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SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS
IN THE ORTHANT

R. J. WILLIAMS*

Abstract. This paper surveys recent work on semimartingale reflecting Brownian
motions in the orthant. These diffusion processes have been proposed as approximate
models of multiclass open queueing networks in heavy traffic. The topics covered by
this survey are the problems of existence and uniqueness, recurrence classification and
stationary distributions for these diffusions.

1. Introduction. Reflecting Brownian motions in the orthant have
been proposed as approximate models of open queueing networks in heavy
traffic (see Harrison-Nguyen [19]). Such networks are of current interest
for studying congestion and delay in computer communication and man-
ufacturing systems. For single class and feedforward multiclass networks
with first-in-first-out service discipline, limit theorems to justify the diffu-
sion approximation have been proved by Reiman [37] and Peterson [36],
respectively. An outstanding open problem is to prove such a limit the-
orem for multiclass networks with feedback. Indeed, it has recently been
discovered (see for example, Lu-Kumar [29], Rybko-Stolyar [39], Dai-Wang
[11], Whitt [44], Bramson [3], [4] and Seidman [40]), that the conditions for
stability of a multiclass network are not well understood. There is currently
a good deal of activity directed towards resolving this problem which is a
precursor to the development of a heavy traffic diffusion limit theorem for
such networks. Despite the lack of a limit theorem in the multiclass case, it
is still of interest and also of potential benefit for this approximation phase
to develop a theory for the diffusions. This article focusses on the latter by
surveying recent work on reflecting Brownian motions in the orthant. In
fact, attention will be confined here to semimartingale reflecting Brownian
motions in the orthant (SRBMs). The reasons for this are that (a) many of
the queueing networks of interest lead to such processes (although there are
some models of routing that lead to non-semimartingale reflecting Brow-
nian motions — see [26] for a two-dimensional example), and (b) there
currently is no theory for non-semimartingale reflecting Brownian motions
in dimensions higher than two (see [6], [43], [45], [13], [46] for some results
on the one and two dimensional cases).

This survey will concentrate on the following two topics for SRBMs:
(i) Synthesis — existence and uniqueness with given geometric data,

(ii) Analysis — recurrence classification and stationary distributions.
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2. Synthesis — Existence and Uniqueness. This section con-
cerns the problem of existence and uniqueness of semimartingale reflecting
Brownian motions in the orthant (SRBMs). Loosely speaking, such a pro-
cess has a semimartingale decomposition such that in the interior of the
orthant it behaves like a Brownian motion with a constant drift and co-
variance matrix, and at each of the (d — 1)-dimensional boundary faces,
the finite variation part of the process increases in a given direction (con-
stant for a particular face), so as to confine the process to the orthant. For
historical reasons, this “pushing” at the boundary is called instantaneous
reflection.

For a more precise description of an SRBM, the following notation is
needed. Let d be a positive integer, S= {z € R?:z; > 0fori=1,... ,d},
0 be a constant vector in R®, T be a d x d non-degenerate covariance
matrix (symmetric and positive definite), and R be a d x d matrix. A
triple (2, F,{F;}) is called a filtered space if 2 is a set, F is a o-field of
subsets of Q, and {F;} = {F;,t > 0} is an increasing family of sub-o-fields
of F, i.e., a filtration.

DEFINITION 2.1. An SRBM associated with the data (S,0,T',R) is a
continuous, {F;}-adapted, d-dimensional process Z together with a fam-
ily of probability measures {P,,z € S} defined on some filtered space
(Q, F,{F:}) such that for each z € S, under P,

@.1) Zt)=X()+RY()€S forall t>0,

where

(i) X is a d-dimensional Brownian motion with drift vector 6, covariance
matriz T', {X(t) — 0t,F,,t > 0} is a martingale, and X(0) = =,
Py-a.s.,

(ii) Y is an {F;}-adapted, d-dimensional process such that P,-a.s. for
it=1,...,d,
(a) Yi(0) =0,
(b) Y; is continuous and non-decreasing,
(c) Yi can increase only when Z is on the face F; = {z € S :z; =

0}, i.e., [y 1£.(Z(5)) dYi(s) = Yi(t) for all t > 0.

One approach to constructing an SRBM is to try to solve the following
deterministic Skorokhod problem for all continuous paths z(-) in IR? that
start in S. This approach is based on the hope that the solutions might
be given by a measurable, adapted path-to-path mapping, which could be
applied to the paths of a Brownian motion to yield a “strong solution” of
the equations defining an SRBM.

