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Abstract. A cellular wireless communication system in which data
is transmitted to multiple users over a common channel is considered.
When the base stations in this system can cooperate with each other, the
link from the base stations to the users can be considered a multi-user
multiple-input multiple-output (MIMO) downlink system. For such a
system, it is known from information theory that the total rate of trans-
mission can be enhanced by cooperation. The channel is assumed to
be fixed for all transmissions over the period of interest and the ratio
of anticipated average arrival rates for the users, also known as the rel-
ative traffic rate, is fixed. A packet-based model is considered where
data for each user is queued at the transmit end. We consider a simple
policy which, under Markovian assumptions, is known to be throughput-
optimal for this coupled queueing system. Since an exact expression for
the performance of this policy is not available, as a measure of perfor-
mance, we establish a heavy traffic diffusion approximation. To arrive at
this diffusion approximation, we use two key properties of the policy; we
posit the first property as a reasonable manifestation of cooperation and
the second property follows from coordinate convexity of the capacity
region. The diffusion process is a semimartingale reflecting Brownian
motion (SRBM) living in the positive orthant of N -dimensional space
(where N is the number of users). Nominally, this SRBM has one di-
rection of reflection associated with each of the 2N

− 1 boundary faces.
We show that, in fact, only those directions associated with the (N −1)-
dimensional boundary faces matter for the heavy traffic limit. The latter
is likely of independent theoretical interest.
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1. Introduction

Current cellular wireless systems consider each base station as a separate
entity with no cooperation among base stations. Infrastructure cooperation,
that is, cooperation among base stations, has been proposed as a means of
achieving higher throughput (see, e.g. [6; 17; 22]) where the main idea is
to consider the base stations as one end of a multiple-input multiple-output
(MIMO) system. For such a system, it is known from the information-
theoretic literature that the rate of transmission can be enhanced by coop-
eration at the transmit end, that is, among the base stations.

In this paper, we consider a MIMO downlink system where data is buffered
at the transmit end and the channel is assumed to be fixed for all transmis-
sions over the period of interest (one might view this as one period for a
quasi-static channel). The N -user (where N is an arbitrary positive inte-
ger) MIMO downlink system can be seen as a model of a cellular system
with N users and multiple cooperating base station antennas. The latter
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might consist of multiple cooperating base stations, each with a single an-
tenna, or a single-cell cellular system with a multi-antenna base station or
a combination thereof.

This communication system has a corresponding queueing system formu-
lation where, even in the simple case of Poisson arrivals, independently for
each user, it is not known how to minimize the average delay for a given
load. Furthermore, closed-form expressions for average delay are unavailable
for many simple policies; usually, this means that any meaningful compari-
son has to be done via simulations. However, when the ratio of the average
arrival rates (also known as the relative traffic rate) is specified in advance,
the maximum possible throughput can be computed and a simple policy
can be shown to be throughput-optimal1 under Markovian assumptions. An
exact expression for the performance of this policy is not available. In this
paper, as a measure of performance, we prove a limit theorem justifying a
diffusion approximation for the queueing system when heavily loaded and
operating under this policy (see Theorem 6.1). For this, we use two key
properties of the policy: (9) and (10); we posit the first property as a rea-
sonable manifestation of cooperation and the second property follows from
coordinate convexity of the capacity region. The approximating diffusion is
an N -dimensional semimartingale reflecting Brownian motion (SRBM) liv-
ing in the positive N -dimensional orthant. Our limit theorem has general
distributional assumptions on the arrivals and packet lengths. In particular,
we do not require Markovian assumptions.

We are not aware of analyses of other policies that have been shown to
be throughput-optimal for a general convex (rather than a convex poly-
hedral) capacity region. However, scheduling policies for certain heavily
loaded wireless systems with convex polyhedral capacity regions have been
studied in [21; 23] (also see references therein). In [23], Stolyar consid-
ered a generalized switch. He showed that under MaxWeight scheduling
and certain restrictive conditions, including a resource pooling condition,
in heavy traffic there is state space collapse (SSC), the workload process
converges to a one-dimensional reflecting Brownian motion (RBM), and
MaxWeight asymptotically minimizes the workload. Shakkotai et al. [21]
studied a throughput-optimal scheduling rule, which they called an expo-
nential scheduling rule, and showed that under a resource pooling condition
this policy is asymptotically pathwise optimal in the sense that there is SSC,
the workload process is asymptotically minimized and converges to a one-
dimensional RBM. In the following, we point out some of the differences
between our assumptions and those in [21; 23]. The Maxweight policy [23]
is designed for the case when the capacity region is a convex polyhedron
while the policy we consider is designed for more general convex capacity
regions. Moreover, a complete resource pooling (CRP) condition is assumed

1For a Markovian system, throughput-optimal means that the long run average depar-
ture rate exists and equals the long run average arrival rate whenever the nominal load
lies inside the capacity region, cf. [9, p. 26].
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in [23]. Whereas for the convex capacity region considered here, the ana-
logue of the CRP condition typically does not hold (see Section V.B of [3]
for further explanation of this point). The arrival process in [23] is assumed
to be an ergodic Markov process while we assume that the arrival process is
a renewal process. In [21], the capacity region is a convex polyhedron and a
CRP condition similar to that in [23] is assumed; however, service is given
to only one queue at a time while here we can serve more than one queue at
the same time which leads to an enhanced transmission rate. A significant
difference between our work and that in [21; 23] is that we do not assume
complete resource pooling and accordingly our diffusion approximation is in
general multi-dimensional rather than one-dimensional.

The rest of this paper is organized as follows. In Section 1.1, we explain
the notation used in this paper and present some mathematical preliminar-
ies. We describe the communication system of interest in Section 2 and
develop a queueing analogue for it in Section 3. The stochastic assumptions
for the model are specified in Section 3 and the workload process is intro-
duced as our performance process of interest. The service policy and its
key properties are described in Section 3.4. We formally define the heavy
traffic conditions in Section 4. In Section 5, we define scaling, present stan-
dard functional limit theorems for the stochastic primitives, and define some
parameters for the limit process. In Section 6, we first define an SRBM (Def-
inition 6.1), and then present the main result of this paper (Thoerem 6.1)
which states that the sequence of diffusion-scaled workload processes con-
verges in distribution to an SRBM as described in Definition 6.1. We provide
our proof of the main result in Section 7. The first step in the proof is to
show that the sequence of diffusion-scaled workload processes is C-tight for
which we use some recent results of Kang and Williams [14]. A key result for
our proof of Theorem 6.1 is Theorem 7.7. Nominally, the limit SRBM has
one direction of reflection associated with each of the 2N −1 boundary faces.
In Theorem 7.7, we show that, in fact, only those directions associated with
the (N − 1)-dimensional boundary faces matter for the heavy traffic limit.
Appendix A contains the proof of an auxiliary lemma.

For two-user systems, a result similar to Theorem 6.1 was proved in The-
orem VIII.3 of Bhardwaj, Williams, and Acampora [3]. The result here
is considerably more general and the proof is different. Indeed, the result
in [3] is only for a two-user system, whereas the result presented in this pa-
per is for an arbitrary number of users. Moreover, the approximation result
in [3] is for diffusion-scaled queue length, while our main theorem here is for
diffusion-scaled workload. In [3], the SRBM data was simplified because in
two dimensions the nominal vector of reflection at the origin can be written
as a convex combination of the directions on the two sides of the quadrant.
In higher dimensions, this is usually not possible. Indeed, there is one di-
rection of reflection for each of the 2N − 1 boundary faces. A key element
of the proof presented here is to show that the pushing at boundary faces
of dimension N − 2 or less is inconsequential (see Theorem 7.7).
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1.1. Notation and Preliminaries. We will use the following notation
throughout the paper. We will use N to denote the set {1, 2, . . . , N} where
N is a finite positive integer, K to denote an arbitrary subset of N , and
Kc to denote the complement of K in N . We will use P(A) to indicate the
power set of an arbitrary set A. We will use |A| to denote the cardinality
of the set A. The symbol 1A denotes the indicator function of a set A, i.e.,
1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A.

Let Z denote the set of all integers, Z+ the set of all non-negative integers,
R denote the set of real numbers, and R+ denote the set of non-negative
real numbers, which is also denoted by [0,∞). The symbol RN will denote
N -dimensional Euclidean space and the positive orthant in this space will be
denoted by RN

+ = {x ∈ RN : xi ≥ 0 for all i ∈ N}. All vectors and matrices
in this paper are assumed to have real-valued entries. Let 0 = (0, 0, . . . , 0) ∈
RN

+ . We denote the inner product on RN by 〈·, ·〉, i.e., 〈x, y〉 =
∑N

i=1 xiyi,

for x, y ∈ RN . The usual Euclidean norm on RN will be denoted by ‖·‖ so

that ‖x‖ =
√

〈x, x〉 =
(

∑N
i=1 x2

i

)1/2
for x ∈ RN . Let B(RN ) denote the

σ-algebra of Borel subsets of RN . For any non-empty set K ⊆ N and any
x ∈ RN , xK will denote the vector whose components are those of x with
indices in K. Let eN ∈ RN denote the vector whose entries are all 1. For
x, y ∈ RN , we shall use x ∧ y to denote the vector whose i-th component
is the minimum of xi and yi for each i ∈ N . All vector inequalities are
understood to hold componentwise. For a ∈ RN , we shall use diag(a) to
denote the N × N diagonal matrix whose diagonal entries are given by the
entries in a. We will let (·)′ denote transpose. For any set ∅ 6= K ⊆ N , we
define the face FK by

(1) FK , {x ∈ RN
+ : xi = 0 for all i ∈ K}.

For example FN = {0}, the set consisting of the origin in RN . When K = {i}
for i ∈ N , we write Fi in place of F{i} sometimes. We define the index set

of any point x ∈ RN
+ by

(2) K(x) , {i ∈ N : xi = 0}
with the convention that K(w) = ∅ if w > 0. A domain in RN is an
open connected subset of RN . For each continuously differentiable real-
valued function f defined on some non-empty domain S ⊆ RN , ∇f(x) is the
gradient of f at x ∈ S:

(3) (∇f(x))i =
∂f

∂xi
(x), i = 1, 2, . . . , N.

For any set S ⊆ RN , we write S for the closure of S, So for the interior of
S, and ∂S = S \ So.

All stochastic processes used in this paper will be assumed to have paths
that are right continuous with finite left limits (r.c.l.l.). We denote by DN

the space of r.c.l.l. functions from [0,∞) into RN and we endow this space
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with the usual Skorokhod J1-topology (see Ethier and Kurtz [8, Chapter 3,
Section 5]) which makes it a Polish space. We denote by CN the space of
continuous functions from [0,∞) into RN , also endowed with the Skorokhod
J1-topology under which convergence of elements in CN is equivalent to
uniform convergence on compact time intervals. We endow DN (or CN )
with the Borel σ-algebra induced by the Skorokhod J1-topology and denote
this σ-algebra by MN . The abbreviation u.o.c. will stand for uniformly on
compacts and will be used to indicate that a sequence of functions in DN (or
CN ) is converging uniformly on compact time intervals to a limit in DN (or
CN ). An N -dimensional process is a measurable function from a probability
space into (DN ,MN ). Consider W, W 1, W 2, . . . , each of which is an N -
dimensional process (possibly defined on different probability spaces). The
sequence {Wn}∞n=1 is said to be tight if the probability measures induced by
the sequence {Wn}∞n=1 on (DN ,MN ) form a tight sequence, i.e., they form
a weakly relatively compact sequence in the space of probability measures
on (DN ,MN ). The notation “Wn ⇒ W” will mean that “Wn converges in
distribution to W as n → ∞”. The sequence of processes {Wn}∞n=1 is called
C-tight if it is tight and if each weak limit point (obtained as a weak limit
along a subsequence) is in CN almost surely.

