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Abstract

We consider a parallel server queueing system consisting of a bank of buffers for holding incoming
jobs and a bank of flexible servers for processing these jobs. Incoming jobs are classified into one
of several different classes (or buffers). Jobs within a class are processed on a first-in-first-out basis,
where the processing of a given job may be performed by any server from a given (class-dependent)
subset of the bank of servers. The random service time of a job may depend on both its class and the
server providing the service. Each job departs the system after receiving service from one server. The
system manager seeks to minimize holding costs by dynamically scheduling waiting jobs to available
servers. We consider a parameter regime in which the system satisfies both a heavy traffic and a complete
resource pooling condition. Our cost function is an expected cumulative discounted cost of holding jobs
in the system, where the (undiscounted) cost per unit time is a linear function of normalized (with
heavy traffic scaling) queue length. In a prior work [40], the second author proposed a continuous
review threshold control policy for use in such a parallel server system. This policy was advanced as
an “interpretation” of the analytic solution to an associated Brownian control problem (formal heavy
traffic diffusion approximation). In this paper we show that the policy proposed in [40] is asymptotically
optimal in the heavy traffic limit and that the limiting cost is the same as the optimal cost in the Brownian
control problem.
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1 Introduction

We consider a dynamic scheduling problem for a parallel server queueing system. This system might be
viewed as a model for a manufacturing or computer system, consisting of a bank of buffers for holding
incoming jobs and a bank of flexible servers for processing these jobs (see e.g., [22]). Incoming jobs are
classified into one of several different classes (or buffers). Jobs within a class are served on a first-in-first-out
basis and each job may be served by any server from a given subset of the bank of servers (this subset may
depend on the class). In addition, a given server may be able to service more than one class. Jobs depart
the system after receiving one service. Jobs of each class incur linear holding costs while present within
the system. The system manager seeks to minimize holding costs by dynamically allocating waiting jobs to
available servers.

The parallel server system is described in more detail in Section 2 below. With the exception of a
few special cases, the dynamic scheduling problem for this system cannot be analyzed exactly and it is
natural to consider more tractable approximations. One class of such approximations are the so-called
Brownian control problems, first introduced by Harrison in [11] and further developed in [15, 18]. These
are formal heavy traffic approximations to queueing control problems. Various authors (see for example
[6, 7, 19, 20, 23, 28, 29, 37]) have used analysis of these Brownian control problems, together with clever
interpretation of their optimal (analytic) solutions, to suggest “good” policies for the original queueing
control problems.

For the parallel server system considered here, Harrison and L´opez [17] studied the associated Brown-
ian control problem and identified a condition under which the solution of that problem exhibitscomplete
resource pooling,i.e., in the Brownian model, the efforts of the individual servers can be efficiently com-
bined to act as a single pooled resource or “superserver”. Under this condition, Harrison and L´opez [17]
conjectured that a “discrete review” scheduling policy (for the original parallel server system), obtained by
using the BIGSTEP discretization procedure of Harrison [13], is asymptotically optimal in the heavy traf-
fic limit. They did not attempt to prove the conjecture, although, in a slightly earlier work, Harrison [14]
did prove asymptotic optimality of a discrete review policy for a two server case with special distributional
assumptions.

Here, focusing on the parameter regime associated with heavy traffic and complete resource pooling, we
first review the formulation and solution of the Brownian control problem. Then we prove that a continuous
review “tree-based” threshold policy proposed by the second author in [40] is asymptotically optimal in the
heavy traffic limit. (Independently of [40], Squillante et al. [33] proposed a tree-based threshold policy for
the parallel server system. However, their policy appears to be different from the one described in [40].) Our
treatment of the Brownian control problem is similar to that in [17, 40] and our description of the candidate
threshold policy is similar to that in [40], although some more details are included here. On the other hand,
the proof of asymptotic optimality of this policy is new. In a related work [3], we have already proved
that this policy is asymptotically optimal for a particular two-server, two-buffer system. Indeed, techniques
developed in [3] have been useful for analysis of the more complex multiserver case treated here.

Since we began this work, three related works have appeared [1, 34, 30]. In [1], Ata and Kumar consider
a dynamic scheduling problem for an open stochastic processing network that allows feedback routing. A
parallel server system is a special case of such networks in which no routing occurs. Under heavy traffic
and complete resource pooling conditions, Ata and Kumar prove asymptotic optimality of a discrete review
policy for an open stochastic processing network with linear holding costs. Although this provides an
asymptotically optimal policy for the parallel server problem, we think it is still of interest to establish
asymptotic optimality of a simple continuous review threshold policy, as we do here.