In the following, C = C([0, 00), R?) = {z : [0, 00) — RY, z is continuous}
and Cy = {z € C: z(0) € S}. We endow C (and hence C,) with the
topology of uniform convergence on compact time intervals and define the
associated o-fields M = o{z(s) : 0 < s < 00}, M, = o{2(s) : 0 < s < t}
for all t > 0.



SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS 3

DEFINITION 2.2. (Skorokhod Problem) Let € C4. Then (2,y) €
C x C solves the Skorokhod problem (SP) for z (with respect to S and R)
if
(i) 2(t) = =(t) + Ry(t) € Sfor all t > 0,

(ii) yis such that fori =1,...,d,
(a) %(0)=0,
(b) v is non-decreasing,
(¢) y; can increase only when z is on Fj.

Harrison and Reiman [20] considered this problem in connection with
single class open queueing networks. The type of R matrix that arises
from such networks is of the form R = I — P’ where P has zeros on its
diagonal and is a transition matrix for a transient Markov chain on d states
(corresponding to the d nodes in the network). For such an R matrix,
Harrison and Reiman showed the existence of a Lipschitz continuous path-
to-path mapping ® : C; — C x C which for each 2 € C, yields an
adapted solution (z,y) = ®(x) of the Skorokhod problem for z. (Here
adapted means that the mapping  — (z,y;) is M -measurable for each
t > 0.) Moreover, this solution is the unique one for z. Scrutiny of the
proof in [20] reveals that the result extends to the case where R = I — Q,
the matrix |Q| (obtained by replacing each entry in Q by its absolute value)
has spectral radius strictly less than one, and there are no restrictions on
the signs of the entries in Q (see also Dupuis and Ishii [14]). If we apply this
result to the paths of a Brownian motion then we obtain a strong solution
of the SRBM equations. In summary we have the following.

THEOREM 2.1. Suppose that R = I — Q where |Q| has spectral radius
strictly less than one. Then for each z € C,, there is a unique adapted so-
lution ®(z) = (2,y) of the Skorokhod problem for . Define X,Y,Z on C,
by X(x) =z, (Z,Y)(z) = ®(z) for each z € C,, and for each zo € S, let
Py, denote the probability measure on (C4, M) under which the canonical
path X = z(-) is a Brownian motion with drift 8, covariance matriz T, and
starts from zo. Then Z together with { Py,,xo € S} is an SRBM associated
with (S,0,T', R). Furthermore, it defines a Feller continuous strong Markov
process.

Beyond the result of Harrison and Reiman [20], it is relatively easy to
see that a necessary condition for one to be able to solve the Skorokhod
problem for each € C is that at any point on the boundary of S, there is
a positive linear combination of the vectors of reflection that one is allowed
to use there, which points into the interior of the state space. This can
also be shown to be necessary for the existence of an SRBM starting from
each point in S (see Theorem 2.3 below). This geometric condition can be
expressed succinctly as the following algebraic completely-S condition on
the reflection matrix R.

DEFINITION 2.3. A principal submatriz of the d x d matriz R is any
square matriz obtained from R by deleting all rows and columns from R
with indices in some (possibly empty) subset of {1,...,d}. The matriz R
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is completely-S if and only if for each principal submatriz R of R there is
%> 0 such that R# > 0.

Completely-S matrices are known in the operations research litera-
ture. Alternative names for these matrices are strictly semimonotone or
completely-Q matrices. A useful property is that R is completely-S if and
only if its transpose R’ is completely-S (see [38], Lemma 3, p. 91).

If we denote the columns of Rby vy, ..., vs and the inward unit normals
to the faces F; by n; for i = 1,...,d, then the completely-S condition can
be written in coordinate form as

(S.a) for each K C {1,...,d} there is a positive linear combination v =
2icK @ivi (a; > 0 Vi € K) of the {v;,i € K} such that n; - v > 0
for all i € K,

and its adjoint form is:

(S.b) for each K C {1,...,d} there is a positive linear combination n =
ZieK bin; (bi > 0 Vi € K) of the {n;,i € K} such that n-v; >0
for all i € K.

Two sets of authors, namely, Bernard and El Kharroubi [2] and Man-
delbaum and Van der Heyden [34], independently showed that there is a
solution of the Skorokhod problem for all z € C4 when R is completely-
S. Briefly their approach may be described as follows. Approximate the
path of z € C by a piecewise linear path # and control this approximate
path using a pushing path § which keeps the resultant path 7 = 7 + Ry
in S. Control of the affine segments of # is achieved by solving linear
complementarity problems of the following form.