A triple (Ω,F , {Ft, t ≥ 0}) will be called a filtered space if Ω is a set,
F is a σ-algebra of subsets of Ω, and {Ft, t ≥ 0} is an increasing family
of sub-σ-algebras of F , i.e., a filtration. From now on, we will write a
filtration {Ft, t ≥ 0} as simply {Ft}. If P is a probability measure on (Ω,F),
then (Ω,F , {Ft}, P ) is called a filtered probability space. An N -dimensional
process X = {X(t), t ≥ 0} defined on (Ω,F , P ) is called {Ft}-adapted if for
each t ≥ 0, X(t) : Ω → RN is measurable when Ω is endowed with the
σ-algebra Ft and RN has the usual Borel σ-algebra B(RN ), and X is said
to be a continuous process if its sample paths are continuous P -a.s.

2. Communication System Model

In this section we specify the communication system under consideration.
We consider a cellular wireless network where base stations cooperate over
noise-free infinite capacity links. We do not make any distinction between a
single-cell cellular system having multiple base-station antennas and the tra-
ditional cellular system with cooperating single-antenna base stations. Here
by cooperation we mean that the base stations can perform joint beamform-
ing and/or power control but there is a constraint on the total power that
the base stations can share. We do not make any assumptions about the
number of receive antennas per user.

The downlink channel for such a system with N users can be modeled as
an N -user MIMO Broadcast Channel (BC). We assume that the channel is
fixed for all transmissions over the period of interest (some authors refer to
this as a quasi-static channel). Moreover, we assume that the transmit end
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(with the cooperating base stations) has perfect channel state information
(CSI).

Weingarten et al. [24] have shown that for such a system, dirty paper
coding (DPC), introduced by Costa [7], achieves the capacity. Furthermore,
the capacity region can be computed by using the duality of the MIMO mul-
tiple access channel (MAC) and the MIMO BC [13] where the BC capacity
region is obtained by taking the convex hull of the union over the set of
capacity regions of the dual MIMO MACs such that the total MAC power
is the same as the power in the BC.

For an N -user system, the capacity region is an N -dimensional closed,
bounded, convex and coordinate convex set in RN

+ containing the origin.

(Here coordinate convex means that if x is in the region, then for any y ∈ RN
+ ,

x − y is in the region whenever x − y is in RN
+ .) For an example of such a

capacity region in the two-user case, see Fig. 1 of [3]. Coordinate convexity
leads to the property (10) of our policy. We assume that cooperation leads
to the property (9), expressed in terms of sums of rates. In the case of two
users, the latter simply requires that the bit rates have been normalized
so that the two single-user capacities are equal and then the property is
known to hold for MIMO systems [3]. For more than two users, (9) is an
assumption which we propose as a reasonable generalization of the two-
dimensional case. However, there is currently no proof that this property
holds for MIMO systems.

At the transmit end, packets arrive for each user and are buffered before
transmission. We assume that there is given a nominal average packet arrival
rate (e.g., an estimate of the true average arrival rate) and nominal average
packet size (measured in bits). The nominal average bit arrival rate for each
user is then the product of the nominal average packet arrival rate times the
nominal average packet size for that user. The ratio of the nominal average
bit arrival rate for user i relative to that for user 1 is called the relative
traffic rate and is denoted by κi (this is assumed to be strictly positive).
This nominal relative traffic rate is specified in advance with the assumption
that κ1 = 1; thus, it is expected that, on average, the i-th user will have κi

times as much data as user 1. The actual traffic rate may deviate from this
nominal average rate due to estimation error and stochastic fluctuations.
Naturally, when there is no data for one (or many) of the users to transmit
(the corresponding queue for that(those) user(s) is empty), these users do
not receive any transmission capacity and the other users can expect an
enhanced transmission rate. We formally describe the transmission policy
and associated conditions in Section 3.

3. Queueing Analogue

In this section, we develop a queueing analogue for the system described
in Section 2. To this end, we describe the physical structure, and the sto-
chastic primitives specifying the packet arrivals and sizes. We formulate



DIFFUSION APPROXIMATION FOR A MIMO SYSTEM WITH COOPERATION 8

dynamic equations satisfied by the workload process in terms of the sto-
chastic primitives and the policy or service discipline to be used with this
system.

3.1. Physical Structure. A queueing model describing our communica-
tion system has N queues in parallel where each queue buffers packets in-
tended for a given user. We assume that each of the queues has infinite
buffer capacity. The queues are served by a single server corresponding to
a base station with multiple cooperating antennas.

3.2. Stochastic Primitives. We assume that the system starts empty and
that there is an N -dimensional packet arrival process E = {(E1(t), E2(t), . . . , EN (t)), t ≥
0} where Ei(t) is the number of packets that have arrived to the i-th queue
in (0, t]. (Here E is used to indicate that the arrivals are exogenous.) For
i ∈ N , Ei(·) is assumed to be a (non-delayed) renewal process defined from
a sequence of strictly positive independent and identically distributed (i.i.d.)
random variables {ui(k), k = 1, 2, . . . }, where for k = 1, 2, . . . , the random
variable ui(k) denotes the time between the arrival of the (k − 1)-st and
the k-th packet to the i-th queue (where the 0-th arrival occurs at time 0).
Each ui(k), k = 1, 2, . . . , is assumed to have finite mean 1/λi ∈ (0,∞) and
finite squared coefficient of variation (variance divided by the mean squared)
α2

i ∈ (0,∞). Then

(4) Ei(t) = max
{

n ≥ 0 :
n

∑

j=1

ui(j) ≤ t
}

, i ∈ N , t ≥ 0,

where a sum up to n = 0 is defined to be zero. The packet lengths (in bits) for
the successive arrivals to the i-th queue are given by a sequence of strictly
positive i.i.d. random variables {vi(k), k = 1, 2, . . . } with average packet
length mi = 1/µi ∈ (0,∞) and squared coefficient of variation β2

i ∈ (0,∞).
We assume that all interarrival and service time processes are mutually
independent. For i ∈ N and n ∈ Z+, we define

(5) Vi(n) ,

n
∑

j=1

vi(j).

We refer to the processes E(·) and V (·) as stochastic primitives for our
system model. For convenience, to avoid the need to consider exceptional
null sets, we assume without loss of generality that Ei(t) < ∞ for all t ≥ 0
and Ei(t) → ∞ as t → ∞ for each i ∈ N , surely.

3.3. Workload Process. For i ∈ N , the workload Wi(t) of the i-th queue
at time t ≥ 0 is given by

Wi(t) ,

Ei(t)
∑

j=1

vi(j) − Ti(t)

= Vi(Ei(t)) − Ti(t),

(6)
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where Ti(t) is the cumulative amount of service (measured in bits) given to
the i-th queue up to time t. We next describe the service discipline which,
in turn, specifies the functional form of Ti(·).
3.4. Service Discipline. When service is given to a queue, it goes to the
packet at the head of the line, where it is assumed that packets are queued
in the order of their arrival with the packet that arrived the longest time
ago being at the head of the line. A vector σ = (σ1, σ2, . . . , σN ) indicates
the rates (in bits per second) of serving the N queues, i.e., σ1 is the rate
for queue 1, σ2 is the rate for queue 2, and so on. The service rate for each
queue is a very simple function of the vector of workloads. Given a workload
of w = (w1, w2, . . . , wN ), the set of indices for the empty queues is the index
set K(w), as defined by (2). The rates σ = Λ(w) are given by the function2

Λ : RN
+ → RN

+ defined by

(7) Λ(w) , cK(w)

where cK is a fixed vector for each K ⊆ N with cKi = 0 if i ∈ K (corre-
sponding to the fact that an empty queue should not be served) and cKi > 0
if i /∈ K. The vector of service rates cK is chosen such that it lies on the
boundary of the capacity region and the service rate for each of the users
with positive workload is related by the relative traffic rate as described
below. Recall, from Section 2, (κi, i ∈ N ) is the given vector of nominal
relative traffic rates. For all K $ N , the non-zero entries of the service rate
vector cK are chosen such that

(8)
cKi
κi

=
cKj
κj

whenever i, j ∈ Kc, and
∑

i c
K
i is as large as possible while still keeping cK

in the capacity region. (We make the non-degeneracy assumption that the
capacity region is such that we can choose cKi > 0 for all i ∈ Kc.) When all

of the queues are non-empty (K = ∅), the service rate vector, c∅, lies on the

boundary of the capacity region and for all i ∈ N , c∅i = κic
∅
1, i.e., c∅ is in

the direction of the vector κ and is the furthest point along that direction
which lies in the capacity region (see Figure 1 for an example of the capacity
region and the service rates for a two-user system).

The following condition is assumed to be satisfied by the cK’s. It requires
that the maximum of the sum of the rates is achieved only when all of the
queues are non-empty. This form of cooperation is known to hold for two-
user MIMO systems [3] and it seems a reasonable generalization for N -user
systems, although a formal proof of this property is not known at this time.

(9)
∑

i∈N

c∅i >
∑

i∈N

cKi for all ∅ $ K ⊆ N .

2We only need Λ(·) defined on ZN
+ for the moment, but we extend the domain of Λ(·)

to RN
+ so that later when we rescale the workload process, Λ(·) is well defined for the

rescaled process.
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c
{1,2}

c
{1}

Direction (κ1, κ2)

c
∅

c
{2}

σ2

σ1

Figure 1. An example of the capacity region for a two-user
system. Service rate c{1,2} = (0, 0), c{2} is along the direction

(κ1, 0) and c{1} is along the direction (0, κ2).

As a result of coordinate convexity of the capacity region, the service rate
for a fixed non-empty queue is least when all of the queues are non-empty.
Therefore,

(10) c∅i ≤ cKi for all i /∈ K and K 6= ∅.
For example, c∅i ≤ c

{j}
i for all i 6= j, i, j ∈ N .

Remark. Properties (9) and (10) are used to prove properties of the reflection
vectors associated with our diffusion approximation for the workload pro-
cess. In particular, they are used in proving Lemma 5.3 and the properties
in subsection 7.3.2.

Our model is a single server, N -class queueing system where the N classes
correspond to the N queues (users). The following scaling property of Λ(·)
is a mathematical statement of the property of the scheduling policy that
the amount of service given to the queues in any state does not change when
all workloads are multiplied by the same positive factor.

Lemma 3.1. For any w ∈ RN
+ and a > 0, Λ(aw) = Λ(w).

