’s formula for continuous semimartingales (see, e.g., Theorem 1.2 of Chapter
VI in [31]), we have that P -a.s., for all t ≥ 0,

dZi(t) = 1{Xi(t)>M̃}b
i(Xt)dt+ 1{Xi(t)>M̃}σ

i(Xt)dW (t) + dLi(t), (26)

where Li is a constant multiple of the local time of Xi at M̃ , which can increase only when
Xi is at M̃ and hence only when Zi is at zero.

The following consequence of Itô’s formula will be useful in Sections 3.4 and 3.5. For each
t ≥ 0,

d(Zi(t))2 = 2Zi(t)bi(Xt)dt + 2Zi(t)σi(Xt)dW (t) + 2Zi(t)dLi(t) + 1{Xi(t)>M̃}
∣

∣σi(Xt)
∣

∣

2
dt

= 2Zi(t)bi(Xt)dt + 2Zi(t)σi(Xt)dW (t)+ 1{Xi(t)>M̃}
∣

∣σi(Xt)
∣

∣

2
dt, (27)

where we have used the facts that Zi(t) = 0 when Xi(t) ≤ M̃ and Li can increase only when
Zi is at zero. Thus we have

d
(

|Z(t)|2
)

= 2(Z(t))′b(Xt)dt+ 2(Z(t))′σ(Xt)dW (t) +

d
∑

i=1

1{Xi(t)>M̃}
∣

∣σi(Xt)
∣

∣

2
dt. (28)

3.3 Positive Oscillation

We now introduce the notion of the positive oscillation of a real-valued path over a given
time interval. This refinement of the oscillation of a path (2) is well suited to our problem,
and it still obeys an inequality analogous to (107).

Definition 3.3.1. Given a path x ∈ C([a1, a2],R), define the positive oscillation of x over
[a1, a2] by

Osc+(x, [a1, a2]) = sup
a1≤s≤t≤a2

(x(t) − x(s)).

Note that there is no absolute value in the definition of Osc+, so that we have the following
obvious inequality:

Osc+(x, [a1, a2]) ≤ Osc(x, [a1, a2]), x ∈ C([a1, a2],R).

We also have the following inequalities: for all x ∈ Cd
I

and i = 1, . . . , d,

Osc+(xi, I) ≤ ‖xi‖ ≤ ‖x‖, and (29)

‖xi‖ ≤ xi(−τ) + Osc+(xi, I). (30)

We have the following property of Osc+ when it is applied to a reflected path.
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Lemma 3.3.1. Fix 0 ≤ t1 < t2 <∞. Suppose that x, y, z ∈ C([t1, t2],R) such that

(i) z(t) = x(t) + y(t) ∈ [0,∞) for all t ∈ [t1, t2],

(ii) y(t1) ≥ 0, y(·) is non-decreasing, and

(iii) y(·) can only increase when z is at zero, i.e.,
∫ t2
t1
z(s)dy(s) = 0.

Then,

Osc+(z, [t1, t2]) ≤ Osc+(x, [t1, t2]). (31)

Proof. By continuity of z and compactness of the triangle {(s, t) : t1 ≤ s ≤ t ≤ t2}, there
exist s, t ∈ [t1, t2] such that s ≤ t and Osc+(z, [t1, t2]) = z(t) − z(s). If s = t, then the
inequality (31) is clear. So we suppose that s < t. Then there are two cases to consider.

Case 1: Assume that y(s) = y(t). Then

z(t) − z(s) = x(t) − x(s) ≤ Osc+(x, [t1, t2]). (32)

Case 2: Suppose that y(s) < y(t). Then there is u ∈ [s, t] such that z(u) = 0, by (iii).
Let u′ = sup{v ≤ t : z(v) = 0}. Then u′ ∈ [u, t], z(u′) = 0 and z(v) > 0 for all v ∈ (u′, t].
Thus, y cannot increase on (u′, t] by (iii), and so by continuity, y(u′) = y(t). Then we have
that

z(t) − z(s) ≤ z(t) = z(t) − z(u′) = x(t) − x(u′) + y(t) − y(u′) = x(t) − x(u′)

≤ Osc+(x, [t1, t2]), (33)

where we have used the facts that z(s) ≥ 0, z(u′) = 0 and y(t) − y(u′) = 0.

We will also use the following technical lemma.

Lemma 3.3.2. For each i = 1, . . . , d and M̂ ≥ 0, for any 0 ≤ t1 < t2 <∞, P -a.s.,

Osc+(Xi, [t1, t2]) ≤ M̂ +

∫ t2

t1

1{Xi(u)>M̂}
(

bi(Xu)
)+
du

+ sup
t1≤r<s≤t2

∫ s

r
1{Xi(u)>M̂}σ

i(Xu)dW (u). (34)

Proof. Fix i ∈ {1, . . . , d}, M̂ ≥ 0, 0 ≤ t1 < t2 < ∞. In the definition of Z, set M̃ = M̂ , so
that Zi(·) := (Xi(·) − M̂)+. Then,

Osc+(Xi, [t1, t2]) ≤ M̂ + Osc+(Zi, [t1, t2]). (35)

The inequality (35) can be readily verified by considering s ≤ t in [t1, t2] such that the left
hand side above is equal toXi(t)−Xi(s) and then considering the three cases: (a) Xi(t) < M̂ ,
(b) Xi(t) ≥ M̂ and Xi(s) ≥ M̂ , and (c) Xi(t) ≥ M̂ and Xi(s) < M̂ . Thus, it suffices to
estimate Osc+(Zi, [t1, t2]).
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Since P -a.s., (26) holds and Li can increase only when Zi is zero, we may apply Lemma
3.3.1 to obtain that P -a.s.:

Osc+(Zi, [t1, t2]) ≤ Osc+(I i, [t1, t2]), (36)

where, for each t ≥ 0,

I i(t) := Zi(0) +

∫ t

0
1{Xi(s)>M̂}b

i(Xs)ds +

∫ t

0
1{Xi(s)>M̂}σ

i(Xs)dW (s), (37)

and

Osc+(I i, [t1, t2]) ≤
∫ t2

t1

1{Xi(u)>M̂}(b
i(Xu))+du+ sup

t1≤r<s≤t2

(
∫ s

r
1{Xi(u)>M̂}σ

i(Xu)dW (u)

)

. (38)

Thus, (34) holds.

3.4 Bounded Second Moments when b and σ Satisfy an Integral Growth

Condition

Throughout this subsection, we assume that the coefficients b, σ satisfy Assumption 2.2 (in
addition to Assumption 2.1) and we set M̃ = M +1 in the definition of the overshoot process
Z in (25). The simple inequalities Xi(·) ≤ Zi(·) + M̃ , for each i, reduce the problem of
bounding the second moment of ‖Xt‖ to that of bounding the second moment of ‖Zt‖.

3.4.1 Uniform Bound on E
[

|X(t)|2
]

Theorem 3.4.1. Suppose that E[‖X0‖2] <∞. Then, sup
t≥−τ

E[|X(t)|2] <∞.

Our proof of this theorem uses stochastic Lyapunov/Razumikhin-type arguments similar
to those found in a theorem of Mao (Theorem 2.1 of [20]). We first prove two technical
lemmas and then the proof of the theorem is given. To simplify notation, in the following we
let

Z(t) := E[|Z(t)|2] and I
i(t) := 1{Xi(t)>M} (39)

for i = 1, . . . , d and t ≥ −τ .

Lemma 3.4.1. Suppose that E
[

‖X0‖2
]

< ∞. There exists a constant M1 > 0 such that
whenever t ≥ τ is such that

Z(t) ≥M1 and Z(r) ≤ Z(t) for all r ∈ [t− 2τ, t], (40)

then

E

[

2(Z(t))′b(Xt) +

d
∑

i=1

I
i(t)

∣

∣σi(Xt)
∣

∣

2

]

< 0.

Remark. We will refer to the second inequality in (40) as the Razumikhin assumption.
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Proof. Suppose that t ≥ τ is such that (40) holds. For each x ∈ Cd
I
, there is an rx ∈ Id such

that for each i = 1, . . . , d,

− ℓi(x) = −xi(ri
x) ≤ −xi(0) + Osc+(xi, I). (41)

We note that for each u ≥ 0 such that Zi(u) > 0, we have Xi(u) > M̃ > M and so the
inequalities (10) and (11) hold with x = Xu. Then,

(Z(t))′b(Xt)

≤ B0

d
∑

i=1

Zi(t) − (B1 +B1)

d
∑

i=1

Zi(t)X i(t) +

d
∑

i=1

B1,iZ
i(t)Osc+(X i, [t− τ, t])

+

d
∑

i=1

B2,iZ
i(t)

∫ 0

−τ

|Xt(r)|q1µi
1(dr)

≤ B0

d
∑

i=1

Zi(t) − (B1 +B1)|Z(t)|2 +

d
∑

i=1

B1,iZ
i(t)M +

d
∑

i=1

B1,iZ
i(t)

∫ t

t−τ

I
i(u)(bi(Xu))+du

+
d
∑

i=1

B1,iZ
i(t) sup

t−τ≤r<s≤t

∣

∣

∣

∣

∫ s

r

I
i(u)σi(Xu)dW (u)

∣

∣

∣

∣

+ |Z(t)|
(

d
∑

i=1

B2
2,i

(∫ 0

−τ

|Xt(r)|q1µi
1(dr)

)2
)

1

2

.