DEFINITION 2.4. (Linear Complementarity Problem) Let z €
R%. Then (z,y) € R? x R? is a solution of the linear complementarity
problem for x and R if
(i) z=z+Ryc S,

(ii) fori=1,...,d,
(a) v: >0,
(b) zy: =0.

One can pass to a limit in the approximation (possibly along a subse-
quence) using the following oscillation estimate (see Lemma 2.1) to obtain
the necessary compactness. This then yields a solution of the Skorokhod
problem, which is also known as the dynamic complementarity problem.
For the statement of the oscillation estimate we need the following. For
any continuous function f defined on [t;,,] into R*, some k > 1, let

Osc(f,[t1,t2]) =  sup  |f(t) = f(s)l.
11 <s<t<t,y

12928

LEMMA 2.1. Suppose that R is completely-S. Then there is a constant
& which depends only on R, such that for any z € C4 and solution (z,y)
of the Skorokhod problem for z, we have for all 0 < t; <ty < 00,

Osc(z, [t1,t2]) < £ Osc(z, [t1,12]), Osc(y, [t:,t2]) < & Osc(x, [t1, ta]).
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Proof. See Bernard and El Kharroubi [2] or Dai and Williams [12],
Lemma 4.3. a

Summarizing the above we have the following.

THEOREM 2.2. There is a solution of the Skorokhod problem for each
z € Cy if and only if R is completely-S.

The linear complementarity problem has unique solutions whenever
R is a P-matrix (all principal minors are positive) (see [7]). However,
solutions of the Skorokhod problem need not be unique, even if R is a
P-matrix, as shown by examples of Bernard and El Kharroubi [2] and
Mandelbaum [33]. This non-uniqueness has the further consequence that
the authors of [2] and [34] were not able to show that there is a measurable
path-to-path mapping ® : C4 — C x C which for each £ € C yields an
adapted solution (z,y) = ®(z) of the Skorokhod problem for z. The reason
for this is that in taking the limit of the approximate solutions, one may
need to pass to a subsequence that depends on z, and since there is no
guarantee of uniqueness, one is not able to show that the solution can be
chosen to be an adapted function of . Consequently, Theorem 2.2 cannot
be used to construct strong solutions for the SRBM equations. It is still
an open problem to determine a necessary and sufficient condition for the
existence and uniqueness of strong solutions to the SRBM equations.

Taking a different approach, in [41], Taylor and Williams sought weak
solutions of the SRBM equations. That is, rather than trying to find (Z,Y)
adapted to a given X, they sought (X,Y, Z) together which satisfied the
SRBM equations. This approach yielded the following weak existence and
uniqueness of an SRBM.

THEOREM 2.3. There erists an SRBM with data (S,0,T,R) if and
only if R is completely-S. In this case, the SRBM is unique in law and
defines a Feller continuous strong Markov process.

Proof of Theorem 2.3. The necessity of the completely-S condition
follows easily by considering starting points that range over all of the facets
of the boundary with dimensions between zero and d — 1 inclusive (see
Reiman and Williams [38] for a proof). The sufficiency of the completely-
S condition, as well as the uniqueness in law, is proved in Taylor and
Williams [41]. An alternative method for proving existence that exploits
Kurtz’s [27] patchwork and constrained martingale problem methodology
is used in Dai and Williams [12]. The uniqueness proof follows the general
line of argument in Bass and Pardoux [1] or Kwon and Williams [28], but
hinges on an ergodic property which is verified using the oscillation estimate
of Lemma 2.1. The Feller continuity and strong Markov property follow
by standard arguments once the existence, uniqueness and tightness of the
associated probability measures are established (see [41], p. 316). 0
Remark. An extension of the results in this section to semimartingale re-
flecting Brownian motions in convex polyhedrons has been obtained by Dai
and Williams [12]. Their result is sharpest for simple convex polyhedrons.
In a simple polyhedron, precisely d faces meet at a vertex in d dimensions,
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and then a natural generalization of the completely-S condition (S.a) is
necessary and sufficient for the weak existence and uniqueness of an SRBM.
For non-simple convex polyhedrons, a generalized completely-S condition
together with an adjoint condition (cf. (S.b)) provides a sufficient condi-
tion for the weak existence and uniqueness of an SRBM. See [12] for more
details. Reflecting Brownian motions in convex polyhedrons are of interest
as approximate models of closed, capacitated and fork-join networks. In
particular, the latter can lead to SRBMs in non-simple convex polyhedrons
(see Nguyen [35]).