Proof. The proof follows easily from the fact that Λ(·) depends only on
which queues are empty and these are unchanged by the positive scalar
factor a. �

For t ≥ 0, i ∈ N , we can now give an explicit expression for Ti(t) as

Ti(t) ,

∫ t

0
Λi(W (s)) ds

=
∑

K⊆N

cKi

∫ t

0
1{K(W (s))=K} ds.

(11)
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In fact, cN = 0 and so the sum could be reduced to that over K $ N ,
including K = ∅.

4. Heavy Traffic Assumptions

We wish to consider the behavior of the queueing system when it is heavily
loaded. (Kelly and Laws [15] have argued that in this regime “important
features of good control policies are displayed in sharpest relief”.) For this
purpose one may regard a given system as a member of a sequence of systems
approaching the heavy traffic limit. To obtain a reasonable approximation,
the workload process is rescaled using diffusion scaling. This corresponds
to viewing the system over long intervals of time of order r2 (where r will
tend to infinity in the asymptotic limit) and regarding a single packet as
only having a small contribution to the overall congestion level, where this
is quantified to be of order 1/r. Formally, we consider a sequence of systems
indexed by r, where r tends to infinity through a sequence of values in
(0,∞). These systems all have the same basic structure as that described
in the last section; however, the arrival rates may vary with r. We assume
that the interarrival times for the system indexed by r are given for each
i ∈ N , k = 1, 2, . . . , by

(12) ur
i (k) =

1

λr
i

ǔi(k)

where the ǔi(k) do not depend on r, have mean one and squared coefficient
of variation α2

i . The packet lengths {vi(k)}∞k=1, i ∈ N , do not change with
r. [The above structure is convenient for allowing the sequence of systems
to approach heavy traffic by simply changing arrival rates and keeping the
underlying sources of variability ǔi(k) and vi(k) fixed as r varies. This type
of set-up has been used previously by others in treating heavy traffic limits
(see, e.g., Peterson [18] and Bell and Williams [1]). For a first pass, the reader
may want to simply choose λr

i = λi for all r.] All processes and parameters
that depend on r will from now on have a superscript of r appended. The
nominal relative traffic rate and the service rates {cK,K ⊆ N} are assumed

fixed throughout and do not vary with r. We define λi , µic
∅
i for i =

1, 2, . . . , N .

Assumption 4.1 (Heavy Traffic Assumption). There exists θ ∈ RN
+ such

that for each i ∈ N ,

(13) r(λr
i − λi)mi → θi as r → ∞.

We may regard λ = (λ1, λ2, . . . , λN ) as the nominal average packet arrival
rate with nominal bit arrival rate b = (λimi, i ∈ N ) and nominal traffic rate
given by κi = bi/b1 for i ∈ N . Then under the heavy traffic assumption, the
service rates

(c∅1, c
∅
2, . . . , c

∅
N ),
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for the scheduling policy satisfy b = c∅ and the r-th system has a perturbed
average packet arrival rate λr for which the average bit arrival rate br =
(λr

i mi, i ∈ N ) is close to (c∅1, c
∅
2, . . . , c

∅
N ).

5. Scaling, Standard Limit Theorems, and Parameters

5.1. Scaling. Fluid (or functional law of large numbers) scaling is indicated
by placing a bar over a process. For r > 0, i ∈ N , and t ≥ 0, we define

(14) Ēr
i (t) , r−2Er

i (r
2t),

(15) V̄ r
i (t) , r−2V r

i (r2t),

(16) T̄ r
i (t) , r−2T r

i (r2t),

(17) W̄ r
i (t) , r−2W r

i (r2t).

Diffusion (or functional central limit theorem) scaling is indicated by plac-
ing a hat over a process. For r > 0, i ∈ N , and t ≥ 0, we define

(18) Ŵ r
i (t) ,

W r
i (r2t)

r
.

To apply diffusion-scaling to the primitive stochastic processes Er(·) and
V (·) (note that V (·) does not depend on r), we must center them before
scaling. Accordingly, for r > 0, i ∈ N , and t ≥ 0, we define

(19) Êr
i (t) ,

1

r

(

Er
i (r

2t) − λr
i r

2t
)

and

(20) V̂ r
i (t) ,

1

r

(

Vi(r
2t) − mir

2t
)

.

5.2. Functional Limit Theorems for Stochastic Primitives. We will
use the following functional central limit theorem (FCLT) for the stochastic
primitives in the sequel.

Proposition 5.1 (FCLT). The diffusion-scaled processes (Êr(·), V̂ r(·)) jointly
converge in distribution to (BE(·), BV (·)) as r → ∞, i.e.,

(21) (Êr(·), V̂ r(·)) ⇒ (BE(·), BV (·)) as r → ∞,

where BE(·) and BV (·) are independent N -dimensional driftless Brownian
motions starting from the origin with diagonal covariance matrices

(22) ΓE , diag(λ1α
2
1, λ2α

2
2, . . . , λNα2

N )

and

(23) ΓV , diag(m2
1β

2
1 , m2

2β
2
2 , . . . , m2

Nβ2
N ),

respectively.
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Remark. As there is a single source of variability (not depending on r) for
each of Er

i , Vi, i ∈ N , only the finiteness of the second moments of ǔi(k) and
vi(k) is required for the FCLT. Furthermore, since a Brownian motion is a

continuous process, the weak convergence of (Êr(·), V̂ r(·)) to a Brownian

motion implies C-tightness of the sequence {(Êr(·), V̂ r(·))}.
Proof. By results of Iglehart and Whitt [11], an FCLT for the renewal
counting process Er(·) can be inferred from that for the partial sums of
{ur

i (k)}∞k=1. FCLTs for the partial sums of {ur
i (k)}∞k=1 and {vi(k)}∞k=1 fol-

low from Theorem 3.1 of Prokhorov [19]. The joint convergence follows from
the independence of Er(·) and V (·). �

As a corollary, we have the following functional law of large numbers
(FLLN) for the stochastic primitives. For each t ≥ 0, let λ(t) , λt and

m(t) , mt.

Corollary 5.2 (FLLN). The fluid-scaled processes (Ēr(·), V̄ r(·)) jointly
converge in distribution to (λ(·), m(·)) as r → ∞, i.e.,

(24)
(

Ēr(·), V̄ r(·)
)

⇒ (λ(·), m(·)) as r → ∞.

Remark. Here again, the weak convergence of (Ēr(·), V̄ r(·)) to a continuous
process implies C-tightness of the sequence {(Ēr(·), V̄ r(·))}.
Proof. Proposition 5.1 implies that

(25)

(

1

r
Êr(·), 1

r
V̂ r(·)

)

⇒ (0, 0) as r → ∞.

The desired result follows from this and the fact that λr → λ as r → ∞
(see (13)). �

5.3. Covariance and Reflection Matrices. In this subsection, we define
two matrices that are part of the data for the heavy traffic limit of the
workload process. We first define the covariance matrix Γ as the N × N
diagonal matrix whose i-th diagonal entry is

(26) Γii , λim
2
i (α

2
i + β2

i ), i ∈ N .

We define the reflection matrix R as the N ×N matrix whose entries are

(27) Rij =







1 if i = j
c∅i −c

{j}
i

c∅j
if i 6= j.

For example, when N = 3, the reflection matrix R is

(28) R =













1
c∅
1
−c

{2}
1

c∅
2

c∅
1
−c

{3}
1

c∅
3

c∅
2
−c

{1}
2

c∅
1

1
c∅
2
−c

{3}
2

c∅
3

c∅
3
−c

{1}
3

c∅
1

c∅
3
−c

{2}
3

c∅
2

1













.
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The matrix R defined by (27) has a special structure in that it satisfies the
Harrison-Reiman (HR) condition [10]. We use this structure in proving the
convergence of the diffusion-scaled workload process.

Definition 5.1 (Harrison-Reiman (HR) Condition). An N × N matrix R
satisfies the HR condition if R = I − Q, where I is the N × N identity
matrix, and the N × N matrix Q has zeros along the diagonal, all of the
entries of Q are non-negative, and Q has spectral radius strictly less than
one.

Remark. When R = I−Q where Q has zeros on the diagonal and the entries
of Q are non-negative, the HR condition is equivalent to the requirement
that R is a non-singular M-matrix. Such matrices are discussed for example
in Berman and Plemmons [2, Chapter 6].

Lemma 5.3. The reflection matrix R satisfies the HR condition.

Proof. It is easy to see that an N × N matrix R satisfies the HR condition
if R = I − P ′ where I is the N × N identity matrix, P is an N × N matrix
whose diagonal entries are zero, and whose off-diagonal entries are non-
negative and such that each row-sum is strictly less than 1. To show that R
has this form, note that the diagonal entries of R are all equal to 1 and from
the condition (10), the off-diagonal entries are all non-positive. Therefore it
suffices to show that the sum of each column of R is strictly greater than 0.
But the sum of the j-th column of R is

(29) 1 +
∑

i∈N\{j}

c∅i − c
{j}
i

c∅j
=

1

c∅j





∑

i∈N

c∅i −
∑

i∈N\{j}

c
{j}
i





which is strictly greater than 0 by (9) with K = {j} and since c
{j}
j = 0. �

6. Diffusion Approximation - Main Theorem

6.1. Definition of an SRBM. Before defining an SRBM, we define an
{Ft}-adapted Brownian motion. Given a filtered probability space (Ω,F , {Ft}, P ),
a vector θ ∈ RN , an N × N symmetric, strictly positive-definite matrix Γ,
and a probability distribution ν on (RN ,B(RN )), an {Ft}-Brownian motion
with drift vector θ, covariance matrix Γ, and initial distribution ν, is an N -
dimensional {Ft}-adapted process, X, defined on (Ω,F , {Ft}, P ) such that
the following hold under P :

(i) X is an N -dimensional Brownian motion whose sample paths are
almost surely continuous and that has initial distribution ν,

(ii) {Xi(t) − Xi(0) − θit,Ft, t ≥ 0} is a martingale for i ∈ N , and
(iii) {(Xi(t) − Xi(0) − θit)(Xj(t) − Xj(0) − θjt) − Γijt,Ft, t ≥ 0} is a

martingale for i, j ∈ N .

If ν = δx, the unit mass at x ∈ RN , we say that X starts from x.
Now, fix θ ∈ RN , Γ an N × N symmetric strictly positive-definite co-

variance matrix, R an N × N matrix satisfying the HR condition, and ν
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a probability measure on (RN
+ ,B(RN

+ )). Recall the definition of Fi, i ∈ N
from Section 1.1.

Definition 6.1 (Semimartingale Reflecting Brownian Motion (SRBM)). A
semimartingale reflecting Brownian motion (abbreviated as SRBM) with the
data (RN

+ , θ, Γ, R, ν) is an {Ft}-adapted, N -dimensional process, W , defined
on some filtered probability space (Ω,F , {Ft}, P ) such that

(i) P -a.s., W (t) = X(t) + RY (t) for all t ≥ 0,
(ii) P -a.s., W has continuous paths and W (t) ∈ RN

+ for all t ≥ 0,
(iii) under P , X is an N -dimensional {Ft}-Brownian motion with drift

vector θ, covariance matrix Γ, and initial distribution ν,
(iv) Y is an {Ft}-adapted, N -dimensional process such that P -a.s. for

each i ∈ N ,
(a) Yi(0) = 0,
(b) Yi is continuous and non-decreasing,
(c) Yi can only increase when W is on the face Fi, i.e., for all

t ≥ 0,

(30) Yi(t) =

∫ t

0
1Fi

(W (s))dYi(s).