Here, Assumption 2.2(i) and the positivity of the coordinates of Z were used for the first
inequality, and the fact that X(s) ≥ Z(s) for all s ≥ −τ , Lemma 3.3.2 with M̂ = M and the
Cauchy-Schwarz inequality were used for the second inequality. Combining the above with

parts (i) and (ii) of Assumption 2.2, on taking expectations and setting B1 :=
d

max
i=1

B1,i we

obtain

E

[

(Z(t))′b(Xt) +
1

2

d
∑

i=1

I
i(t)

∣

∣σi(Xt)
∣

∣

2

]

≤
(

B0 +MB1

)

E

[

d
∑

i=1

Zi(t)

]

− (B1 +B1)Z(t)

+E

[

d
∑

i=1

B1,iZ
i(t)

(

B0τ +B2,i

∫ t

t−τ

∫ 0

−τ
|Xu(r)|q1µi

1(dr)du

)

]

+E

[

d
∑

i=1

B1,iZ
i(t) sup

t−τ≤r<s≤t

∣

∣

∣

∣

∫ s

r
I

i(u)σi(Xu)dW (u)

∣

∣

∣

∣

]

+E



|Z(t)|
(

d
∑

i=1

B2
2,i

(∫ 0

−τ
|Xt(r)|q1µi

1(dr)

)2
)

1
2





+
1

2
dC0 +

1

2

d
∑

i=1

C2,iE

[∫ 0

−τ
|Xt(r)|q2µi

2(dr)

]

. (42)

We now separately develop estimates for the second and third to the last lines in (42).
For each i,

sup
t−τ≤r<s≤t

∣

∣

∣

∣

∫ s

r
I

i(u)σi(Xu)dW (u)

∣

∣

∣

∣

≤ 2 sup
t−τ≤s≤t

∣

∣

∣

∣

∫ s

t−τ
I

i(u)σi(Xu)dW (u)

∣

∣

∣

∣

. (43)
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Part (ii) of Assumption 2.2, the assumption that E[‖X0‖2] <∞ and Lemma 2.4.1 imply that
for each i,

{∫ s

t−τ
I

i(u)σi(Xu)dW (u),Fs, s ≥ t− τ

}

is a square-integrable martingale. Then, Doob’s submartingale inequality, the L2 isometry
for stochastic integrals, the independence of the coordinates of W and (11) imply that

E

[

sup
t−τ≤s≤t

∣

∣

∣

∣

∫ s

t−τ
I

i(u)σi(Xu)dW (u)

∣

∣

∣

∣

2
]

≤ 4C0τ + 4C2,i

∫ t

t−τ

∫ 0

−τ
E [|Xu(r)|q2 ]µi

2(dr)du. (44)

Then, using the Cauchy-Schwarz inequality and inequality (109), we have

E

[

d
∑

i=1

B1,iZ
i(t) sup

t−τ≤r<s≤t

∣

∣

∣

∣

∫ s

r
I

i(u)σi(Xu)dW (u)

∣

∣

∣

∣

]

≤ 4 (Z(t))
1
2





√

C0τ

(

d
∑

i=1

B2
1,i

)

1
2

+

(

d
∑

i=1

C2,iB
2
1,i

∫ t

t−τ

∫ 0

−τ
E [|Xu(r)|q2 ]µi

2(dr)du

)

1
2



. (45)

For the second last line in (42), using the Cauchy-Schwarz inequality we obtain that

E



|Z(t)|
(

d
∑

i=1

B2
2,i

(
∫ 0

−τ
|Xt(r)|q1µi

1(dr)

)2
)

1
2





≤ (Z(t))
1
2

(

d
∑

i=1

B2
2,iE

[

(
∫ 0

−τ
|Xt(r)|q1µi

1(dr)

)2
])

1
2

. (46)

Inequality (111) implies that for any γ > 1 and s ≥ −τ there is a constant Kγ ≥ 0, which
depends on d and M̃ in addition to γ, such that

|X(s)|2 ≤ Kγ + γ|Z(s)|2. (47)

Then Jensen’s inequality, the fact that each µi
1 is a probability measure, Fubini’s theorem,

inequality (109) and the Razumikhin assumption in (40) can be used to obtain, for each γ > 1
and each i,

E

[

(
∫ 0

−τ
|Xt(r)|q1µi

1(dr)

)2
]

≤ E





(

∫ 0

−τ

(

K
γ

1
q1

+ γ
1
q1 |Zt(r)|2

)

q1
2

µi
1(dr)

)2




≤
∫ 0

−τ
E

[(

K
γ

1
q1

+ γ
1
q1 |Zt(r)|2

)q1
]

µi
1(dr)

≤ Cγ + γ

∫ 0

−τ
(Z(t+ r))q1µi

1(dr)

≤ Cγ + γ(Z(t))q1 , (48)
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where Cγ :=

(

K
γ

1
q1

)q1

. Thus, we obtain

E



|Z(t)|
(

d
∑

i=1

B2
2,i

(∫ 0

−τ
|Xt(r)|q1µi

1(dr)

)2
)

1
2



 ≤ B̃2 (Z(t))
1
2 (Cγ + γ(Z(t))q1)

1
2 . (49)

Continuing on from (42), by the Cauchy-Schwarz inequality, (29), (45), (49) and (109)
we have that

E

[

(Z(t))′b(Xt) +
1

2

d
∑

i=1

I
i(t)

∣

∣σi(Xt)
∣

∣

2

]

≤ (B0 + (M +B0τ)B1)
√
d (Z(t))

1
2 − (B1 +B1)Z(t)

+E

[

d
∑

i=1

B1,iB2,iZ
i(t)

∫ t

t−τ

∫ 0

−τ
|Xu(r)|q1µi

1(dr)du

]

+4
√

C0τ

(

d
∑

i=1

B2
1,i

)

1
2

(Z(t))
1
2

+4

(

d
∑

i=1

C2,iB
2
1,i

∫ t

t−τ

∫ 0

−τ
E[|Xu(r)|q2 ]µi

2(dr)du

)

1
2

(Z(t))
1
2

+B̃2

(

Cγ (Z(t))
1
2 + γ (Z(t))

q1+1
2

)

+
1

2
dC0 +

1

2

d
∑

i=1

C2,i

∫ 0

−τ
E [|Xt(r)|q2 ]µi

2(dr). (50)

We now examine the fifth last, third last and last lines in (50) more closely. By Hölder’s
inequality, Fubini’s theorem, (47), the Razumikhin assumption and Jensen’s inequality, we
have for each γ > 1,

E

[

(
∫ t

t−τ

∫ 0

−τ
|Xu(r)|q1µi

1(dr)du

)2
]

≤ E

[

τ

∫ t

t−τ

∫ 0

−τ
|Xu(r)|2q1µi

1(dr)du

]

≤ τ

∫ t

t−τ

∫ 0

−τ
E[(Kγ + γ|Zu(r)|2)q1 ]µi

1(dr)du

≤ τ

∫ t

t−τ

∫ 0

−τ

(

E[Kγ + γ|Zu(r)|2]
)q1

µi
1(dr)du

≤ τ2 (Kγ + γZ(t))q1 . (51)

Therefore, by the Cauchy-Schwarz inequality and (109), we have

E

[

d
∑

i=1

B1,iB2,iZ
i(t)

∫ t

t−τ

∫ 0

−τ
|Xu(r)|q1µi

1(dr)du

]

≤ τ

(

d
∑

i=1

(B1,iB2,i)
2

)

1
2(

K
q1
2

γ + γ
q1
2 (Z(t))

q1
2

)

(Z(t))
1
2 . (52)
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Similarly, Hölder’s inequality, Jensen’s inequality, (47), the Razumikhin assumption and
(109) also imply that for each γ > 1:

(

d
∑

i=1

C2,iB
2
1,i

∫ t

t−τ

∫ 0

−τ
E[|Xu(r)|q2]µi

2(dr)du

)

1
2

≤ √
τ

(

d
∑

i=1

C2,iB
2
1,i

)

1
2(

K
q2
4

γ + γ
q2
4 (Z(t))

q2
4

)

, (53)

and
∫ 0

−τ
E [|Xt(r)|q2 ]µi

2(dr) ≤ K
q2
2

γ + γ
q2
2 (Z(t))

q2
2 . (54)

Continuing on from line (50), using inequalities (52), (53) and (54) we have

E

[

(Z(t))′b(Xt) +
1

2

d
∑

i=1

I
i(t)

∣

∣σi(Xt)
∣

∣

2

]

≤ K1(γ) +K2(γ) (Z(t))
1
2 +K3(γ) (Z(t))

1+q1
2 +K4(γ) (Z(t))

q2
2

+K5(γ) (Z(t))
2+q2

4 − (B1 +B1)Z(t), (55)

where K1,K2 are real-valued functions on (1,∞), and

K3(γ) = τ

(

d
∑

i=1

(B1,iB2,i)
2

)

1
2

γ
q1
2 + B̃2γ,

K4(γ) =
1

2
γ

q2
2

d
∑

i=1

C2,i and K5(γ) = 4
√
τ

(

d
∑

i=1

C2,iB
2
1,i

)

1
2

γ
q2
4 .

By Assumption 2.2(iii), we can fix a γ > 1 sufficiently small such that B1 +B1 > K3(γ)δq1,1+
(K4(γ) +K5(γ))δq2,2. For such a γ,

E

[

2(Z(t))′b(Xt) +

d
∑

i=1

I
i(t)

∣

∣σi(Xt)
∣

∣

2

]

< 0

whenever Z(t) is large enough. Indeed, define the function f : R+ → R by

f(r) := K1(γ) +K2(γ)r
1
2 +K3(γ)r

1+q1
2 +K4(γ)r

q2
2 +K5(γ)r

2+q2
4 − (B1 +B1)r.

All of the exponents for r are at most one. By the choice of γ, the constant in front of the
highest degree term is strictly negative and this implies that lim

r→∞
f(r) = −∞. Thus, there

exists a constant M1 > 0 such that r ≥M1 implies that f(r) < 0.