3. Analysis — Recurrence and Stationary Distributions. Hence-
forth we assume that the matrix R is completely-S and without loss of
generality we assume that it has ones on its diagonal (this can always be
achieved by a renormalization of the vectors of reflection). We let Z to-
gether with {P;, 2 € S}, defined on some filtered space, denote a realization
of the SRBM associated with (S,6,T, R). Expectations under P, will be
denoted by E,.

We first consider the problem of determining conditions for positive
recurrence of Z. If Z is positive recurrence then there is a unique stationary
distribution for Z. The second part of this section is devoted to the problem
of characterizing (and computing) such a stationary distribution.

DEFINITION 3.1. The SRBM Z is positive recurrent if for each closed
set A in S having positive Lebesque measure we have E[ra] < oo for all
r €S, where T4 =inf{t > 0: Z(t) € A}.

Recently Dupuis and Williams [15] proved that a sufficient condition
for positive recurrence of the SRBM Z is that all solutions of a related
deterministic Skorokhod problem are attracted to the origin in the following
sense.

DEFINITION 3.2. A path z € C is attracted to the origin if and only if
Jor each € > 0 there is T < 0o such that |2(t)| < € for allt > T.

THEOREM 3.1. Suppose that all solutions 2 of the Skorokhod problem
for drift paths x of the form z(t) = 2o+ 0t,t > 0, 2o € S, are attracted
to the origin. Then the SRBM Z is positive recurrent and it has a unique
stationary distribution.

Proof. The details of the proof can be found in Dupuis and Williams
[15]. We briefly mention some of the key aspects here. F irstly, because
of the Brownian motion diffusive aspect of Z, it suffices for the positive
recurrence of Z to show that E;[r,] < oo for all z € S and all r sufficiently
large, where 7. = inf{t > 0: |Z(t)| < r} (see the proof of Theorem 2.6 in
[15]). The mechanism used in [15] to establish the finiteness of these first
moment hitting times is to construct a Lyapunov function f that has the
following properties. The function f is twice continuously differentiable on
S\ {0} and
(i) given N < oo, there is M < oo such that z € S and |z| > M imply

f(z) > N,
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(ii) given ¢ > 0 there is M < oo such that z € S and |z| > M imply
|D?f(z)]| < €, where ||D?f(z)|| denotes the matrix norm of the
Hessian D*f of f at z,

(iii) there exists ¢ > 0 such that
(a) -Vf(z) < —cforallz €S\ {0},

(b) v, ' Vf(z)< —cforallze F;,i=1,...,d.

Here V denotes the gradient of f. It follows easily from It6’s formula and

the semimartingale decomposition of Z that for such a function f there is

n > 0 such that for all » sufficiently large,

Eulr] < 2/()/n.

The main work of [15] is in constructing the Lyapunov function f. Be-
sides its use in proving positive recurrence, this Lyapunov function can be
used to obtain bounds on moments and path excursion estimates for the
SRBM. It can also be used to prove that certain functionals of processes
approximating an SRBM converge weakly to the same functionals of the
limit SRBM. 0

Theorem 3.1 can be applied to verify the sufficiency of the following
conditions for positive recurrence of an SRBM (these results were pre-
viously established by other means). It is an interesting open problem to
obtain some new conditions for positive recurrence using Theorem 3.1. An-
other problem of interest is to determine whether the condition of Theorem
3.1 is necessary for positive recurrence of the SRBM.

In the following, v;; denotes the jth component of the vector v;, which
in turn is the ith column of the reflection matrix R.

THEOREM 3.2. Suppose d = 2. Then the SRBM Z is positive recurrent
if and only if

0 + ’02102_ <0 and 0,+ 01291_ <0,

where the minus sign superscript denotes the negative part of a number and
since R has ones on its diagonal, vi; = 1,v93 = 1.

Proof. See Hobson and Rogers [24] for the case 6 # 0, and Williams
[46] for 8 = 0. The sufficiency of the above conditions can also be verified
by hand using Theorem 3.1. o

THEOREM 3.3. Suppose R = I — P’ where P has zeros on its diagonal
and is a transition matriz for a iransient Markov chain on d states. Then
the SRBM Z is positive recurrent if and only if R™10 < 0, where the
tnequality is understood to hold component by component.