When ν = δx for x ∈ RN
+ , we may say that W is an SRBM with the data

(RN
+ , θ, Γ, R) that starts from x.

Remark. It is known from the work of Harrison and Reiman [10] that
when R satisfies the HR condition, there is strong existence and unique-
ness (and hence weak existence and uniqueness) for an SRBM given the
data (RN

+ , θ, Γ, R) and the initial distribution ν.

6.2. Main Theorem. In this subsection, we state the main theorem and
give an outline of the proof. Recall the parameters θ, Γ, and R defined
in (13), (26), and (27).

Theorem 6.1. The diffusion-scaled workload process Ŵ r(·) converges in
distribution as r → ∞ to an SRBM with data (RN

+ , θ, Γ, R) that starts from
the origin.

To prove this theorem, we first show that the sequence of processes
{Ŵ r(·)} is C-tight (Section 7.3), i.e., any subsequence has a further subse-
quence that converges weakly to an almost surely continuous limit process.
We then show that any weak limit point of such a subsequence is an SRBM
with “extensive” data (Section 7.4), a notion that we make precise later (see
Definition 7.1). For an SRBM with extensive data, there is a direction of re-
flection associated with each of the 2N − 1 boundary faces and there might
be pushing in these directions at those boundary faces. In fact, we show
that the pushing at boundary faces of dimension N − 2 or less is negligible
(Section 7.5) and consequently, the SRBM with extensive data reduces to
one of the simpler form as described in Theorem 6.1. Finally, we show that
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such an SRBM is unique in law and when combined with the C-tightness,
we conclude that the sequence of diffusion-scaled workload processes con-
verges in distribution to an SRBM with data (RN

+ , θ, Γ, R) that starts from
the origin.

7. Proof of the Main Theorem

7.1. Pre-limit Workload Process. Throughout this section θ, Γ, and R
are given by (13), (26), and (27) respectively. From (5), (6), (11), and (18),
the diffusion-scaled workload process can be written so that for r > 0, i ∈ N ,
and t ≥ 0,

(31) Ŵ r
i (t) =

1

r
Vi(E

r
i (r

2t)) − T r
i (r2t)

r

where

(32) T r
i (t) ,

∫ t

0
Λi(W

r(s))ds.

We can rewrite (31) as

Ŵ r
i (t) =

1

r

[

Vi(E
r
i (r

2t)) − miE
r
i (r

2t)
]

+
1

r

[

miE
r
i (r

2t) − miλ
r
i r

2t
]

+ λr
i mirt −

1

r
T r

i (r2t)

= V̂ r
i (Ēr

i (t)) + miÊ
r
i (t) + (λr

i − λi)mirt +
1

r
λimi

∫ r2t

0
ds

− 1

r

∫ r2t

0
Λi(W

r(s))ds

= X̂r
i (t) +

∑

K⊆N

(

λimi − cKi
)

Û r,K(t),

= X̂r
i (t) +

∑

∅6=K⊆N

(c∅i − cKi )Û r,K(t),

(33)

where

(34) X̂r
i (t) , V̂ r

i (Ēr
i (t)) + miÊ

r
i (t) + (λr

i − λi)mirt,

(35) Û r,K(t) ,
1

r

∫ r2t

0
1{K(W r(s))=K} ds = r

∫ t

0
1{K(Ŵ r(s))=K} ds

and we have used the facts that for any w ∈ RN
+ ,

(36)
∑

K⊆N

1{K(w)=K} = 1,

and c∅i = λimi, i ∈ N . For notational convenience, we will sometimes write

Û r(·) in place of {Û r,K(·), ∅ 6= K ⊆ N} in the sequel.
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7.2. Convergence to Brownian Motion. Our next result shows that
the sequence of processes {X̂r(·)} converges in distribution to a Brownian
motion. This result will be used in proving that the sequence of processes
{(Ŵ r(·), X̂r(·), Û r(·))} is C-tight (see Section 7.3) and that any weak limit
point of this sequence defines an SRBM with extensive data (see Section 7.4).

Lemma 7.1. The sequence of processes {X̂r(·)} converges in distribution
to an N -dimensional Brownian motion that starts from the origin and has
drift θ and covariance matrix Γ.

Proof. For all t ≥ 0, r > 0, define

(37) θ(t) , θt,

(38) λ(t) , λt,

and

(39) θ̂r
i (t) , r(λr

i − λi)mit for all i ∈ N .

By Assumption 4.1, θ̂r(·) → θ(·) u.o.c. as r → ∞. Combining this re-
sult with the standard functional central limit theorem (Proposition 5.1),

we conclude that the sequence of processes {(Êr(·), V̂ r(·), Ēr(·), θ̂r(·))} con-
verges in distribution to (BE(·), BV (·), λ(·), θ(·)) where BE(·) and BV (·)
are independent N -dimensional driftless Brownian motions starting from
the origin with covariance matrices ΓE and ΓV given by (22) and (23)
respectively. Then from (34), using the random time change lemma of

Billingsley [4, p. 151], we conclude that {X̂r(·)} converges in distribution
to BV (λ(·)) + diag(m)BE(·) + θ(·), which is an N -dimensional Brownian
motion that starts from the origin, has drift θ, and a diagonal covariance
matrix whose i-th diagonal entry is

(40) λim
2
i β

2
i + m2

i λiα
2
i = λim

2
i (α

2
i + β2

i ) = Γii, i ∈ N .

�

7.3. C-tightness.

Theorem 7.2. The sequence of processes {(Ŵ r(·), X̂r(·), Û r(·))} is C-tight.

To prove the C-tightness, we use a result from Kang and Williams [14].
In particular, we show that the Assumptions (A1)–(A5) and the Assump-
tion 4.1 of [14] are satisfied by the geometric data and the sequence of

processes, {(Ŵ r(·), X̂r(·), Û r(·))}, from which the C-tightness follows by
Theorem 4.2 of [14]. This verification is carried out below.

7.3.1. Domain. For each ∅ 6= K ⊆ N , define nK as the N -dimensional vector
whose i-th element is 1/

√

|K| if i ∈ K and 0 otherwise, that is, for i ∈ N ,

(41) nK
i =

1
√

|K|
1{i∈K}.
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Then for each ∅ 6= K ⊆ N ,
∥

∥nK
∥

∥ = 1. For each ∅ 6= K ⊆ N , define GK as

(42) GK , {x ∈ RN :
〈

nK, x
〉

> 0}.
Then for each ∅ 6= K ⊆ N , GK is an open half-space of RN and, therefore,
a non-empty domain in RN . Define the domain G as

(43) G , ∩
∅6=K⊆N

GK.

In fact, G = {x ∈ RN : xi > 0 for all i ∈ N}. Hence, G = RN
+ . (While

the collection {G{i}, i = 1, 2, . . . , N} is sufficient to define G, we include the
other domains as well since they will have directions of reflection associated
with them.)

Lemma 7.3. The domain G with the representation (43) satisfies Assump-
tions (A1)–(A3) of [14, Section 3].

Remark. Note that the inward unit normal vector for GK is nK.

Proof. Since G is a finite intersection of half-spaces, G is a convex poly-
hedron. We also note that for all ∅ 6= K ⊆ N , ∂G∩ ∂GK 6= ∅ since the
origin is in ∂G∩ ∂GK. Consequently, by Lemma A.3 of [14], we only need
to show that G satisfies Assumption (A1) of [14]. Recall that each GK is
a half-space. Therefore, for each ∅ 6= K ⊆ N , GK is a non-empty domain,
GK 6= RN , and the boundary ∂GK of GK is C1. Therefore, the non-empty
domain G satisfies Assumption (A1) and hence, Assumptions (A1)–(A3)
of [14] hold. �

7.3.2. Reflection Vectors. For each ∅ 6= K ⊆ N , define the reflection vector
γK such that

(44) γK
i , c∅i − cKi for each i ∈ N .

By this definition, if i ∈ K, cKi = 0 and therefore, γK
i = c∅i > 0. On the

other hand, if i ∈ Kc, γK
i = c∅i − cKi ≤ 0 by (10). With this definition of

{γK, ∅ 6= K ⊆ N}, (33) can be rewritten in vector form as

(45) Ŵ r(t) = X̂r(t) +
∑

∅6=K⊆N

γKÛ r,K(t).

Moreover, it is easy to see that the matrix whose columns are given by
γ{1}, · · · , γ{N}, is

(46) R diag(c∅1, c
∅
2, . . . , c

∅
N )

where R is the N ×N reflection matrix defined in (27). To facilitate the use
of [14], we define the normalized reflection vectors {γ̃K, ∅ 6= K ⊆ N} by

(47) γ̃K ,
γK

‖γK‖ ,

so that
∥

∥γ̃K
∥

∥ = 1 for all ∅ 6= K ⊆ N .
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Lemma 7.4. The reflection vectors {γ̃K, ∅ 6= K ⊆ N} satisfy Assump-
tions (A4)–(A5) of [14, Section 3].

Proof. Since the reflection vectors are constant, it is clear that the uniform
Lipschitz continuity property of Assumption (A4) of [14] is satisfied. Also,
we have normalized the vectors to be of unit length.

To verify (A5), we need to show that there is a constant a ∈ (0, 1) such
that for each x ∈ ∂G, there are non-negative constants (bL(x) : ∅ 6= L ⊆
K(x)) and (dL(x) : ∅ 6= L ⊆ K(x)) such that

(48)
∑

∅6=L⊆K(x)

bL(x) = 1,

(49) min
∅6=M⊆K(x)

〈

∑

∅6=L⊆K(x)

bL(x)nL, γ̃M

〉

≥ a,

(50)
∑

∅6=L⊆K(x)

dL(x) = 1,

(51) min
∅6=M⊆K(x)

〈

∑

∅6=L⊆K(x)

dL(x)γ̃L, nM

〉

≥ a.

To this end, for any x ∈ ∂G and ∅ 6= L ⊆ K(x), set

(52) bL(x) , 1{L=K(x)}

and

(53) dL(x) , 1{L=K(x)}.

Then

(54)
∑

∅6=L⊆K(x)

bL(x)nL = nK(x)

and

(55)
∑

∅6=L⊆K(x)

dL(x)γ̃L = γ̃K(x).