Lemma 3.4.2. Suppose that E[‖X0‖2] < ∞. Let M1 be defined as in the previous lemma
and assume that t ≥ τ is such that (40) holds. Then there exists an h∗ > 0 such that

Z(t+ s) < Z(t), for each s ∈ (0, h∗]. (56)
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Proof. Let ηn = t ∨ inf{s ≥ −τ : |X(s)| ≥ n} for each integer n > 0. We have from equality
(28) that for each n > 0 and h ≥ 0,

|Z((t+ h) ∧ ηn)|2 − |Z(t)|2 =

∫ (t+h)∧ηn

t

(

2(Z(s))′b(Xs) +

d
∑

i=1

1{Xi(s)>M̃}
∣

∣σi(Xs)
∣

∣

2

)

ds

+

∫ (t+h)∧ηn

t
2(Z(s))′σ(Xs)dW (s). (57)

By the definition of ηn, the stochastic integral with respect to W in the above has zero mean

since it defines a square integrable martingale as a function of h. Since E

[

sup
s∈[−τ,t+h]

|Z(s)|2
]

<

∞ by Lemma 2.4.1 with p = 2, and b and σ satisfy the linear growth bounds (5) and (6),
we can take expectations in (57) and apply the dominated convergence theorem to conclude
that

Z(t+ h) −Z(t) = E

[

∫ t+h

t

(

2(Z(s))′b(Xs) +

d
∑

i=1

1{Xi(s)>M̃}
∣

∣σi(Xs)
∣

∣

2

)

ds

]

. (58)

Define the continuous function f : R+ → [0, 1] by f(r) = (r − M)+ − (r − M̃)+. Since
M̃ = M + 1,

1(M̃ ,∞)(r) ≤ f(r) ≤ 1(M,∞)(r) for all r ≥ 0. (59)

Then by (58), (59), dominated convergence and Lebesgue’s differentiation theorem we have

lim
h→0+

Z(t+ h) −Z(t)

h
= lim

h→0+
E

[

1

h

∫ t+h

t

(

2(Z(s))′b(Xs) +
d
∑

i=1

1{Xi(s)>M̃}
∣

∣σi(Xs)
∣

∣

2

)

ds

]

≤ lim
h→0+

E

[

1

h

∫ t+h

t

(

2(Z(s))′b(Xs) +

d
∑

i=1

f(Xi(s))
∣

∣σi(Xs)
∣

∣

2

)

ds

]

≤ E

[

2(Z(t))′b(Xt) +

d
∑

i=1

I
i(t)

∣

∣σi(Xt)
∣

∣

2

]

. (60)

Here we used the fact that the integrand in the second last line is a continuous function of
s, and the fact that f(Xi(t)) ≤ 1(M,∞)(X

i(t)) = I i(t). According to Lemma 3.4.1, the last
line above is strictly negative under the assumption (40).

If there is no h∗ > 0 such that Z(t+ s) < Z(t) for each s ∈ (0, h∗], then we can construct
a sequence {hn}∞n=1 of positive numbers decreasing to zero such that Z(t+hn) ≥ Z(t) for all

n. Then lim
h→0+

Z(t+h)−Z(t)
h ≥ 0, which is a contradiction to (60). Therefore there is an h∗ > 0

such that (56) holds.

Proof of Theorem 3.4.1. By Lemma 2.4.1, the continuity of Z and the dominated convergence
theorem, Z(s) is continuous as a function of s ≥ 0. Let M1 > 0 be as in Lemma 3.4.1. Then
M2 := sup

s∈[−τ,τ ]
Z(s) + M1 is finite. If there is a t1 > τ such that Z(t1) > M2, then since
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sup
s∈[−τ,τ ]

Z(s) < M2, the time t := inf{s ≥ −τ : Z(s) > M2} is in (τ, t1). We also have

Z(t) = M2 by continuity, and thus Z(r) ≤ Z(t) for all r ∈ [t−2τ, t]. Since M2 ≥M1, Lemma
3.4.2 implies that there is an h∗ > 0 such that Z(s) < Z(t) = M2 for all s ∈ (t, t + h∗].
However, this last conclusion contradicts the definition of t. Thus, there cannot be such a t1
and consequently sup

s≥−τ
Z(s) ≤M2. This in turn implies that

sup
s≥−τ

E[|X(s)|2] ≤ sup
s≥−τ

2
(

Z(s) + dM̃2
)

≤ 2M2 + 2dM̃2. (61)

3.4.2 Uniform Bound on E[‖Xt‖2]

Theorem 3.4.2. Suppose that E[‖X0‖2] <∞. Then, sup
t≥0

E
[

‖Xt‖2
]

<∞.

Proof. Recall that we are assuming that Assumption 2.2 holds and that the overshoot process
Z is defined by (25) with M̃ = M + 1. For each t ≥ τ , by (30), (36)-(38), (43), (110) and
(10) with M̃ in place of M̂ and M , we have

‖Zt‖2 ≤
d
∑

i=1

(

Zi(t− τ) +

∫ t

t−τ
1{Xi(s)>M̃}(b

i(Xs))
+ds

+2 sup
t−τ≤s≤t

∣

∣

∣

∣

∫ s

t−τ
1{Xi(u)>M̃}σ

i(Xu)dW (u)

∣

∣

∣

∣

)2

≤ 3

(

|Z(t− τ)|2 +

d
∑

i=1

(

B0τ +B2,i

∫ t

t−τ

∫ 0

−τ
|X(s + r)|q1µi

1(dr)ds

)2

+

d
∑

i=1

4 sup
t−τ≤s≤t

∣

∣

∣

∣

∫ s

t−τ
1{Xi(u)>M̃}σ

i(Xu)dW (u)

∣

∣

∣

∣

2
)

. (62)

Using (110) and the Cauchy-Schwarz inequality, we have for each i = 1, . . . , d,

(

B0τ +B2,i

∫ t

t−τ

∫ 0

−τ
|X(s + r)|q1µi

1(dr)ds

)2

≤ 2

(

(B0τ)
2 +B2

2,iτ

∫ t

t−τ

∫ 0

−τ
|X(s + r)|2q1µi

1(dr)ds

)

, (63)

and by a similar argument to that used for (44), by (11) we have for each i:

E

[

sup
t−τ≤s≤t

∣

∣

∣

∣

∫ s

t−τ
1{Xi(u)>M̃}σ

i(Xu)dW (u)

∣

∣

∣

∣

2
]

≤ 4

(

C0τ + C2,i

∫ t

t−τ

∫ 0

−τ
E [|X(u + r)|q2]µi

2(dr)du

)

. (64)

By Hölder’s inequality, E [|X(s)|p] ≤ E
[

|X(s)|2
]

p
2 for all s ≥ −τ and 0 < p ≤ 2. Then, by

Theorem 3.4.1 and the fact that r
p
2 ≤ 1 + r for all r ≥ 0 and 0 < p ≤ 2, there is a constant

23



K > 0 such that sup
s≥−τ

E[|X(s)|p] ≤ K for all 0 < p ≤ 2. On combining the above and taking

expectations in (62), we obtain for all t ≥ τ :

E
[

‖Zt‖2
]

≤ 3

(

E[|Z(t− τ)|2] + 2d(B0τ)
2 + 2

d
∑

i=1

B2
2,iτ

∫ t

t−τ

∫ 0

−τ
E
[

|X(s + r)|2q1
]

µi
1(dr)ds

+16C0τd+ 16

d
∑

i=1

C2,i

∫ t

t−τ

∫ 0

−τ
E [|X(u+ r)|q2 ]µi

2(dr)du

)

≤ 3

(

K + 2d(B0τ)
2 + 16C0τd+ 2

d
∑

i=1

B2
2,iτ

2K + 16

d
∑

i=1

C2,iτK

)

,

where we have used the facts that |Z(s)| ≤ |X(s)| for all s ≥ −τ , 0 < q1 ≤ 1 and 0 < q2 ≤ 2.
The last line above is independent of t ≥ τ and so we have

sup
t≥τ

E
[

‖Xt‖2
]

≤ 2

(

sup
t≥τ

E
[

‖Zt‖2
]

+ dM̃2

)

<∞. (65)

Combining this with the hypothesis of the theorem and the fact that

E
[

‖Xt‖2
]

≤ 2E
[

‖X0‖2 + ‖Xτ‖2
]

for each t ∈ [0, τ ],

yields the desired result.

3.5 Bounded Second Moments when b and σ Satisfy a Boundedness As-

sumption

Throughout this subsection, we assume that the coefficients b and σ satisfy Assumption 2.3
(in addition to Assumption 2.1) and we set M̃ = M in the definition of the overshoot process
Z. In Theorem 3.5.1 below, for each i = 1, . . . , d, we show that E[exp(αXi(t))] is bounded
uniformly in t ≥ 0, for some α > 0, provided that suitable initial bounds hold. In turn, this
will be used to bound E[‖Xt‖2] uniformly for all t ≥ 0.

3.5.1 Uniform Bound on an Exponential Moment of Xi(t)

The following theorem depends on some technical lemmas that are deferred until after the
proof of the theorem.

Theorem 3.5.1. Suppose that E[exp(κ‖X0‖)] <∞ for each κ > 0. Then there exists α > 0
such that sup

t≥0
E[exp(αXi(t))] < ∞ for each i = 1, . . . , d, and consequently, sup

t≥−τ
E[|X(t)|p] <

∞ for all p > 0.