Proof. See Harrison and Williams [21]. The necessity of the condition
is easy to establish. An alternative proof of the sufficiency can be given
using Theorem 3.1 and the stability of solutions of the Skorokhod problem
for drift paths established by Chen and Mandelbaum [5], Theorem 5.2. 0O
Remark. Stimulated by the result in Theorem 3.1, J. G. Dai [8] has proved
an analogue for queueing networks, namely that stability of fluid limits
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associated with a queueing network implies positive recurrence for a Markov
process that describes the dynamics of the network. Dai’s method of proof
is different from that in [15] in the sense that he does not construct a
Lyapunov function. See other papers in this volume for discussion of how
Dai’s result can be used to determine sufficient conditions for the stability
of multiclass networks with feedback.

Remark. Malyshev and his collaborators [30], [32], [31], [25], have been
working on problems of recurrence for reflected random walks in orthants.
They too use a related deterministic dynamical system and Lyapunov func-
tions to obtain conditions for positive recurrence of their reflected random
walks. However, the details of how they obtain their deterministic dy-
namical system from the reflected random walk seem to be different from
how the Skorokhod problem with drift paths is related to the SRBM. It
would be interesting to further investigate the connections and differences
between these approaches.

Let us now turn to the problem of characterizing the stationary distri-
bution of the SRBM Z.

DEFINITION 3.3. A stationary disiribution for Z is a probability mea-
sure m on the state space S, endowed with the Borel o-algebra, such that
for each real-valued, bounded Borel measurable function f defined on S, we
have

/Ez[f(Z(t))] w(dx):/f(z) w(dz) for all t> 0.
s 5

For such a 7, we shall let P, = fs P,w(dz) and E; denote expectation
under Py. Parts (i) and (ii) of the following result were proved in Harrison
and Williams [21] for the case where R = I— P’, P has zeros on the diagonal
and is the transition matrix for a transient Markov chain. However, as
described in Dai and Harrison [9], the proofs easily extend to the case
where R is completely-S. A simple proof of part (iii) is given in [9].

LEMMA 3.1. Suppose that Z has a stationary distribution w. Then the
following hold.

(i) The stationary distribulion m is unique and it has a density py relative
to Lebesgue measure on S.

(ii) For each i € {1,...,d}, there ezists a finite Borel measure v; on F;
that has a densily p; relative to surface measure o; on F;, and

B[ raenave)] =¢ [ Sulds),

for all real-valued, bounded Borel measurable functions f defined
on F;.
(iit) The matriz R is invertible.
From the abstract theory of Markov processes, we know that a sta-
tionary distribution for Z can be characterized by the property that it
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annihilates all of the functions in the range of the infinitesimal generator
(see [16] for example), i.e., fg fdr = 0 for all f in the range of the in-
finitesimal generator. However in general, for multidimensional diffusions
with boundary and especially for the case treated here where the bound-
ary conditions are non-smooth, it is virtually impossible to characterize
the range of the generator. Thus, it is natural to seek an alternative an-
nihilation characterization. The one to be given here has the virtue that
it incorporates boundary information into the annihilation relation, rather
than incorporating it by restricting to a class of test functions f that sat-
isfy certain boundary conditions. To obtain the characterization we need
to make a connection between the process Z and its associated analytical
theory. Since Z is a semimartingale, the natural mechanism for this is It&’s
formula. Let CZ(S) denote the space of continuous, bounded, real-valued
functions defined on S that have bounded continuous first and second par-
tial derivatives on S, and suppose that the semimartingale decomposition
of Z is given by (2.1). Then, for each f € CZ(S) and z € S, we have P;-a.s.
for all ¢t > 0,

31 fZ@®) - £(20)) / VF(Z(s)) - dB(s)
+Z /0 D;if(Z(s)) dYi(s)

+ /0 Lf(Z(s))ds,

where the first integral is a stochastic integral with respect to the driftless
Brownian motion B(t) = X(t) — 6t,

1 & o f
‘52 i 92,03 +§ 61:,

and
Dif =v;-Vf, for i=1,...,d.
Suppose 7 is a statlonary distribution for Z. Taking expectations in (3.1)

under E, and using Lemma 3.1 we see that p = (po; p1, - - -, Pa) must satisfy
the following basic adjoint relation:

d
(3.2) /prodz+2/ D;fpido; =0 for all fGCf(S).
s i=1/Fi

Thus, (3.2) is a necessary condition that must be satisfied by the den-
sity p associated with a stationary distribution 7 and the auxiliary measures
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vi, i=1,...,d. In fact, (3.2) characterizes the stationary distribution, as
shown by the following theorem of Dai and Kurtz [10].