Therefore, to verify that Assumption (A5) of [14] is satisfied, we only need

to verify that for each x ∈ ∂G and ∅ 6= M ⊆ K(x),
〈

nK(x), γ̃M
〉

and
〈

γ̃K(x), nM
〉

are bounded below by a strictly positive constant not depend-

ing on x or M. We first verify that
〈

γ̃K(x), nM
〉

has such a lower bound.
From (44) and (47), for all i ∈ K(x),

(56) γ̃
K(x)
i =

c∅i
∥

∥γK(x)
∥

∥

> 0.
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Thus, using (41), for each ∅ 6= M ⊆ K(x),
〈

γ̃K(x), nM
〉

=
1

√

|M|
∑

i∈M

γ̃
K(x)
i

≥ mini∈M c∅i
√

|M|
∥

∥γK(x)
∥

∥

≥ mini∈N c∅i√
N max∅6=L⊆N ‖γL‖

> 0

(57)

where the second inequality follows because we are taking minimum over a
larger set in the third line and for all x ∈ ∂G, |K(x)| ≤ N . Next, we show

that for each ∅ 6= M ⊆ K(x),
〈

nK(x), γ̃M
〉

has a uniform strictly positive
lower bound. To this end, we have for ∅ 6= M ⊆ K(x),

〈

nK(x), γ̃M
〉

=
1

√

|K(x)|
∑

i∈K(x)

γM
i /

∥

∥γM
∥

∥

=
1

√

|K(x)|
∑

i∈K(x)

(c∅i − cMi )/
∥

∥γM
∥

∥

=
1

√

|K(x)|





∑

i∈N

(c∅i − cMi ) −
∑

i∈(K(x))c

(c∅i − cMi )



 /
∥

∥γM
∥

∥

≥ 1
√

|K(x)|
∑

i∈N

(c∅i − cMi )/
∥

∥γM
∥

∥

≥ 1√
N

min
∅6=L⊆N

∑

i∈N

(c∅i − cLi )/ max
∅6=L⊆N

∥

∥γL
∥

∥

> 0

(58)

where the first inequality follows from (10) with M in place of K and the
last inequality follows from (9). �

Remark. Properties (9) and (10) were used critically in deriving (58). This
property (58) is then used critically in proving Lemmas 7.8 and 7.9 below,
which in turn lead to proving our main technical result Theorem 7.7.

Proof of Theorem 7.2. For each r > 0, let

(59) Ẑr , (Ŵ r, X̂r, Û r).

To prove the C-tightness of {Ẑr}, we first verify that Assumption 4.1 of [14,
Section 4] is satisfied.

For any ∅ 6= K ⊆ N and r > 0, let γr,K(y, x) , γ̃K for all x, y ∈ RN ,

αr , 0 ∈ DN , βr = {βr,K : ∅ 6= K ⊆ N} where βr,K , 0 ∈ D, δr = 1/r,

and Ŷ r = {Ŷ r,K : ∅ 6= K ⊆ N} where Ŷ r,K =
∥

∥γK
∥

∥ Û r,K. With these
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definitions, the conditions (i)–(vi) of Assumption 4.1 of [14] are satisfied

with {(Ŵ r, X̂r, Ŷ r)} in place of {(Wn, Xn, Y n)}. Here

(60) Ŷ r,K(t) =

∫ t

0
1{dist(Ŵ r(s),∂GK ∩ ∂G)≤δr}dŶ r,K(s)

because Û r,K can increase only when Ŵ r is on ∂GK ∩ ∂G (see (35)), and

{X̂r} is C-tight by Lemma 7.1. It then follows from Theorem 4.2 of [14,

Section 4], that {(Ŵ r, X̂r, Ŷ r)}, and hence {Ẑr}, is C-tight and the theorem
is proved. �

7.4. SRBM with Extensive Data. In this subsection, we show that any
weak limit point of the sequence of processes {(Ŵ r(·), X̂r(·), Û r(·))} defines
an SRBM with extensive data. Before presenting the theorem and its proof,
we need to define an SRBM with extensive data. The following definition
is adapted from the definition in [14, Section 2]. Recall the definition of G
from (43), θ and Γ from (13) and (26), and {γK, ∅ 6= K ⊆ N} from (44). Let
ν be a probability measure on (G,B(G)), where B(G) denotes the σ-algebra
of Borel subsets of the closure, G, of G.

Definition 7.1 (SRBM with Extensive Data). An SRBM with the exten-
sive data (G, θ, Γ, {γK, ∅ 6= K ⊆ N}, ν) is an {Ft}-adapted, N -dimensional
process W defined on some filtered probability space (Ω,F , {Ft}, P ) such that

(i) P -a.s., for all t ≥ 0,

(61) W (t) = X(t) +
∑

∅6=K⊆N

γKUK(t),

(ii) P -a.s., W has continuous paths and W (t) ∈ G for all t ≥ 0,
(iii) under P , X is an N -dimensional {Ft}-Brownian motion with drift

vector θ, covariance matrix Γ, and initial distribution ν,
(iv) for each ∅ 6= K ⊆ N , UK is an {Ft}-adapted, one-dimensional

process such that P -a.s.,
(a) UK(0) = 0,
(b) UK is continuous and non-decreasing,
(c) for all t ≥ 0,

(62) UK(t) =

∫ t

0
1{W (s)∈∂GK ∩ ∂G}dUK(s).

When ν = δx, for x ∈ G, we say that W is an SRBM associated with the
data (G, θ, Γ, {γK, ∅ 6= K ⊆ N}) that starts from x.

Remark. We have introduced the terminology “extensive” data in this work
to differentiate between the above SRBM which has reflection on the lower-
dimensional faces and the simpler SRBM introduced in Definition 6.1.

With this definition in hand, we can now state and prove the main result
of this subsection.
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Theorem 7.5. Any weak limit point (W (·), X(·), U(·)) of the sequence of

processes {(Ŵ r(·), X̂r(·), Û r(·))} defines an SRBM, W , with the extensive
data (G, θ, Γ, {γK, ∅ 6= K ⊆ N}) that starts from the origin.

We need the following lemma for our proof of Theorem 7.5. So as to
not disrupt the flow of this section, we defer the proof of this lemma to
Appendix A.

Lemma 7.6. Suppose that Z = (W, X, U) is a weak limit point of the se-

quence {(Ŵ r, X̂r, Û r)}. Let Ft = σ{Z(s) : 0 ≤ s ≤ t}, t ≥ 0. Then
{X(t) − X(0) − θt,Ft, t ≥ 0} is a martingale.

Proof. See Appendix A. �

Proof of Theorem 7.5. The result follows from Theorem 4.3 of [14] provided

Assumption 4.1 and Assumptions (vi)
′

and (vii) of Theorem 4.3 in [14]

hold for {(Ŵ r, X̂r, Ŷ r)} where Ŷ r = {Ŷ r,K : ∅ 6= K ⊆ N} and Ŷ r,K =
∥

∥γK
∥

∥ Û r,K. Our proof of Theorem 7.2 shows that Assumption 4.1 of [14]
holds. Assumption (vi)′ of Theorem 4.3 in [14] follows immediately from
Lemma 7.1. Assumption (vii) of Theorem 4.3 in [14] follows from Lemma 7.6

and the simple relationship between Û r,K and Ŷ r,K. �

7.5. Pushing on the Lower-dimensional Faces. In this subsection, we
show a result, which when combined with Theorem 7.5 implies that for any
weak limit point, (W (·), X(·)), U(·)), of the sequence of processes {(Ŵ r(·), X̂r(·), Û r(·))},
the amount of pushing done by U at any of the faces of ∂G of dimension
N − 2 or less is negligible. Formally, we prove the following. For this, recall
that for any K ⊆ N , FK is defined in (1).

Theorem 7.7. Let (W (·), X(·), U(·)) define an SRBM, W (·), with extensive
data (G, θ, Γ, {γK, ∅ 6= K ⊆ N}) that starts from the origin. Then for each
K ⊆ N , |K| ≥ 2, for each ∅ 6= L ⊆ K,

(63)

∫ ∞

0
1FK(W (s))dUL(s) = 0 almost surely.

Consequently, almost surely,

(64) W (t) = X(t) +
∑

i∈N

γ{i}U{i}(t), t ≥ 0.

Our proof of Theorem 7.7 is a generalization of the proof of the main
theorem in Reiman and Williams [20]. However, there are some differences,
since in [20] there were only N directions of reflection – one for each (N−1)-
dimensional boundary face, whereas here there are 2N − 1, one for each
boundary face. We prove the theorem in three steps. We assume that N ≥ 2,
otherwise the result is vacuous and hence trivially true. We first prove that
for the case of zero drift (θ = 0) the amount of pushing done when W is at
the origin is negligible (see Lemma 7.8). We then use a backwards induction
argument on |K| to show that for the case of zero drift the amount of pushing
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done on FK is negligible provided |K| ≥ 2 (see Lemma 7.9). Finally, using a
Girsanov transformation, the result is extended to all constant drifts θ (see
Lemma 7.10). We then complete the proof.

Lemma 7.8. Suppose (W, X, U) is as in the hypothesis of Theorem 7.7 and
θ = 0. Then for N ≥ 2 and K = N , (63) holds for all ∅ 6= L ⊆ N .

Proof. From the semimartingale representation (61) of W and Itô’s formula,
for any function f that is twice continuously differentiable in some domain
containing G, we have almost surely for all t ≥ 0:

f(W (t)) − f(W (0)) =

∫ t

0
〈∇f(W (s)), dX(s)〉

+
∑

∅6=L⊆N

∫ t

0

〈

γL,∇f(W (s))
〉

dUL(s)

+

∫ t

0
Lf(W (s))ds

(65)

where

(66) Lf =
1

2

N
∑

i=1

Γii
∂2f

∂x2
i

.

We shall substitute functions into (65) that allow us to estimate the left-
hand side of (63). Each such function will be L-harmonic in some domain
containing G and for each ∅ 6= L ⊆ N , its directional derivative in the
direction of γL will be bounded below on G and be very large and positive
near the origin. These functions are chosen such that they are uniformly
bounded on compact subsets of G.

Define

(67) β̃ ,











1
1
...
1











∈ RN
+ .

Then from (58) with x = 0, we have for all ∅ 6= L ⊆ N ,

(68)
〈

γL, β̃
〉

=
√

N
∥

∥γL
∥

∥

〈

γ̃L, nN
〉

> 0.

Therefore, there exists a vector β ∈ RN
+ having all components strictly

positive such that for all ∅ 6= L ⊆ N ,

(69)
〈

γL, β
〉

, δL ∈ [1,∞).

Define

(70) α , Γβ.
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Note that αi > 0 for all i ∈ N . For each x ∈ G = RN
+ and s ∈ (0, 1), define

a squared distance function:

d2(x, s) , (x + sα)′Γ−1(x + sα)

= x′Γ−1x + 2sα′Γ−1x + s2α′Γ−1α

= x′Γ−1x + 2sβ′x + s2α′Γ−1α

≥ s2α̂

(71)

where

(72) α̂ , α′Γ−1α = β′Γβ > 0.

We have used the facts that Γ (and hence Γ−1) is symmetric and strictly
positive definite, and β, x ∈ RN

+ . Then for each fixed ε ∈ (0, 1),

(73) φε(x) ,

{

1
2−N

∫ 1
ε sN−2(d2(x, s))

2−N
2 ds, N ≥ 3,

1
2

∫ 1
ε ln(d2(x, s))ds, N = 2,

is twice continuously differentiable in some domain containing G, and on
each compact subset of G, it is bounded, uniformly in ε. Moreover, since
the integrand in (73), for a fixed s, is L-harmonic as a function of x ∈
RN \ {−sα}, it is readily verified that for each ε ∈ (0, 1),

(74) Lφε = 0

in some domain containing G.
For the verification of the directional derivative properties of φε, for each

∅ 6= L ⊆ N , let

(75) uL , Γ−1γL.