Proof. Fix i ∈ {1, . . . , d}. Let f : R+ → R+ be a twice continuously differentiable non-
decreasing function such that f(r) = 0 for r ≤ M , f(r) ≤ exp(αr) for M ≤ r ≤ M + 1, and
f(r) = exp(αr) for r ≥M + 1. Then there exist positive constants C ′ and C ′′, depending on
α, such that

f ′(r) ≤ C ′ + αf(r) and f ′′(r) ≤ C ′′ + α2f(r) for all r ∈ R+.
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Then the fact that Y i can increase only when Xi is at zero, the form of f , and Lemma 3.5.1
below imply that for any γ > 0, the differential of f(Xi(t)) satisfies

d(f(Xi(t)))

= f ′(Xi(t))bi(Xt)dt + f ′(Xi(t))σi(Xt)dW (t) +
1

2
f ′′(Xi(t))|σi(Xt)|2dt

≤ (C ′ + αf(Xi(t)))
(

(Ku +Kd)e
γM exp

(

−γXi(t) + γOsc+(Xi
t , I)

)

−Kd

)

dt

+f ′(Xi(t))σi(Xt)dW (t) + (C ′′ + α2f(Xi(t)))Kσdt

≤ f ′(Xi(t))σi(Xt)dW (t) +
(

−Kdα+ α2Kσ

)

f
(

Xi(t)
)

dt+ (C ′′Kσ − C ′Kd)dt

+(Ku +Kd)e
γM
(

C ′ exp(−γXi(t)) + α exp
(

(α− γ)Xi(t)
))

exp(γOsc+(Xi
t , I))dt.

Set α = Kd

2Kσ
, β =

K2
d

2Kσ
and γ = 2α. Then

d(f(Xi(t))) ≤ f ′(Xi(t))σi(Xt)dW (t) − β

2
f
(

Xi(t)
)

dt + C(1 + exp(γOsc+(Xi
t , I)))dt,

where C > 0 is an appropriately chosen constant (depending on α). Therefore,

d
(

eβtf
(

Xi(t)
)

)

≤ β

2
eβtf

(

Xi(t)
)

dt + eβtf ′
(

Xi(t)
)

σi(Xt)dW (t)

+Ceβt(1 + exp(γOsc+(Xi
t , I)))dt. (66)

Since Lemma 3.5.3 implies that for each t ≥ 0,

E
[

e2βt
(

f ′
(

Xi(t)
))2 ∣
∣σi(Xt)

∣

∣

2
]

≤ 2Kσe
2βt
(

(C ′)2 + α2E
[

exp
(

2αXi(t)
)])

<∞,

we have E
[

∫ t
0 e

βsf ′
(

Xi(s)
)

σi(Xs)dW (s)
]

= 0, which in turn implies that on taking expec-

tations in (66) we have

eβtE
[

f
(

Xi(t)
)]

≤ β

2

∫ t

0
eβsE

[

f
(

Xi(s)
)]

ds+ C

∫ t

0
eβs
(

1 + E
[

exp(γOsc+(Xi
s, I))

])

ds

≤ β

2

∫ t

0
eβsE

[

f
(

Xi(s)
)]

ds+ C
eβt

β
(1 +K(γ)),

where K(·) is defined in Lemma 3.5.4 below. Gronwall’s inequality now implies that

eβtE
[

f
(

Xi(t)
)]

≤ C
eβt

β
(1 +K(γ)) +

C

2
(1 +K(γ))

∫ t

0
e

β
2
(t−s)eβsds,

and thus for all t ≥ 0,

E
[

f
(

Xi(t)
)]

≤ 2C(1 +K(γ))

β
.

The form of f then implies that

sup
t≥0

E
[

exp
(

αXi(t)
)]

≤ exp (α(M + 1)) +
2C(1 +K(γ))

β
. (67)
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By considering the Taylor expansion of exp(αr), we can see that for each r ∈ R+ and positive
integer n, rn ≤ n!

αn exp(αr), and thus it follows from (67), the hypothesis of the theorem and
Hölder’s inequality that for each p > 0 and i = 1, . . . , d,

sup
t≥−τ

E[(Xi(t))p] < ∞.

3.5.2 Supporting Lemmas

We now prove the additional lemmas used in the proof of Theorem 3.5.1. We will again use
the notation I from (39).

Lemma 3.5.1. For each γ > 0 and each x ∈ Cd
I

with xi(0) ≥M , we have

bi(x) ≤ (Ku +Kd)e
γM exp

(

−γxi(0) + γOsc+(xi, I)
)

−Kd. (68)

Proof. Let x ∈ Cd
I

with xi(0) ≥ M . Since ℓi(x) ∈ xi(I), there is rx ∈ I such that ℓi(x) =
xi(rx), and thus xi(0) ≤ xi(rx) + Osc+(xi, I) = ℓi(x) + Osc+(xi, I) by the definition of Osc+.
Therefore,

0 ≤ ℓi(x) − xi(0) + Osc+(xi, I). (69)

From Assumption 2.3(i), it follows that for each γ > 0,

bi(x) ≤ Ku1[0,M ](ℓ
i(x)) −Kd1[M,∞)(ℓ

i(x)) ≤ (Ku +Kd)1[0,M ](ℓ
i(x)) −Kd

≤ (Ku +Kd)e
γM exp

(

−γxi(0) + γOsc+(xi, I)
)

−Kd. (70)

Lemma 3.5.2. For each t ≥ 0 and i = 1, . . . , d, define the process
{

ξt,i(s) := exp

(

∫ (t−τ)++s

(t−τ)+
I

i(u)σi(Xu)dW (u)

)

, s ≥ 0

}

.

Then, there exists a function K : (0,∞) × R+ → R+ independent of t and i, which can be
chosen to be non-decreasing in each coordinate, such that for each p > 0 and T ≥ 0,

E
[

‖ξt,i‖p
[0,T ]

]

∨ E
[

‖(ξt,i)−1‖p
[0,T ]

]

≤ K(p, T ).

Proof. By Hölder’s inequality, it suffices to prove this result for p > 1. Fix i, t and consider

q ∈ R satisfying |q| > 1. Since
∫ (t−τ)++s
(t−τ)+

I i(u)|σi(Xu)|2du ≤ Kσs for all s ≥ 0, by Novikov’s

condition for exponential martingales, the process
{

χq(s) :=
(

ξt,i(s)
)q

exp

(

−q
2

2

∫ (t−τ)++s

(t−τ)+
I

i(u)
∣

∣σi(Xu)
∣

∣

2
du

)

,F(t−τ)++s, s ≥ 0

}

26



is a martingale. Thus, for any stopping time η, for each s ≥ 0,

E
[

(

ξt,i(s ∧ η)
)q
]

≤ E [χq(s ∧ η)] exp

(

q2

2
Kσs

)

= exp

(

q2

2
Kσs

)

.

Now ξt,i and (ξt,i)−1 are local submartingales and so there is a sequence of stopping times
{ηn} tending to infinity as n→ ∞ and such that for each n, the stopped processes, ξt,i(·∧ηn)
and (ξt,i(· ∧ ηn))−1 are submartingales. Setting q = p and q = −p for p > 1, using Doob’s
inequality we obtain for each T ≥ 0,

E

[

sup
u∈[0,T ]

(ξt,i(u ∧ ηn))q

]

≤ CpE
[

(ξt,i(T ∧ ηn))q
]

≤ Cp exp

(

p2

2
KσT

)

,

for a constant Cp depending only on p and which can be chosen to be increasing with p.
Letting n→ ∞ and using monotone convergence completes the proof.

The following is an analogue of Lemma 2.4.1 for exponential moments in the case that σi

is bounded on {x ∈ Cd
I

: xi(0) ≥ M}. Although this result can be viewed as a delayed and
constrained analogue to Theorem 4.7 of [18], we include a proof for completeness. Scrutiny
of our proof reveals that the result does not need Assumption 2.3 (i), although the proof uses
Assumption 2.3 (ii) and the linear growth condition (5).

Lemma 3.5.3. If E [exp(κ‖X0‖)] <∞ for each κ > 0, then for each T ≥ 0 and κ > 0,

E
[

‖ exp(κ|X(·)|)‖[−τ,T ]

]

<∞.

Proof. Fix κ > 0. For each positive integer n, define the stopping time ηn := inf{t ≥ 0 :
‖X‖[−τ,t] ≥ n}, with the convention that inf ∅ = ∞. Convexity of the exponential function
implies that for each T ≥ 0,

E
[

‖exp(κ|X(·)|)‖[−τ,T∧ηn]

]

≤ 1

d

(

E
[

exp(κd‖X1‖[−τ,T∧ηn])
]

+ · · · + E
[

exp(κd‖Xd‖[−τ,T∧ηn])
])

. (71)

Since Xi(t) ≤M + Zi(t) for each t ≥ −τ and i = 1, . . . , d, we have

E
[

exp(κd‖Xi‖[−τ,T∧ηn])
]

≤ eκdM
(

E
[

exp(κd‖Zi
0‖)
]

+ E
[

‖ exp(κdZi(·))‖[0,T∧ηn]

])

. (72)

Since (26) holds with M̃ = M , as in the proof of Lemma 3.3.2, we can use Lemma 3.3.1 to
conclude that

Osc+(Zi, [0, T ∧ ηn]) ≤
∫ T

0
1{‖X‖[−τ,t]<n}|b(Xt)|dt + sup

0≤s≤T∧ηn

∫ s

0
I

i(t)σi(Xt)dW (t)

+ sup
0≤s≤T∧ηn

∫ s

0
−I

i(t)σi(Xt)dW (t), (73)
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where I i(t) is given by (39). The linear growth condition (5) and Jensen’s inequality imply
that for any β > 0 and each T > 0,

exp

(

β

∫ T

0
1{‖X‖[−τ,t]<n}|b(Xt)|dt

)

≤ 1

T

∫ T

0
exp

(

Tβ1{‖X‖[−τ,t]<n}(C1 + C2‖Xt‖)
)

dt

≤ 1

T

∫ T

0
‖exp (Tβ(C1 + C2|X(·)|))‖[−τ,t∧ηn] dt. (74)

Then (73)–(74) (with β = κd/λ) together with inequality (112) (with n = 4 and a1 =

κd
∫ T
0 1{‖X‖[−τ,t]<n}|b(Xt)|dt) imply that for any λ ∈ (0, 1), T > 0 and i = 1, . . . , d:

E
[

‖ exp(κdZi(·))‖[0,T∧ηn]

]