THEOREM 3.4. Suppose that py is a probability density on S (relative
to Lebesgue measure) and for each i € {1,...,d}, p; is a non-negative
integrable (with respect to o;) Borel measurable function defined on F;. If
P = (po;p1,...,pd) satisfies the basic adjoint relation (3.2), then pg is the
stationary density for Z and dv; = p;do; defines the boundary measures
described in Lemma 3.1(i1).

We may think of the integral relation (3.2) as the weak form of an
elliptic partial differential equation with oblique derivative boundary con-
ditions. One might be tempted to try to work with these differential equa-
tions directly, rather than with the integral relation (3.2). However, there
is a primary difficulty with this. From the probabilistic derivation of (3.2},
we do not obtain any smoothness properties of p other than the obvious
application of Weyl’s lemma which yields that py is C* in the interior of
S. In particular, it is difficult to determine the regularity properties of pg
near the boundary of S. Furthermore, experience with closed form solu-
tions for two dimensional cases (see {17], [18], [42]), suggests that py may
have singularities at some of the non-smooth parts of the boundary. Direct
analysis of (3.2) seems to be more fruitful. Indeed, we have the following
result on product form solutions.

DEFINITION 3.4. The SRBM Z is said to have a product form station-
ary distribution if it has a stationary density po which can be written in the
form

d
po(z) = pr,(:ci) forallz € S,

i=1

where for eachi € {1,...,d}, p is a probability density relative to Lebesgue
measure on [0, 00).

THEOREM 3.5. The SRBM Z has a product form stationary distribu-
tion of and only if

vy=-R716>0
and
o' = RA + AR’

where A is a diagonal matriz with the same diagonal eniries as T'. In this
case,

po(z) = Cexp(—n-2z) foradlzeS,

where n = 201y, C = Hle 7, ‘and the boundary density p; is the restric-
tion of %F;;po to F;,i=1,...,d.
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Proof. As observed by Dai and Harrison [9], the proof given in Harrison
and Williams [21] for the case of matrices R that come from single class
open queueing networks extends to all completely-S matrices R. O

For matrices R that are associated with Brownian models of feedfor-
ward (multiclass) networks, an interpretation of the above product form
condition was given in Harrison and Williams [23], in terms of a notion
of quasireversibility for the Brownian model. Furthermore, examples were
given in [23] of queueing networks which are not known to be of product
form, but for which the approximating Brownian model has a product form
stationary distribution.

In general, it is unlikely that one will be able to find closed form solu-
tions to (3.2). Thus one is naturally led to consider numerical methods. Dai
and Harrison [9] have initiated work in this direction by using an L? projec-
tion scheme to find approximate solutions of this relation with p; = pg/2.
One of the interesting problems in this area is that it is difficult to impos-
sible to test numerically whether a function is positive. Thus, one would
like to have a characterization of the stationary density as in Theorem 3.4,
but without the positivity assumptions on py, p1, ..., p4.

4. Conclusion. As the preceding survey shows, a good deal of progress
has been made on the theory of reflecting Brownian motions in polyhedral
domains in recent years. However, a number of open problems remain. A
selection of these is summarized below.

(i) To prove a heavy traffic limit theorem for multiclass open queueing
networks which justifies the use of SRBMs as approximate models
for such.

(ii) To determine necessary and sufficient conditions for the existence and
uniqueness of semimartingale reflecting Brownian motions in non-
simple convex polyhedrons (only sufficient conditions are given in
Dai-Williams [12]).

(iii) Develop a theory of non-semimartingale reflecting Brownian motions
in convex polyhedrons in three and more dimensions.

(iv) Use the sufficient condition of Theorem 3.1 to obtain concrete al-
gebraic conditions for the positive recurrence of SRBMs. Also,
determine whether this condition is necessary.

(v) Try to free the analytic characterization (cf. Theorem 3.4) of the
stationary density for an SRBM from the a priori assumption of
positivity of the densities pg,pi,...,ps. Also, try to develop new
numerical schemes for computing such stationary densities or re-
lated moments.
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