Then by (69) and (70),

(76)
〈

uL, α
〉

=
〈

Γ−1γL, α
〉

= (γL)
′
Γ−1α = (γL)

′
β = δL ≥ 1.

Combining (76) with

(77) ∇φε(x) =

∫ 1

ε
sN−2Γ−1(x + sα)(d2(x, s))−N/2ds,

we get

(78)
〈

γL,∇φε(x)
〉

=

∫ 1

ε
sN−2(

〈

uL, x
〉

+ sδL)(d2(x, s))−N/2ds.

Let

(79) ξL ,
δL

‖uL‖ .
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Then for ε ∈ (0, 1) and x ∈ G satisfying ‖x‖ < εξL, we have
∣

∣

〈

uL, x
〉∣

∣ < εδL

and for s > ε,

d2(x, s) ≤
∥

∥Γ−1
∥

∥ ‖x + sα‖2

≤
∥

∥Γ−1
∥

∥ (‖x‖ + ‖sα‖)2

≤
∥

∥Γ−1
∥

∥ (ξL + ‖α‖)2s2

(80)

where
∥

∥Γ−1
∥

∥ denotes the norm of Γ−1 as an operator from RN to RN with
the Euclidean norm. Setting

(81) ζL , δL(
∥

∥Γ−1
∥

∥ (ξL + ‖α‖)2)−N/2

and substituting the above in (78) yields:

〈

γL,∇φε(x)
〉

≥ ζL
∫ 1

ε
sN−2(s − ε)s−Nds

≥ − ζL[ln ε + 1]

(82)

for all x ∈ G satisfying ‖x‖ < εξL. Note that for small ε, the term in the
last line above is large and positive.

Now for any x ∈ G, ∅ 6= L ⊆ N ,

(83)
〈

γL,∇φε(x)
〉

= −δL
∫ 1

ε
sN−2(ρL(x) − s)(d2(x, s))−N/2ds

where

(84) ρL(x) , −
〈

uL, x
〉

δL
.

If ρL(x) ≤ ε, then the right-hand side of (83) is non-negative. Thus, to
obtain a lower bound for

〈

γL,∇φε(x)
〉

on G, it suffices to consider x ∈ G

such that ρL(x) > ε. For such x,
∫ 1

ε
sN−2(ρL(x) − s)(d2(x, s))−N/2ds

≤
∫ ρL(x)

ε
sN−2(ρL(x) − s)(d2(x, s))−N/2ds

≤ (ρL(x) − ε) max
s∈[ε,ρL(x)]

ρL(x) − s

d2(x, s)
max

s∈[ε,ρL(x)]

sN−2

(d2(x, s))(N−2)/2
.

(85)

Since d2(x, s) is quadratic in s with positive coefficients, the first maximum
above is achieved at s = ε, and by (71), the second maximum is crudely

dominated by α̂(2−N)/2. Thus, the last term of (85) is bounded from above
by

(86)
(ρL(x) − ε)2

d2(x, ε)
α̂(2−N)/2.
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Since Γ−1 is strictly positive definite, there is an η > 0 such that x′Γ−1x ≥
η ‖x‖2 and so (see (71)),

d2(x, ε) ≥ η ‖x‖2 + ε2α̂

≥ (η ∧ α̂)(‖x‖2 + ε2).
(87)

On the other hand, by the definition of ρL(x),

(ρL(x) − ε)2 ≤ 2((ρL(x))2 + ε2)

≤ 2(
∥

∥uL
∥

∥

2 ‖x‖2 (δL)−2 + ε2)

≤ 2 max(
∥

∥uL
∥

∥

2
(δL)−2, 1)(‖x‖2 + ε2).

(88)

It follows from (87) and (88) that (85) is bounded from above by a constant

not depending on x or ε. Hence, there is a ζ̃L ≥ 0 such that for all x ∈ G
and ε ∈ (0, 1),

(89)
〈

γL,∇φε(x)
〉

≥ −ζ̃L.

We are now ready to prove that when K = N , (63) holds almost surely
for each ∅ 6= L ⊆ N . For each positive integer m, define
(90)

Tm , inf{t ≥ 0 : ‖W (t)‖ ≥ m or UL(t) ≥ m for some ∅ 6= L ⊆ N} ∧ m.

Replacing f by φε and t by Tm in (65), we see from (74) that almost surely:

φε(W (Tm)) − φε(W (0)) =

∫ Tm

0
〈∇φε(W (s)), dX(s)〉

+
∑

∅6=L⊆N

∫ Tm

0

〈

γL,∇φε(W (s))
〉

dUL(s).
(91)

Since φε and its first derivatives are bounded on each compact subset of G,
by the definition of the stopping time Tm and since θ = 0, the stochastic
integral with respect to dX in (91) has zero expectation. Thus, taking
expectations in (91) yields:

E [φε(W (Tm)) − φε(W (0))]

=
∑

∅6=L⊆N

E

[∫ Tm

0

〈

γL,∇φε(W (s))
〉

dUL(s)

]

≥ −(ln ε + 1)
∑

∅6=L⊆N

ζLE

[∫ Tm

0
1{‖W (s)‖<εξL}dUL(s)

]

−
∑

∅6=L⊆N

ζ̃LE
[

UL(Tm)
]

,

(92)

where the lower bounds (82) and (89) have been used to obtain the last
inequality. Now, the left-hand side of (92) is bounded as ε ↓ 0, since for
ε ∈ (0, 1), φε is uniformly bounded on compact subsets of G. Also, the
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last sum in (92) is positive and independent of ε. Thus, dividing (92) by
−(ln ε + 1) and letting ε ↓ 0 yields:

(93) lim
ε↓0

∑

∅6=L⊆N

ζLE

[∫ Tm

0
1{‖W (s)‖<εξL}dUL(s)

]

≤ 0.

Since each term in the above sum is non-negative and ζL > 0, it follows by
Fatou’s lemma that for each ∅ 6= L ⊆ N ,

(94)

∫ Tm

0
1FN (W (s))dUL(s) = 0 almost surely.

Letting m → ∞ yields the desired result. �

Lemma 7.9. Suppose (W, X, U) is as in the hypothesis of Theorem 7.7 and
θ = 0. Then (63) holds for all ∅ 6= L ⊆ K ⊆ N where |K| ≥ 2.

Proof. Our proof is by backwards induction on |K|. Without loss of gener-
ality, we assume N ≥ 2 (otherwise there is no K ⊆ N with |K| ≥ 2). By
Lemma 7.8, the result holds for |K| = N in which case the only possible K
is K = N . Fix 2 ≤ k < N and suppose that (63) holds for all K ⊆ N and
∅ 6= L ⊆ K, such that k < |K| ≤ N . Fix some K ⊆ N such that |K| = k.
We need to show that for all ∅ 6= L ⊆ K,

(95)

∫ ∞

0
1FK(W (s))dUL(s) = 0 almost surely.

To this end, fix ∅ 6= L ⊆ K and recall that for any non-empty set L ⊆ N
and any w ∈ RN , wL denotes the vector whose components are those of w
with indices in L. Then

∫ ∞

0
1FK(W (s))dUL(s) =

∫ ∞

0
1{K(W (s))=K}dUL(s)

+

∫ ∞

0
1n

W (s)∈∪K$M FM

odUL(s)

a.s.
=

∫ ∞

0
1{WK(s)=0,WKc (s)>0}dUL(s)

(96)

where by the induction assumption the second integral on the right-hand side
of the first equation is almost surely zero. Thus, by monotone convergence,
it suffices to prove that for each η ∈ RN−k

+ , satisfying η > 0, we have

(97)

∫ ∞

0
1{WK(s)=0,WKc (s)>η}dUL(s) = 0 almost surely.

For this, fix an η ∈ RN−k
+ with η > 0, and define a sequence of stopping

times {Tm}∞m=1 as follows. (Here, for notational convenience, we regard the
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entries in η as being indexed by i ∈ Kc.)

T0 , 0,

T1 , inf{s ≥ 0 : Wi(s) < ηi/2 for some i ∈ Kc},
T2 , inf{s ≥ T1 : WKc(s) > η},

(98)

and for m ≥ 1,

T2m+1 , inf{t ≥ T2m : Wi(s) < ηi/2 for some i ∈ Kc},
T2m+2 , inf{t ≥ T2m+1 : WKc > η}.

(99)

By the continuity of the paths of W , Tm → ∞ as m → ∞, and we have
almost surely:

(100)

∫ ∞

0
1{WK(s)=0,WKc (s)>η}dUL(s) ≤

∞
∑

m=0

∫ T2m+1

T2m

1{WK(s)=0}dUL(s).

Consider m ≥ 0. Then on {T2m < ∞}, for ∅ 6= M ⊆ N , M * K, UM

can increase only when WM = 0 and so, almost surely, for all such M,

(101) UM(t + T2m) − UM(T2m) = 0 for all t ∈ [0, T2m+1 − T2m].

Thus, on {T2m < ∞}, we have almost surely for all t ∈ [0, T2m+1 − T2m]

WK(t + T2m) − WK(T2m)

= XK(t + T2m) − XK(T2m) +
∑

∅6=M⊆K

γM
K (UM(t + T2m) − UM(T2m)).

(102)

Then Itô’s formula, (65), holds on {T2m < ∞} for f ∈ C2(Rk
+) with

(X, {UL : ∅ 6= L ⊆ N}, W ) and {γL : ∅ 6= L ⊆ N} replaced by (XK, {UM :
∅ 6= M ⊆ K}, WK)((· + T2m) ∧ T2m+1) and {γM

K : ∅ 6= M ⊆ K}, and with

(103) Lf =
1

2

∑

i∈K

Γii
∂2f

∂x2
i

.

The same proof as in Lemma 7.8, but with the dimension reduced from N
to k = |K|, shows that

(104)
∑

∅6=M⊆K

1{T2m<∞}

∫ T2m+1

T2m

1{WK(s)=0}dUM(s) = 0 almost surely,

and hence for all ∅ 6= M ⊆ K,

(105)

∫ T2m+1

T2m

1{WK(s)=0}dUM(s) = 0 almost surely on {T2m < ∞}.

For this, one uses the martingale property of the Brownian motion X and
the fact that there is a βk ∈ Rk

+ and δM,k ∈ [1,∞) such that
〈

γM
K , βk

〉

=

δM,k for any ∅ 6= M ⊆ K (this follows from the fact that (58) holds with
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K(x) = K where n
K(x)
i = 0 if i /∈ K(x) and n

K(x)
i = 1/

√

|K(x)| if i ∈ K(x)).
Substituting (105) in (100) then yields the desired result. �

Lemma 7.10. Suppose (W, X, U) is as in the hypothesis of Theorem 7.7
and θ ∈ RN . Then (63) holds for all ∅ 6= L ⊆ K ⊆ N where |K| ≥ 2.