≤ E

[

exp

(

κd

(

Zi(0) +

∫ T

0
1{‖X‖[−τ,t]<n}|b(Xt)|dt

+ sup
s∈[0,T∧ηn]

∫ s

0
I

i(t)σi(Xt)dW (t) + sup
s∈[0,T∧ηn]

∫ s

0
−I

i(t)σi(Xt)dW (t)

))]

≤ 1 − λ

3
E

[

exp

(

3κd

1 − λ
‖X0‖

)]

+λE

[

1

T

∫ T

0

∥

∥

∥

∥

exp

(

T
κd

λ
(C1 + C2|X(·)|)

)∥

∥

∥

∥

[−τ,t∧ηn]

dt

]

+
1 − λ

3
E

[

sup
s∈[0,T ]

exp

(

3κd

1 − λ

∫ s

0
I

i(t)σi(Xt)dW (t)

)

]

+
1 − λ

3
E

[

sup
s∈[0,T ]

exp

(−3κd

1 − λ

∫ s

0
I

i(t)σi(Xt)dW (t)

)

]

. (75)

Lemma 3.5.2 (with t = 0) along with (71), (72) and (75) now imply that for each T > 0 and
λ ∈ (0, 1),

e−κdME
[

‖ exp(κ|X(·)|)‖[−τ,T∧ηn ]

]

≤ E[exp(κd‖X0‖)] +
1 − λ

3
E

[

exp

(

3κd

1 − λ
‖X0‖

)]

+
λ

T
exp

(

TκdC1

λ

)
∫ T

0
E

[

∥

∥

∥

∥

exp

(

TκdC2

λ
|X(·)|

)∥

∥

∥

∥

[−τ,t∧ηn]

]

dt

+
2(1 − λ)

3
K

(

3κd

1 − λ
, T

)

. (76)

If T ∈
(

0, 1
2dC2

]

, we can set λ = TdC2 ∈
(

0, 1
2

]

and then we obtain for each T ∈
(

0, 1
2dC2

]

,

E
[

‖ exp(κ|X(·)|)‖[−τ,T∧ηn ]

]

≤ K0(κ) +K1(κ)

∫ T

0
E
[

‖exp (κ|X(·)|)‖[−τ,t∧ηn]

]

dt, (77)
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where

K0(κ) = eκdM

(

E[exp(κd‖X0‖)] +
1

3
E [exp (6κd‖X0‖)] +

2

3
K

(

6κd,
1

2dC2

))

,

K1(κ) = deκdMC2 exp

(

κC1

C2

)

.

Inequality (77) is obvious for T = 0. Our assumptions imply that K0(κ) <∞ and K1(κ) > 0.
Therefore, since

‖exp(κ|X(·)|)‖[−τ,t∧ηn] ≤ exp(κ(‖X0‖ + n)), (78)

so that the expectation on the left of (77) is finite, Gronwall’s inequality implies that

E

[

‖ exp(κ|X(·)|)‖h

−τ, 1
2dC2

∧ηn

i

]

≤ K0(κ) exp

(

K1(κ)
1

2dC2

)

. (79)

The monotone convergence theorem can then be applied to obtain for each κ > 0,

E

[

‖ exp(κ|X(·)|)‖h

−τ, 1
2dC2

i

]

≤ K0(κ) exp

(

K1(κ)
1

2dC2

)

. (80)

The above procedure can be iterated to obtain a finite bound on E
[

‖ exp(κX(·))‖[−τ,T ]

]

for any T ≥ 0, κ > 0. Indeed, for each k ≥ 1, set T (k) = k
2dC2

. Fix k ≥ 1 and assume that

E
[

‖ exp(κ|X(·)|)‖[−τ,T (k) ]

]

<∞ for each κ > 0. (81)

We can show that this holds with k + 1 in place of k by applying the above procedure with

0 replaced by T (k), ηn replaced with η
(k)
n := inf{t ≥ T (k) : ‖X‖[−τ,t] ≥ n}, K1(κ) unchanged,

and K0(κ) replaced with K
(k)
0 (κ) which is given by the expression for K0(κ) with ‖X‖[−τ,T (k)]

in place of ‖X0‖. Then,

E
[

‖ exp(κ|X(·)|)‖[−τ,T (k+1)]

]

≤ K
(k)
0 (κ) exp

(

K1(κ)
1

2dC2

)

. (82)

By induction, (81) holds for all k. Since T (k) → ∞ as k → ∞, the proof is complete.

Lemma 3.5.4. Fix a possibly random X0. Suppose that γ > 0 and E[exp(2γ‖X0‖)] < ∞.
Then for each i ∈ {1, . . . , d} and t ≥ 0,

E
[

exp
(

γOsc+(Xi
t , I)

)]

≤ K(γ) := eγ(M+Ku)(E[exp(2γ‖X0‖)])
1
2 (K(4γ, τ))

1
2 , (83)

where K(·, ·) is specified in Lemma 3.5.2.

Proof. Lemma 3.3.2 with M̂ = M and Assumption 2.3 imply that P -a.s. for any t ≥ 0,

exp(γOsc+(Xi
t , I)) ≤ eγ(M+τKu) exp(γOsc+(Xi

0, I)) exp

(

sup
(t−τ)+≤s≤t

γ

∫ s

(t−τ)+
σi(Xu)I i(u)dW (u)

)

× exp

(

sup
(t−τ)+≤s≤t

γ

∫ s

(t−τ)+
−I

i(u)σi(Xu)dW (u)

)

≤ eγ(M+τKu) (E [exp(2γ‖X0‖)])
1
2 (K(4γ, τ))

1
2 , (84)

which is finite by assumption. Here we have used the Cauchy-Schwarz inequality twice,
Lemma 3.5.2, and (29) to obtain the second inequality.
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3.5.3 Uniform Bound on E[‖Xt‖2]

Lemma 3.5.5. Assume sup
t≥−τ

E[|X(t)|2] <∞ and E[‖X0‖2] <∞. Then sup
t≥0

E[‖Xt‖2] <∞.

Proof. After replacing B0 by Ku, setting B2,i = C2,i = 0 for each i, and using the hypothesis
of the lemma in place of Theorem 3.4.1, the proof is identical to the proof of Theorem
3.4.2.

Combining Theorem 3.5.1 with p = 2 and Lemma 3.5.5 yields the following. Recall for
this that we are assuming that Assumption 2.3 holds.

Corollary 3.5.1. Suppose E [exp (κ‖X0‖)] <∞ for all κ > 0. Then sup
t≥0

E
[

‖Xt‖2
]

<∞.

3.6 Existence Theorem

The following is obtained by combining the results from Section 3.1 and either Section 3.4 or
Section 3.5.

Theorem 3.6.1. If either Assumption 2.2 or 2.3 holds (in addition to Assumption 2.1), then
there exists a stationary distribution for the SDDER (1).

Proof. For each xo ∈ Cd
I
, the hypotheses on the initial conditions of either Theorem 3.4.2 or

Corollary 3.5.1 are met, so that sup
t≥0

E[‖Xxo
t ‖2] < ∞. The result now follows from Theorem

3.1.1.

4 Uniqueness of Stationary Distributions

Throughout this section, we assume that Assumption 2.4 holds (in addition to Assumption
2.1). We will prove uniqueness of any stationary distribution for the SDDER. For this proof,
we adapt to equations with reflection a clever asymptotic coupling argument recently in-
troduced by Hairer, Mattingly and Scheutzow [12] for stochastic delay differential equations
without reflection. Of particular note is the fact that this argument applies to equations
with a dispersion coefficient that depends on the history of the process over the delay period.
Most previous work on proving uniqueness of stationary distributions relied on showing the
mutual equivalence of distributions of Xt at some time t > 0 for all starting states, and then
applying either Doob’s theorem (see Theorem 4.2.1 in [7]) as in [30], or the techniques of
Döblin (see, e.g., [24]) as in [17, 34]. However, these arguments cannot be easily extended
to situations where σ depends on past states, because of the potential for reconstruction of
the initial condition from the quadratic variation process (see [30, 36]). In [12], this potential
difficulty is avoided by use of a different ergodic argument (see Theorem 1.1 of [12]). The
main idea of this argument is to introduce a change of probability measure under which,
with strictly positive probability, two solutions of the SDDER starting from different initial
conditions are driven towards one another as time goes to infinity.

Although our general line of argument is very similar to that in [12], there are some
differences due to the presence of reflection in the dynamics and we also provide more details
for some steps. We begin in Section 4.1 by stating an abstract uniqueness result proved in

30



[12]. The key technical section is Section 4.2 where the novel asymptotic coupling introduced
in [12] is adapted to our setting. The uniqueness result is then stated and proved in Section
4.3.

4.1 An Abstract Uniqueness Result

A key element for our proof is the following proposition, which is adapted to our situation
from Corollary 2.2 of [12]. Before stating it, we introduce some notation. Denote the space of
sequences {xn}∞n=0 in Cd

I
by (Cd

I
)∞, and endow this with the product topology and associated

Borel σ-algebra. For x ∈ Cd
I
, let P x

∞ denote the probability measure on (Cd
I
)∞ that is the

distribution of the sequence {Xnτ}∞n=0 when X is a solution of (1) started from x. Recall that
the symbol ∼ between two probability measures means that they are mutually absolutely
continuous. The following proposition follows immediately from Corollary 2.2 of [12] by
setting A = Cd

I
there.

Proposition 4.1.1. Assume that there is a family
{

P̃ x,y, (x, y) ∈ Cd
I
× Cd

I

}

of probability

measures on (Cd
I
)∞ × (Cd

I
)∞ such that for each x, y ∈ Cd

I
,

(i) P̃ x,y(· × (Cd
I
)∞) ∼ P x

∞(·) and P̃ x,y((Cd
I
)∞ × ·) ∼ P y

∞(·),

(ii) for each x, y ∈ Cd
I
,

P̃ x,y
(

({xn}∞n=0, {yn}∞n=0) ∈ (Cd
I )

∞ × (Cd
I )

∞ : lim
n→∞

‖xn − yn‖ = 0
)

> 0,

and

(iii) for each Borel set Γ in (Cd
I
)∞× (Cd

I
)∞, the mapping (x, y) → P̃ x,y(Γ) is measurable on

Cd
I
× Cd

I
.

Then there exists at most one stationary distribution for the SDDER (1).

4.2 Asymptotic Coupling of a Pair of Processes

We assume that an m-dimensional Brownian motion martingale {W (t), t ≥ 0} is given on
a filtered probability space (Ω,F , {Ft, t ≥ 0}, P ). For each λ > 0, consider the system of
SDDERs

dX(t) = b(Xt)dt + σ(Xt)dW (t) + dY (t), (85)

dX̃λ(t) = b(X̃λ
t )dt + λ(X(t) − X̃λ(t))dt + σ(X̃λ

t )dW (t) + dỸ λ(t), (86)

where P -a.s., (X(t), X̃λ(t)) ∈ R2d
+ for all t ≥ −τ , and where (Y, Ỹ λ) is a continuous adapted

process such that P -a.s., Y (0) = Ỹ λ(0) = 0 and Y i (resp. Ỹ λ,i) can increase only when Xi

(resp. X̃λ,i) is zero. We allow random F0-measurable initial conditions for X0 and X̃λ
0 . This

is a 2d-dimensional system with globally Lipschitz coefficients, and thus Proposition 2.1.2
implies that there exists a unique strong solution for any pair of initial conditions. Consider
such a solution pair (X, X̃λ), and let Uλ(t) := X(t) − X̃λ(t) for t ≥ −τ . Then, for t ≥ 0,

dUλ(t) =
(

b(Xt) − b(X̃λ
t )
)

dt − λUλ(t)dt +
(

σ(Xt) − σ(X̃λ
t )
)

dW (t) + d
(

Y − Ỹ λ
)

(t). (87)
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The following lemma is a modified version of Lemma 3.5 of [12], where here we have
equations with reflection and we give the result for all q > 4 rather than just for q = 8.
Inequality (97) is the reason that this lemma remains true in the reflected case. Our proof
of this lemma is very similar to that in [12], but for completeness, we provide the details.
We have also extracted Lemma 4.2.2 as a separate preliminary result. In [12] the analogous
result for q = 4 is included within the proof of their Lemma 4.2.1.

Lemma 4.2.1. For each α > 0 and q > 4, there exist λ > 0 and K > 0 depending only on
α, q, τ, κL such that

E

[

sup
t≥0

eαt‖Uλ
t ‖q

]

≤ KE
[

‖Uλ
0 ‖q
]

.

Before proving this lemma, we give two propositions and a preliminary lemma. The first
proposition is a simple stochastic variation of constants formula.

Proposition 4.2.1. Assume that on some filtered probability space (Ω,F , {Ft}, P ),
{ξ(t), t ≥ 0} is a continuous adapted process satisfying the following stochastic differential
equation:

dξ(t) = γξ(t)dt + dχ(t), (88)

for some γ ∈ R and some continuous semimartingale {χ(t), t ≥ 0}. Then

ξ(t) = eγtξ(0) +

∫ t

0
eγ(t−s)dχ(s), t ≥ 0, (89)

and thus for each 0 ≤ s ≤ t,

ξ(t) = eγ(t−s)ξ(s) +

∫ t

s
eγ(t−r)dχ(r).

Proof. It is straight-forward to verify that the right member of (89) satisfies (88). By the
uniqueness of solutions for this equation given the initial state ξ(0), the result follows.

The next proposition is a slight generalization of Lemma 3.4 in [12] to the case where
W is m-dimensional, and specializes to the case where h is continuous. The proof of the
proposition is nearly identical to that in [12], and so we omit it. In brief, this proof uses
the representation V β(t) = e−βt

∫ t
0 e

βsh(s)dW (s), the Burkholder-Davis-Gundy inequality,

an integration by parts and estimates on V β on the segments
[

kT
N , (k+1)T

N

]

, k = 0, . . . ,N − 1,

for sufficiently large integers N .

Proposition 4.2.2. Suppose that {h(s), s ≥ 0} is a continuous adapted process taking values
in M1×m, and assume that for each β > 0 we have an adapted continuous real-valued process
{V β(t), t ≥ 0} satisfying the stochastic differential equation

dV β(t) = −βV β(t)dt+ h(t)dW (t), t ≥ 0, (90)
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with the initial condition V β(0) = 0. Then for each T > 0 and p > 2, there exists a function
νT,p : R+ → R+ satisfying lim

β→∞
νT,p(β) = 0 such that for any stopping time η,

E

[

sup
0≤t≤T∧η

|V β(t)|p
]

≤ νT,p(β)E

[

sup
0≤t≤T∧η

|h(t)|p
]

.

For p = 4, the next lemma is implicitly proved in Lemma 3.5 of [12]. We state and prove
this result for general p > 2 here since the result may be of independent interest; however,
our proof for the general case uses the same line of argument as in [12].

Lemma 4.2.2. For each λ > 0, let ζλ be a continuous process defined on the time interval
[−τ,∞), taking values in [0,∞) such that ζλ(t) ∈ F0 for all t ∈ [−τ, 0], ζλ(t) ∈ Ft for all
t ≥ 0, and

ζλ(t) = ζλ(0) +

∫ t

0
kλ(s)ds +

∫ t

0
ℓλ(s)dW (s) + vλ(t) for all t ≥ 0, (91)

where kλ, ℓλ and vλ are continuous adapted processes taking values in R, M1×m and (−∞, 0],
respectively, and vλ is a non-increasing process satisfying vλ(0) = 0. Suppose that there are
strictly positive constants K1,K2 and K3 such that for each λ > 0, P -a.s. for all s ∈ [0,∞),

kλ(s) ≤ −λK1ζ
λ(s) +K2‖ζλ

s ‖, (92)

|ℓλ(s)| ≤ K3‖ζλ
s ‖. (93)

Then for each p ∈ (2,∞) and α > 0, there are positive constants λ and C (depending only
on p, τ, α,K1,K2,K3) such that

E

[

sup
t≥0

eαt‖ζλ
t ‖p

]

≤ CE
[

‖ζλ
0 ‖p
]

. (94)

Proof. Fix p > 2, α > 0 and κ > 2α/p such that eκpτ/2 > 2 · 3p−1. For each λ > 0 let

ξλ(t) = eκtζλ(t) for all t ∈ [−τ,∞). (95)

Then for all t ≥ 0:

dξλ(t) = κξλ(t)dt+ eκtdζλ(t)

= −βξλ(t)dt + eκtk̃λ(t)dt + eκtℓλ(t)dW (t) + eκtdvλ(t),

where β = −κ+ λK1 and k̃λ(t) = λK1ζ
λ(t) + kλ(t) for all t ≥ 0. It follows from Proposition

4.2.1 (with γ = −β) that for any 0 ≤ s ≤ t,

ξλ(t) = e−β(t−s)ξλ(s) +

∫ t

s
e−β(t−r)eκrk̃λ(r)dr

+

∫ t

s
e−β(t−r)eκrℓλ(r)dW (r) +

∫ t

s
e−β(t−r)eκrdvλ(r)

≤ e−β(t−s)ξλ(s) +K2

∫ t

s
e−β(t−r)eκr‖ζλ

r ‖dr + V β(t) − V β(s),

≤ e−β(t−s)ξλ(s) +K2e
κτ

∫ t

s
e−β(t−r)‖ξλ

r ‖dr + V β(t) − V β(s),
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where V β(t) =
∫ t
0 e

−β(t−r)eκrℓλ(r)dW (r) for all t ≥ 0, and we have used the fact that vλ is
non-increasing together with (92) for the first inequality above.

Fix an integer n ≥ 0. For each positive integer m, let ηλ
m = inf{r ≥ nτ : |ξλ(r)| ≥ m}.

Then by applying Proposition 4.2.2 with {Fnτ+t, t ≥ 0}, V β(· + nτ) − V β(nτ), W (· + nτ) −
W (nτ) and ηλ

m in place of {Ft, t ≥ 0}, V β(·), W (·) and η, respectively, and then using (93),
we obtain the following:

E

[

sup
r∈[nτ,ηλ

m∧(n+1)τ ]

|V β(r) − V β(nτ)|p
]

≤ ντ,p(β)E

[

sup
r∈[nτ,ηλ

m∧(n+1)τ ]

|eκrℓλ(r)|p
]

≤ ντ,p(β)E

[

sup
r∈[nτ,ηλ

m∧(n+1)τ ]

epκrKp
3‖ζλ

r ‖p

]

≤ ντ,p(β)Kp
3e

pκτE

[

sup
r∈[nτ,ηλ

m∧(n+1)τ ]

‖ξλ
r ‖p

]

,

whenever λ is sufficiently large that β > 0. Let

Γ(λ, n,m) = E

[

sup
r∈[nτ,ηλ

m∧(n+1)τ ]

‖ξλ
r ‖p

]

.

On combining the above with (110) and the fact that ξλ takes values in [0,∞), for all λ
sufficiently large that β > 0, we obtain that

Γ(λ, n,m) ≤ 3p−1

(

E
[

‖ξλ
nτ‖p

]

+
Kp

2e
pκτΓ(λ, n,m)

βp
+ ντ,p(β)Kp

3 e
pκτΓ(λ, n,m)

)

.

Now by choosing λ sufficiently large (depending only on p, τ, α, κ,K1,K2,K3) we can guar-
antee that β > 0 and that β is sufficiently large that

3p−1Kp
2e

pκτ

βp
≤ 1

4
and 3p−1ντ,p(β)Kp

3e
pκτ ≤ 1

4
.