Proof. Let K ⊆ N satisfy |K| ≥ 2, ∅ 6= L ⊆ K and θ ∈ RN . Without
loss of generality (by considering a canonical representation on path space
for example), we may assume that (Ω,F) is a standard measurable space

and for t ≥ 0, Ft , σ{(W (s), X(s), U(s)) : 0 ≤ s ≤ t}. Let the associ-
ated probability measure be P θ. Then X is a (θ, Γ)-Brownian motion on
(Ω,F , {Ft}, P θ). By the Girsanov transformation (see Ikeda and Watan-
abe [12, p. 176]), there is a probability measure P 0 on (Ω,F , {Ft}) such
that under P 0, X is a (0, Γ)-Brownian motion starting from 0 and for each
positive integer m, P θ and P 0 are mutually absolutely continuous on Fm.
It follows that W with the probability measure P 0 on (Ω,F , {Ft}) is an
SRBM with extensive data (RN

+ , 0, Γ, {γK, ∅ 6= K ⊆ N}) that starts from
the origin. Then by Lemma 7.9, for each ∅ 6= L ⊆ K ⊆ N , (63) holds almost
surely under P 0. But since P θ and P 0 are mutually absolutely continuous
on Fm, it follows that (63) holds almost surely under P θ with m in place of
the upper limit ∞ there. Letting m → ∞ yields the desired result. �

Proof of Theorem 7.7. Combining Lemmas 7.8, 7.9, and 7.10, we have proved
the first part of the theorem.

To prove the second part of the theorem, we use (63). From the definition
of an SRBM with extensive data (Definition 7.1) and the remark following
it, W has the form:

(106) W (t) = X(t) +
∑

∅6=K⊆N

γKUK(t), t ≥ 0,

where for ∅ 6= K ⊆ N ,

(107) UK(t) =

∫ t

0
1FK(W (s))dUK(s), t ≥ 0.

From (63), for K ⊆ N with |K| ≥ 2,

(108) UK(t) =

∫ t

0
1FK(W (s))dUK(s) = 0 almost surely.

Thus the only non-trivial terms in the sum in (106) are those indexed by
∅ 6= K ⊆ N where |K| = 1. Equation (64) immediately follows. �

7.6. Proof of Theorem 6.1.

Proof. By Theorems 7.2 and 7.5, it suffices to prove that whenever (W, X, U)
defines an SRBM with extensive data (G, θ, Γ, {γK, ∅ 6= K ⊆ N}) that starts
from the origin, then W is an SRBM with data (RN

+ , θ, Γ, R) that starts from
the origin and the law of the latter is unique.
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By Theorem 7.7, W (·) has the representation given by (64). For i ∈ N ,
define

(109) Y i , c∅i U
{i}.

Note that from (62), a.s.,

(110) Y i(t) =

∫ t

0
1Fi

(W (s))dY i(s) for all t ≥ 0.

Therefore Y satisfies condition (iv) of Definition 6.1. From (64), (109), and

the representation for [γ{1}, γ{2}, . . . , γ{N}] given by (46), we have that for
t ≥ 0,

(111) W (t) = X(t) + RY (t)

where by Lemma 5.3, R satisfies the HR condition, and W and X satisfy
the other conditions of Definition 6.1 with ν = δ0. Therefore, (W, X, Y )
defines an SRBM with data (RN

+ , θ, Γ, R) that starts from the origin. Since
R satisfies the HR condition, by Harrison and Reiman [10], the law of W is
unique. It follows that

(112) Ŵ r ⇒ W as r → ∞
where W is an SRBM with data (RN

+ , θ, Γ, R) that starts from the origin. �

Appendix A. Proof of Lemma 7.6

To prove Lemma 7.6, we use Proposition 4.4 of [14]. Specifically, we
prove the following lemma, a restatement of condition (II) of Proposition
4.4 in [14], from which Lemma 7.6 follows. Our proof of Lemma A.1 is
similar to the proof of Lemma 8.4 in Williams [25].

Lemma A.1. For each r > 0, X̂r = X̌r + εr, where εr is a process that
converges to 0 in probability as r → ∞, and

(i) {X̌r(t) − X̌(0) : r > 0} is uniformly integrable for each t ≥ 0,
(ii) there is a sequence of constants {θr} in RN such that limr→∞ θr = θ,
(iii) for each r, {X̌r(t)− X̌r(0)− θrt, t ≥ 0} is a martingale with respect

to the filtration generated by (Ŵ r, X̌r, Û r).

We need to develop some preliminaries before proving Lemma A.1.
For r > 0, i ∈ N , and n ∈ N, define

(113) Ar
i (n) ,

n
∑

k=1

ur
i (k),

where an empty sum is defined to be zero. Then for r > 0, the exogenous
arrival process is defined for i ∈ N , and t ≥ 0, by

(114) Er
i (t) , max{n ≥ 0 : Ar

i (n) ≤ t}.
Recall the definition of V (·) from (5).



DIFFUSION APPROXIMATION FOR A MIMO SYSTEM WITH COOPERATION 31

For each p ∈ NN , let

(115) Gr
p , σ{Ar(· ∧ (p + eN )), V r(· ∧ p)}

where

(116) Ar(· ∧ (p + eN )) , (Ar
i (· ∧ (pi + 1)) : i ∈ N )

and

(117) V r(· ∧ p) , (V r
i (· ∧ pi) : i ∈ N ).

Then {Gr
p : p ∈ NN} is multi-parameter filtration (see [8, Section 2.8]).

Definition A.1. A multi-parameter stopping time relative to {Gr
p : p ∈ NN}

is a random variable τ taking values in NN such that

(118) {τ = p} ∈ Gr
p

for all p ∈ NN .

Lemma A.2. For each t ≥ 0,

(119) τ r(t) , Er(t)

is a stopping time relative to {Gr
p : p ∈ NN}.

Remark. The reader will note that in defining Gr
p , eN is added to the ar-

gument of Ar(·). This has to be done because we need to know the first
pi + 1 interarrival times for the i-th user before we can determine whether
Er

i (t) = pi or not.

Proof. For i ∈ N and p ∈ NN ,

(120) {Er
i (t) = pi} = {Ar

i (pi) ≤ t < Ar
i (pi + 1)} ∈ Gr

p .

Therefore τ r(t) = Er(t) is a stopping time relative to {Gr
p : p ∈ NN}. �

We next show that the diffusion-scaled workload process is adapted to the
multi-parameter filtration stopped at the stopping time τ r(r2t). The proof
of the following lemma is based on the proof of Lemma 8.3 in [25] that proves
the stopping time property of certain renewal processes for the system of
interest. The following lemma, on the other hand, proves the adaptedness
of the workload, a result that in [25], unlike here, follows from the structure
of the system.

Lemma A.3. The process Ŵ r(·) is adapted to the filtration {Gr
τr(r2t), t ≥ 0},

where τ r(r2t) = Er(r2t).

Remark. As a consequence of the adaptedness of Ŵ r, the processes {Û r,K(·), ∅ 6=
K ⊆ N} are adapted to the filtration {Gr

τr(r2t), t ≥ 0} as well.
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Proof. From the definition of Ŵ r(·), it suffices to show that W r is adapted
to {Gr

τr(t), t ≥ 0}. Our proof is for fixed r and so the superscript r will be

suppressed in the following proof.
Since W (0) = 0 (and for all ∅ 6= K ⊆ N , UK(0) = 0), it follows

that W (0) and U(0) are G0-measurable. Furthermore, the process {(A(p +
eN ), V (p)) : p ∈ NN} is adapted to the multi-parameter filtration {Gp : p ∈
NN}. Then by [8, Proposition 2.8.5] and the stopping time property of τ(t)
(Lemma A.2), we have that for each t ≥ 0:

(121) (A(E(t) + eN ), V (E(t))) ∈ Gτ(t).

Therefore, from (6), we only need to show that T (t) (as defined by (32)) is
adapted to the filtration {Gτ(t), t ≥ 0}.

Next, we define a strictly increasing sequence of real-valued random times
{ηl}∞l=0 for the (discrete event) queueing system such that η0 , 0 and for
l = 1, 2, . . . , ηl is the l-th time that there is a new arrival for some queue or
that a queue newly becomes empty. We have ηl < ∞ for each l, and ηl → ∞
as l → ∞. (This follows by the assumption concerning the exclusion of
exceptional null sets made at the end of Section 3.2.)

For each t ≥ 0, p ∈ NN ,

(122) {E(t) = p} =
∞∪

j=0

∞∩
l=j

{E(t ∧ ηl) = p}.

For each l ≥ 0, p ∈ NN , define

(123) Bl
p , {E(t ∧ ηl) = p}.

Fix t ≥ 0. It will be shown by induction that for each l ≥ 0, the following
two properties hold for all p ∈ NN :

(i) Bl
p ∈ Gp,

(ii) for

(124) I l , (t ∧ ηl, E(· ∧ t ∧ ηl), T (· ∧ t ∧ ηl), W (· ∧ t ∧ ηl)),

we have 1Bl
p
I l ∈ Gp.

We now proceed with the induction proof. For l = 0, one has η0 = 0 and
E(0) = 0. Moreover, for all p ∈ NN , W (0) = 0 ∈ Gp and T (0) = 0 ∈ Gp.
Then, (i) and (ii) are easily verified to hold for l = 0.

For the induction step, assume that for some l ≥ 0, (i) and (ii) hold for
all p ∈ NN . Now,

(125) Bl+1
p = ∪

m
(Bl+1

p ∩Bl
m)

where the union is over all m ∈ NN such that m ≤ p. By the induction
assumption, for fixed p ∈ NN and any m ∈ NN such that m ≤ p, we have

(126) Bl
m ∈ Gm, 1Bl

m
I l ∈ Gm.

Hence, from (124), Bl
m ∩{ηl ≥ t} ∈ Gm and Bl

m ∩{ηl < t} ∈ Gm.
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Now, on Bl
m ∩{ηl ≥ t}, ηl+1 ∧ t = ηl ∧ t, E(t∧ ηl+1) = E(t∧ ηl) = m, and

I l+1 = I l. Thus, if m = p we have

(127) Bl+1
p ∩Bl

m ∩{ηl ≥ t} = Bl
m ∩{ηl ≥ t} ∈ Gm,

or if m 6= p, then the left member of (127) is the empty set which is still
in Gm. Thus, combining the above with the induction assumption (126), we
obtain

(128) 1Bl+1
p ∩Bl

m ∩{ηl≥t}I
l+1 = 1{m=p}1Bl

m ∩{ηl≥t}I l ∈ Gm.

On the other hand, on Bl
m ∩{ηl < t}, E(ηl) = E(t∧ ηl) = m and the first

time after ηl that a new external arrival occurs is η = mini∈N Ai(mi + 1).
Furthermore, on the set Bl

m ∩{ηl < t}, we have

(129) I l = (ηl, E(· ∧ ηl), T (· ∧ ηl), W (· ∧ ηl)).

Recall that the rate of service given to each of the users over the period
[ηl, ηl+1) is given by σl , Λ(W (ηl)) where, from (7), Λ(·) is a measurable
function on RN

+ . It follows that if we define
(130)

ζ , ηl + inf{s ≥ 0 : Wi(ηl) − σl
is = 0 for some i such that σl

i > 0, i ∈ N},
then on Bl

m ∩{ηl < t}, ηl+1 = η ∧ ζ where ηl+1 is a measurable func-
tion of (A(· ∧ (m + eN )), ηl, W (ηl)), and hence by the induction assump-
tion (126), (129), and the definition of Gm, we have

(131) 1Bl
m ∩{ηl<t}ηl+1 ∈ Gm.

Moreover, on Bl
m ∩{ηl < t}, we can express E(ηl+1), T (ηl+1), and W (η1+1)

as measurable functions of ηl, ηl+1, E(ηl), A(m + eN ), T (ηl), V (E(ηl+1)),
and W (ηl) as follows. For i ∈ N ,

Ei(ηl+1) = Ei(ηl) + 1{Ai(mi+1)=ηl+1},

Ti(ηl+1) = Ti(ηl) + σl
i(ηl+1 − ηl),

Wi(ηl+1) = Vi(Ei(ηl+1)) − Ti(ηl+1).

(132)

Since on [ηl, ηl+1), E is constant and T is linearly increasing at a fixed
rate, given by σl, on combining the above with the induction assump-
tion (126), (129), and (131), we have that

(133) 1Bl
m ∩{ηl<t}(ηl+1, E(· ∧ ηl+1), T (· ∧ ηl+1)) ∈ Gm.

In particular,

(134) 1Bl
m ∩{ηl<t}(E(t ∧ ηl+1)) ∈ Gm

and hence

(135) Bl+1
p ∩Bl

m ∩{ηl < t} ∈ Gm.

On combining this with (127), we see that Bl+1
p ∩Bl

m ∈ Gm ⊂ Gp and hence
by (125),

(136) Bl+1
p ∈ Gp.
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Thus, (i) holds with l + 1 in place of l. Similarly,

(137) Bl+1
p ∩{ηl+1 ≤ t} = ∪

m
(Bl+1

p ∩Bl
m ∩{ηl < t}∩{ηl+1 ≤ t}) ∈ Gp,

where the union is over all m ∈ NN such that m ≤ p.
It remains to verify (ii) with l + 1 in place of l. On Bl+1

p ∩{ηl+1 ≤ t}, we
have V (E(ηl+1)) = V (p) ∈ Gp. Combining this with (132), the fact that W
is linearly decreasing on [ηl, ηl+1), and with (126), (133), (135), and (137),
we have that

(138) 1Bl+1
p ∩Bl

m ∩{ηl<t}∩{ηl+1≤t}I
l+1 ∈ Gp.

Combining the above with (125), (128), and the fact that

(139) 1Bl+1
p ∩Bl

m ∩{ηl<t<ηl+1}
I l+1 = 1Bl+1

p ∩Bl
m ∩{ηl<t<ηl+1}

I l ∈ Gp,

we conclude that

(140) 1Bl+1
p

I l+1 ∈ Gp.

�

Proof of Lemma A.1. An outline of our proof is as follows. The idea of
the proof of part (iii) is that apart from small error terms associated with
residual interarrival times, by suitably centering and scaling the primitive
processes (Ar, V r), we can reexpress X̂r, as given by (34), in terms of a
martingale evaluated at a stopping time. Indeed, we use the i.i.d. and in-
dependence assumptions on the primitive sequences {ur

i (k), k = 1, 2, . . . , },
{vi(k), k = 1, 2, . . . }, i ∈ N , to establish the martingale property. In or-
der to conclude that the stopped process is also a martingale, we estab-
lish L2-bounds on the martingale and on the mean of the stopping time
τ r(t) = Er(t). The martingale property in part (iii) of the lemma follows
from this stopped martingale property and the fact that U r and W r are
adapted to Gr

τr(t). The asymptotic negligibility of error terms associated

with the martingale property of the renewal process Er(t) is used to show
that the residual process converges in probability to 0. Part (ii) of the
lemma follows from the heavy traffic assumption (Assumption 4.1). Finally,
the uniform integrability property in part (i) follows from L2 bounds used
in obtaining the stopped martingale property mentioned above. Now we
provide the details of the proof.

For the moment, let r be fixed. Now,

(141) {Gr
p} , {Gr

p : p ∈ NN}
defined by (115) is a (multi-parameter) filtration and for each t ≥ 0, by
Lemma A.2,

(142) τ r(t) = Er(t)

is a (multi-parameter) stopping time relative to this filtration. If (Ωr,Fr) is
the measurable space on which all of the processes indexed by r are defined,
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then for each t ≥ 0 we can define a σ-algebra associated with the multi-
parameter stopping time τ r(t) as follows:

(143) Gr
τr(t) , {B ∈ Fr : B ∩{τ r(t) ≤ p} ∈ Gr

p for all p ∈ NN}.

Then {Gr
τr(t), t ≥ 0} is a filtration in the usual single-parameter sense. From

Lemma A.3, we have that the process W r (and hence U r) is adapted to this
filtration.

We now introduce the fundamental multi-parameter martingales Mr and
Or, and martingales associated with squares of their components. For each
p ∈ NN and i ∈ N , let

Mr
i (pi) , λr

i A
r
i (pi + 1) − (pi + 1),(144)

N r
i (pi) , (Mr

i (pi))
2 − (pi + 1)α2

i ,(145)

Or
i (pi) , V r

i (pi) − pimi,(146)

Pr
i (pi) , (Or

i (pi))
2 − pim

2
i β

2
i .(147)

Let Mr(p) , (Mr
i (pi) : i ∈ N ), N r(p) , (N r

i (pi) : i ∈ N ), Or(p) ,

(Or
i (pi) : i ∈ N ), Pr(p) , (Pr

i (pi) : i ∈ N ). Because of the independence
and i.i.d. assumptions of Section 3, we have that the 4N -dimensional process:

(148) {Qr(p) , (Mr(p),N r(p),Or(p),Pr(p)) : p ∈ NN},
is a multi-parameter martingale relative to {Gr

p}.
For each p ∈ NN , let

(149) Rr(p) , (Mr(p),Or(p)).

We aim to show that {Rr(τ r(t)),Gr
τr(t), t ≥ 0} is a martingale. However, we

cannot immediately deduce this from the martingale property of Qr, since
τ r(t) is a possibly unbounded stopping time. So we first truncate time,
apply the multi-parameter stopping theorem, and then pass to the limit
in the truncation using uniform integrability to deduce the desired result.
The bounds obtained for the uniform integrability will also prove useful in
verifying part (i) of the lemma. For n ∈ N, let nN denote the N -dimensional
vector whose components all have value n. Then, we can verify (in a similar
manner to that for Qr) that

(150) {Qr,n(p) , Qr(p ∧ nN ) : p ∈ NN}
is a multi-parameter martingale relative to {Gr

p}. Then by the multi-parameter
optional stopping theorem (see [8, Theorem 2.8.7]) we have that

(151) {Qr,n(τ r(t)),Gr
τr(t), t ≥ 0}

is a martingale for each n ∈ N. Now, for p ∈ NN and n ∈ N, let

(152) Rr,n(p) , (Mr(p ∧ nN ),Or(p ∧ nN )).
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For each n ∈ N, it follows from the martingale property of {Qr,n(τ r(t)),Gr
τr(t), t ≥

0} that

(153) {Rr,n(τ r(t)),Gr
τr(t), t ≥ 0}

is a martingale. We aim to prove that the same is true with Rr in place of
Rr,n. For t ≥ 0 fixed, Rr,n(τ r(t)) → Rr(τ r(t)) pointwise as n → ∞, and so
it suffices to show that {Rr,n(τ r(t))}∞n=1 is L2-bounded for each t ≥ 0, since
this implies that it is uniformly integrable. By the martingale properties of
the N r and Pr elements of Qr,n(τ r(·)) we have for all i ∈ N , n ≥ 1:

E
[

(Mr
i (E

r
i (t) ∧ n))2 − ((Er

i (t) + 1) ∧ n)α2
i

]

= 0,(154)

E
[

(Or
i (E

r
i (t) ∧ n))2 − (Er

i (t) ∧ n)m2
i β

2
i

]

= 0.(155)

From Lorden’s inequality for renewal processes (see Lindvall [16, pp. 77–78];
Carlsson and Nerman [5]), we obtain the following upper bound for i ∈ N ,

(156) E [Er
i (t) + 1] ≤ λr

i t + α2
i + 2 , hr

i (t),

where hr
i (t) is finite. It then follows from (154)–(156) that for all n ≥ 1,

i ∈ N ,

E
[

(Mr
i (E

r
i (t) ∧ n))2

]

≤ α2
i h

r
i (t),(157)

E
[

(Or
i (E

r
i (t) ∧ n))2

]

≤ m2
i β

2
i hr

i (t).(158)

This establishes the desired L2-boundedness and hence

(159) {Rr(τ r(t)),Gr
τr(t), t ≥ 0}

is a martingale for each r.
We now apply the above martingale properties to establish part (iii) of

the lemma. For i ∈ N , define

X̌r
i (t) , r−1

(

Or
i (E

r
i (r

2t)) − miMr
i (E

r
i (r

2t)) + (λr
i − λi)mir

2t
)

,(160)

εr
i (t) , r−1mi

(

λr
i A

r
i (E

r
i (r

2t) + 1) − (λr
i r

2t + 1)
)

,(161)

θr
i , r(λr

i − λi)mi.(162)

Then from (14), (19), (20), and (34), for i ∈ N , t ≥ 0,

(163) X̂r
i (t) = X̌r

i (t) + εr
i (t).

Since

(164) Rr(τ r(r2t)) = (Mr(Er(r2t)),Or(Er(r2t))),

it follows, from the martingale property of (159), that

(165) {X̌r(t) − X̌r(0) − θrt,Gr
τr(r2t), t ≥ 0}

is a martingale. Note that by Lemma A.3, Û r and Ŵ r are adapted to the
filtration {Gr

τr(r2t), t ≥ 0}. Hence, {X̌r(t)−X̌r(0)−θrt, t ≥ 0} is a martingale

relative to the filtration generated by (Ŵ r, X̌r, Û r).
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We next show that εr converges in probability to the zero process as
r → ∞. By the definition of Er

i from Ar
i for i ∈ N , for each T ≥ 0,

(166) ‖εr(·)‖T ≤ 2 max
i∈N

|miλ
r
i |

∥

∥r−1ur
i (E

r
i (r

2·) + 1)
∥

∥

T
+ max

i∈N
|mi| /r

where, as a consequence of the functional central limit theorem (Proposi-
tion 5.1), the right-hand side above goes to zero in probability as r → ∞
(see the proof of Lemma 6 in Iglehart and Whitt [11]).

Part (ii) of the lemma follows from the heavy traffic assumption (Assump-
tion 4.1).

It remains to show part (i) of the lemma. For this it suffices to show
that X̌r(t) as r varies is uniformly integrable for each fixed t ≥ 0. Now by
Fatou’s lemma, (157)–(158) hold with the n’s removed. Fix t ≥ 0. By (156),
we have

(167) sup
r

max
i∈N

hr
i (r

2t)

r2
< ∞.

Replacing t by r2t in (157)–(158), and combining with the above, we see
that

(168) {r−1(Mr(Er(r2t)),Or(Er(r2t)))}
as a collection indexed by r is L2-bounded, and hence uniformly integrable.
The uniform integrability of {X̌r(t)} follows. �
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