Fix such a λ. Then for all n,m,

Γ(λ, n,m) ≤ 2 · 3p−1E
[

‖ξλ
nτ‖p

]

.

(We note that by the definition of ηλ
m, this holds even if Γ(λ, n,m) is infinite, since this will

only occur when the right hand side above is also infinite.) Now, on letting m → ∞, we
obtain by monotone convergence that

E

[

sup
r∈[nτ,(n+1)τ ]

‖ξλ
r ‖p

]

≤ 2 · 3p−1E
[

‖ξλ
nτ‖p

]

.

It follows that for each integer n ≥ 0,

E
[

‖ξλ
nτ‖p

]

≤ 2n3n(p−1)E
[

‖ξλ
0 ‖p
]

.
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Then,

E

[

sup
t≥0

eαt|ζλ(t)|p
]

≤ E

[

sup
t≥0

eκpt/2|ζλ(t)|p
]

≤
∞
∑

n=1

E

[

sup
t∈[(n−1)τ,nτ ]

eκpt/2|ζλ(t)|p
]

≤
∞
∑

n=1

E
[

e−κ(n−1)pτ/2‖ξλ
nτ‖p

]

≤
∞
∑

n=1

e−κ(n−1)pτ/22n3n(p−1)E
[

‖ξλ
0 ‖p
]

≤ C1E
[

‖ξλ
0 ‖p
]

≤ C1E
[

‖ζλ
0 ‖p
]

,

where C1 =
∑∞

n=1 e
−κ(n−1)pτ/22n3n(p−1) is finite by the choice of κ. The desired result then

follows by the observation that

E

[

sup
t≥0

eαt‖ζλ
t ‖p

]

≤ eατ

(

E

[

sup
t≥0

eαt|ζλ(t)|p
]

+ E
[

‖ζλ
0 ‖p
]

)

.

Proof of Lemma 4.2.1. Fix α > 0 and q > 4. Let p = q/2. From equation (87), we have by
Itô’s formula that

d|Uλ(t)|2 = −2λ|Uλ(t)|2dt+ 2
(

Uλ(t)
)′ (

b(Xt) − b(X̃λ
t )
)

dt

+2
(

Uλ(t)
)′(

σ(Xt) − σ(X̃λ
t )
)

dW (t) + 2
(

Uλ(t)
)′
d
(

Y − Ỹ λ
)

(t)

+
∣

∣

∣σ(Xt) − σ(X̃λ
t )
∣

∣

∣

2
dt. (96)

The constraints on where Y and Ỹ λ can increase and the positivity of X and X̃λ imply that
for each 0 ≤ s ≤ t,

∫ t

s
(Uλ(r))′d(Y − Ỹ λ)(r) =

d
∑

i=1

∫ t

s
Uλ,i(r)d

(

Y i − Ỹ λ,i
)

(r)

= −
d
∑

i=1

(
∫ t

s
Xi(r)dỸ λ,i(r) +

∫ t

s
X̃λ,i(r)dY i(r)

)

≤ 0. (97)

The Lipschitz continuity condition (4) on b and σ implies that for any x, y ∈ Cd
I
,

2(x(0) − y(0))′(b(x) − b(y)) + |σ(x) − σ(y)|2 ≤ (1 + κL)‖x− y‖2. (98)

Thus, on setting ζλ(t) = |Uλ(t)|2 for t ∈ [−τ,∞), we see that the hypotheses of Lemma 4.2.2
are satisfied with

kλ(s) = −2λζλ(s) + 2(Uλ(s))′(b(Xs) − b(X̃λ
s )) + |σ(Xs) − σ(X̃λ

s )|2,
ℓλ(s) = 2(Uλ(s))′(σ(Xs) − σ(X̃λ

s )),

and K1 = 2, K2 = 1 + κL and K3 = 2
√

1 + κL. The desired result then follows immediately
from Lemma 4.2.2.
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From this point on, we shall fix a λ > 0 such that the result of Lemma 4.2.1 holds for
α = 4 and q = 8 there. For two segments x, y ∈ Cd

I
, let (Xx, X̃x,y) be the unique strong

solution to (85)–(86) with the initial condition (X0, X̃
λ
0 ) ≡ (x, y). Recall that we are assuming

that Assumptions 2.1 and 2.4 hold. Then by Proposition 2.2.1, there is a continuous inverse
σ† for σ that is uniformly bounded by some finite constant Cσ. For each integer n ≥ 1 and
x, y ∈ Cd

I
, define the stopping time

ηx,y,n := inf

{

t ≥ 0 :

∫ t

0
λ2
∣

∣

∣
σ†(X̃x,y

s )(Xx(s) − X̃x,y(s))
∣

∣

∣

2
ds ≥ n

}

.

Lemma 4.2.3. For each x, y ∈ Cd
I
,

P

(

lim sup
t→∞

|Xx(t) − X̃x,y(t)| = 0

)

= 1 and lim
n→∞

P (ηx,y,n = ∞) = 1.

Proof. Fix x, y ∈ Cd
I
. Let Uλ(t) = Xx(t) − X̃x,y(t) for all t ∈ [−τ,∞) and let Υ :=

sup
t≥0

et‖Uλ
t ‖2. Then by Lemma 4.2.1, E[Υ4] ≤ K‖x − y‖8. Thus, Υ < ∞ P -a.s., and the

first conclusion of the lemma follows immediately.
Then by the bound on σ† and the fact that ‖Uλ

t ‖2 ≤ e−tΥ for each t ≥ 0, we have

∫ ∞

0
λ2
∣

∣

∣
σ†(X̃x,y

s )Uλ(s)
∣

∣

∣

2
ds ≤ λ2C2

σ

∫ ∞

0

∣

∣

∣
Uλ(s)

∣

∣

∣

2
ds ≤ λ2C2

σ

∫ ∞

0
e−sΥds ≤ λ2C2

σΥ.

Therefore,

P (ηx,y,n = ∞) ≥ P

(
∫ ∞

0
λ2
∣

∣

∣
σ†(X̃x,y

s )Uλ(s)
∣

∣

∣

2
ds < n

)

≥ P
(

λ2C2
σΥ < n

)

, (99)

which increases to one as n→ ∞ since Υ <∞, P -a.s.

4.3 Uniqueness Theorem

Theorem 4.3.1. Under Assumption 2.4 (in addition to Assumption 2.1), there exists at
most one stationary distribution for the SDDER (1).

Given the results of the previous section, our proof of the uniqueness theorem has the
same general structure as the proof of Theorem 3.1 in [12], although we include a few more
details, especially with regard to certain measurability properties.

Proof. We verify the hypotheses of Proposition 4.1.1. Define the function N : Cd
I
× Cd

I
→

{1, 2, . . . } by

N(x, y) := inf

{

n ≥ 1 : P (ηx,y,n = ∞) ≥ 1

2

}

,

which is finite valued by Lemma 4.2.3. The following maps are measurable:

C
d
J × C

d
J ∋ (ω, ω̃) →

∫ k

0
λ2
∣

∣

∣σ†(ω̃s)(ω(s) − ω̃(s))
∣

∣

∣

2
ds, k = 1, 2, . . . .
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It follows that for each n = 1, 2, . . .,

Γn :=

{

(ω, ω̃) :

∫ k

0
λ2
∣

∣

∣σ†(ω̃s) (ω(s) − ω̃(s))
∣

∣

∣

2
ds < n for k = 1, 2, . . .

}

is in MJ ⊗ MJ. Then Feller continuity of the Markovian transition functions implies that
the map (x, y) → P (ηx,y,n = ∞) = P ((Xx, X̃x,y) ∈ Γn) is measurable for each n, and so the
measurability of N(·, ·) follows. Henceforth, we abbreviate

ηx,y := ηx,y,N(x,y).

For each x, y ∈ Cd
I
, let vx,y(t) = 1{t≤ηx,y}λσ

†(X̃x,y
t )

(

Xx(t) − X̃x,y(t)
)

for t ≥ 0. Define

the process

W̃ x,y(t) := W (t) +

∫ t

0
vx,y(s)ds, t ≥ 0.

By construction of ηx,y and vx,y,

∫ ∞

0
|vx,y(s)|2ds ≤ N(x, y),

so by Novikov’s condition (see, e.g., Proposition VIII.1.15 of [31]),

ρx,y(t) := exp

(

−
∫ t

0
(vx,y(s))′ dW (s) − 1

2

∫ t

0
|vx,y(s)|2ds

)

, t ≥ 0,

defines a uniformly integrable martingale. Let ρx,y(∞) denote the P -a.s. strictly positive
limit of ρx,y(t) as t → ∞. It then follows from Girsanov’s theorem (see, e.g., Section 1 of
Chapter VIII of [31]) that the probability measure Qx,y, defined by Qx,y(A) = EP [ρx,y(∞)1A]
for all A ∈ F , is equivalent to P , and underQx,y, W̃ x,y is a Brownian motion {Ft}-martingale.
Let X̄x,y be the unique solution under Qx,y to the SDDER

dX̄(t) = b(X̄t)dt + σ(X̄t)dW̃
x,y(t) + dȲ (t), (100)

with initial condition X̄0 = y. Then, P -a.s.,

dX̄x,y(t) = b(X̄x,y
t )dt + 1{t≤ηx,y}λ

(

Xx(t)−X̃x,y(t)
)

dt+ σ(X̄x,y
t )dW (t) + dȲ (t), (101)

where W is a Brownian motion under P . For (101), we used the facts that σσ† = Id and

P
(

σ†(X̄x,y
t ) = σ†(X̃x,y

t ) for all t ∈ [0, ηx,y] ∩ [0,∞)
)

≥ P
(

X̄x,y(t) = X̃x,y(t) for all t ∈ [−τ, ηx,y] ∩ [−τ,∞)
)

= 1. (102)

The equality above follows by a very similar proof to that for the strong uniqueness of
solutions for the SDDER with Lipschitz coefficients using Gronwall’s inequality.

Since uniqueness in law holds for solutions of (85), the distribution of X̄x,y under Qx,y is
the same as that of the solution Xy to (85) under P with initial condition X0 = y. Then, since
Qx,y ∼ P , the distribution of X̄x,y under P and the distribution of Xy under P are mutually
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absolutely continuous. Thus, if we let P̃ x,y be the probability measure on (Cd
I
)∞×(Cd

I
)∞ that

is the law of
(

{Xx
nτ}∞n=0, {X̄x,y

nτ }∞n=0

)

under P , then P̃ x,y satisfies condition (i) of Proposition
4.1.1.

On the set {ηx,y = ∞}, we have X̄x,y = X̃x,y P -a.s. by (102). Thus, on {ηx,y = ∞}, by
Lemma 4.2.3 we have P -a.s.:

lim
t→∞

|Xx(t) − X̄x,y(t)| = lim
t→∞

|Xx(t) − X̃x,y(t)| = 0. (103)

Therefore,

P̃ x,y
(

({xn}∞n=0, {yn}∞n=0) ∈ (Cd
I )

∞ × (Cd
I )

∞ : lim
n→∞

‖xn − yn‖ = 0
)

≥ P (ηx,y = ∞)

≥ 1

2
, (104)

so that P̃ x,y also satisfies condition (ii) of Proposition 4.1.1.
All that remains to be shown is the measurability property (iii) in Proposition 4.1.1.

This will follow from the measurability of (x, y) → P̄ x,y (B) for each Borel measurable set
B ⊂ C(R+,C

d
I
)×C(R+,C

d
I
), where P̄ x,y is the law of (Xx

· , X̄
x,y
· ) under P . We establish the

latter below.
By a monotone class argument, it suffices to prove that for each k = 1, 2, . . ., 0 ≤ t1 < t2 <

. . . < tk <∞, and g1, . . . , gk in Cb(C
2d
I

), the mapping (x, y) → E
[

g1(X
x
t1 , X̄

x,y
t1 ) · · · gk(X

x
tk
, X̄x,y

tk
)
]

is measurable. For the proof of this, let A0 := {0 ≤ ηx,y < t1}, Ak := {tk ≤ ηx,y}, and for
each j = 1, . . . , k− 1 let Aj := {tj ≤ ηx,y < tj+1}.Then, Ω is the disjoint union of A0, . . . , Ak

and

E
[

g1(X
x
t1 , X̄

x,y
t1 ) · · · gk(X

x
tk
, X̄x,y

tk
)
]

=
k
∑

j=0

E





(

j
∏

i=1

gi(X
x
ti , X̄

x,y
ti

)

)

1Aj
E









k
∏

i=j+1

gi(X
x
ti , X̄

x,y
ti

)





∣

∣

∣

∣

Fηx,y







 , (105)

where we have used the convention that
0
∏

i=1
ai =

k
∏

i=k+1

ai = 1 for any real numbers ai.

For each x̌, x̂ ∈ Cd
I
, let P x̌,x̂ denote the law induced on C(R+,C

2d
I

) by the pair of strong
solutions to (85) with the two initial conditions x̌, x̂ and the same driving Brownian mo-
tion W . Then, by the strong uniqueness for this pair, P -a.s., on {ηx,y < ∞}, the law of

(Xx
ηx,y+·, X̄

x,y
ηx,y+·) under P conditioned on Fηx,y is given by PXx

ηx,y ,X̄x,y

ηx,y . Let hk(x̌, x̂, t) ≡ 1

for all (x̌, x̂, t) ∈ Cd
I
× Cd

I
× [0,∞]. For j = 0, 1, . . . , k − 1, define the measurable real-valued

functions hj on Cd
I
× Cd

I
× [0,∞) by

hj(x̌, x̂, t) := EP x̌,x̂





k
∏

i=j+1

gi (w̌(ti − t), ŵ(ti − t))



 , for t < tj+1,

and hj(x̌, x̂, t) = 0 for t ≥ tj+1, where (w̌, ŵ) denotes a generic point in C(R+,C
2d
I

). From
the above and using the fact (see (102)) that P -a.s., X̄x,y(·) and X̃x,y(·) agree on [−τ, ηx,y]∩
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[−τ,∞), we see that the right hand side of (105) is equal to

k
∑

j=0

E

[(

j
∏

i=1

gi(X
x
ti , X̃

x,y
ti

)

)

1Aj
hj(X

x
ηx,y , X̃

x,y
ηx,y , ηx,y)

]

=

k
∑

j=0

EP̂ x,y

[(

j
∏

i=1

gi(wti , w̃ti)

)

1Bj
hj(wη, w̃η , η)

]

, (106)

where for each x, y ∈ Cd
I
, P̂ x,y is the law of (Xx(·), X̃x,y(·)) under P ,

η(w, w̃) := inf

{

t ≥ 0 :

∫ t

0
λ
∣

∣

∣σ†(w̃s)(w(s) − w̃(s))
∣

∣

∣

2
ds ≥ N(w0, w̃0)

}

,

and Bj is defined in the same manner as Aj , but with η in place of ηx,y. The desired
measurability in (x, y) of the expression in (106) then follows directly from the Feller con-
tinuity of the transition functions associated with {(Xx

· , X̃
x,y
· ) : x, y ∈ Cd

I
}, since the fact

that N(·, ·) is measurable can be used to show that η is a stopping time with respect to
{

F̃t := σ ((ws, w̃s) : 0 ≤ s ≤ t) , t ≥ 0
}

.
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A Reflection

To ensure that a solution of (1) remains positive, we have employed Skorokhod’s well-
known mapping for constraining a continuous real-valued function to be positive by means
of reflection at the origin. This mapping was applied to each component.

For each positive integer d, define C+(R+,R
d) := {x ∈ C(R+,R

d) : x(0) ∈ Rd
+}.

Definition A.0.1. Given a path x ∈ C+(R+,R
d), we say that a pair (z, y) of functions in

C+(R+,R
d) solves the Skorokhod problem for x with (normal) reflection if

(i) z(t) = x(t) + y(t) for all t ≥ 0 and z(t) ∈ Rd
+ for each t ≥ 0,

(ii) for each i = 1, . . . , d, yi(0) = 0 and yi is non-decreasing,

(iii) for each i = 1, . . . , d,
∫ t
0 z

i(s)dyi(s) = 0 for all t ≥ 0, i.e., yi can increase only when zi

is at zero:

The path z is called the reflection of x, and the path y is called the regulator of x.

We summarize some basic facts about the Skorokhod problem in the next proposition.
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Proposition A.0.1. For each path x ∈ C(R+,R
d), there exists a unique solution (z, y) to

the Skorokhod problem for x. Thus there exists a pair of functions (φ,ψ) : C+(R+,R
d) →

C+(R+,R
2d) defined by (φ(x), ψ(x)) = (z, y). The pair (φ,ψ) satisfies the following:

(i)

Osc(φ(x), [a, b]) ≤ Osc(x, [a, b]). (107)

(ii) There exists a constant Kℓ > 0 such that for any x, y ∈ C+(R+,R
d), we have for each

t ≥ 0,
‖ψ(x) − ψ(y)‖[0,t] ≤ Kℓ‖x− y‖[0,t], and

‖φ(x) − φ(y)‖[0,t] ≤ Kℓ‖x− y‖[0,t].

Proof. These properties follow from the well-known construction of y:

yi(t) = max
0≤s≤t

(

xi(s)
)−
, i = 1, . . . , d. (108)

For more details, see [9, 14, 40]. We note that Kℓ ≤ 2, but we keep the notation Kℓ for
convenience.

B Useful Inequalities

For referencing purposes, we state here several inequalities that are used in this paper.
For any a1, a2 ≥ 0, we have the inequality

(a1 + a2)
q ≤ aq

1 + aq
2, for all q ∈ [0, 1], (109)

which is obvious if a1 = a2 or if either is 0, and if a1 > a2 > 0 then (a1 + a2)
q − aq

1 ≤
qaq−1

1 a2 < aq
2.

The following is a well-known fact that follows from the convexity of power functions. For
any p > 1, a1, . . . , an ∈ R, we have

|a1 + · · · + an|p ≤ np−1(|a1|p + · · · + |an|p). (110)

Sometimes np−1 is too big for our needs, and we will use the following alternative, which can
be proved with standard optimization techniques. For any γ > 1, and a, q ≥ 0, there is a
K = K(a, γ, q) ≥ 0 such that

(a+ t)q ≤ K + γtq for all t ≥ 0. (111)

Convexity of the exponential function implies that for any integer n ≥ 2, numbers
a1, a2, . . . , an ∈ R+, and λ ∈ (0, 1), we have

exp

(

λa1 +
1 − λ

n− 1
a2 + · · · + 1 − λ

n− 1
an

)

≤ λ exp(a1) +
1 − λ

n− 1
exp(a2) + · · · + 1 − λ

n− 1
exp(an),
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which then implies that

exp(a1 + a2 + · · · + an) ≤ λ exp

(

1

λ
a1

)

+
1 − λ

n− 1
exp

(

n− 1

1 − λ
a2

)

+ · · · + 1 − λ

n− 1
exp

(

n− 1

1 − λ
an

)

. (112)

We now state Gronwall’s inequality. For a proof, see for example [6], p. 250 and p. 262.

Proposition B.0.2. Fix T > 0. Assume that f, g are Borel measurable, integrable functions
defined on [0, T ] and taking values in R+. Suppose that there is a K > 0 such that

f(t) ≤ g(t) +K

∫ t

0
f(s)ds, for all t ∈ [0, T ].

Then

f(t) ≤ g(t) +K

∫ t

0
eK(t−s)g(s)ds, for all t ∈ [0, T ].

If g is constant, then f(t) ≤ geKt.
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