The other related works are by Stolyar [34], who considers a generalized switch, which operates in
discrete time, and Mandelbaum and Stolyar [30], who consider a parallel server system. Although it does not
allow routing, Stolyar’s generalized switch is somewhat more general than a parallel server system operating

3



in discrete time. In particular, it allows service rates that depend on the state of a random environment.
Assuming heavy traffic and a resource pooling condition, which is slightly more general than a complete
resource pooling condition, Stolyar [34] proves asymptotic optimality of a MaxWeight policy, for holding
costs that are positive linear combinations of the individual queue lengths raised to the powerβ + 1 where
β > 0. In particular, the holding costs are not linear in the queue length. An advantage of the MaxWeight
policy (which exploits the non-linear nature of the holding cost function) is that it does not require knowledge
of the arrival rates for its execution, although checking the heavy traffic and resource pooling conditions does
involve these rates.

Following on from [34], in [30], Mandelbaum and Stolyar focus on a parallel server system (operating in
continuous time). Assuming heavy traffic and complete resource pooling conditions they prove asymptotic
optimality of a MaxWeight policy (called a generalizedcµ-rule there), for holding costs that are sums of
strictly increasing, strictly convex functions of the individual queue lengths. (They also prove a related
result where queue lengths are replaced by sojourn times.) Again, the nonlinear nature of the holding cost
function allows the authors to specify a policy that does not require knowledge of the arrival rates (nor of a
solution of a certain dual linear program). Although Mandelbaum and Stolyar [30] conjecture a policy for
linear holding costs (which like ours makes use of the solution of a dual linear program), they stop short of
proving asymptotic optimality of that policy.

Thus, the current paper provides the only proof of asymptotic optimality of a continuous review policy
for the parallel server system with linear holding costs under a complete resource pooling condition. An
additional difference between our work and that in [1, 30, 34] is that we impose finite exponential moment
assumptions on our primitive stochastic processes, whereas only finite moment assumptions (of order2+ ε)
are needed for the results in [1, 30, 34]. We conjecture that our exponential moment assumptions could
be relaxed at the expense of an increase in the size of our (logarithmic) thresholds. We have not pursued
this conjecture here, having chosen the tradeoff of smaller thresholds at the expense of higher moment
assumptions.

This paper is organized as follows. In Section 2, we describe the model of a parallel server system con-
sidered here. In Section 3 we introduce a sequence of such systems, indexed byr (wherer tends to infinity
through a sequence of values in[1,∞)), which is used in formulating the notion of heavy traffic asymptotic
optimality. The cost function used in therth system is an expected cumulative discounted linear holding
cost, where the linear holding cost is per unit of normalized queue length (in diffusion scale). In Section 3,
we also review the notion of heavy traffic defined in [15, 17] using a linear program, and recall its interpre-
tation in terms of the behavior of an associated fluid model, as previously described in [40]. In Section 4, we
describe the Brownian control problem associated with the sequence of parallel server systems, and, under
the complete resource pooling condition of Harrison and L´opez [17], we review the solution of the Brownian
control problem obtained in [17] using a reduced form of the problem called the equivalent workload for-
mulation [15, 18]. The complete resource pooling condition ensures that the Brownian workload process is
one-dimensional. Moreover, from [17] we know that this condition is equivalent to uniqueness of a solution
to the dual to the linear program described in Section 3. In Section 5, we describe the dynamic threshold
policy proposed in [40] for use in the parallel server system. This policy exploits a tree structure of a graph
containing the servers and buffers as nodes. We then state the main result (Theorem 5.2) which implies that
this policy is asymptotically optimal in the heavy traffic limit and that the limiting cost is the same as the
optimal cost in the Brownian control problem. An outline of our method of proof is given in Section 6. The
details of the proof are contained in Sections 7–9. Here a critical role is played by our analysis in Section 7
of what we call the residual processes, which measure the deviations of the queue lengths from the thresh-
old levels, or from zero if a queue does not have a threshold on it, when the threshold policy is used. This
allows us to establish a form of “state space collapse” (see Theorems 6.1 and 5.1) under this policy. The
techniques used in proving state space collapse build on and extend those introduced in [3]. In particular, a
major new feature is the need to show that allocations of time to various activities stay close to their nominal
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allocations over sufficiently long time intervals (with high probability), which in turn is used to show that
the residual processes stay close to zero (with high probability). Using a suitable numbering of the buffers,
the proof of state space collapse proceeds by induction on the buffer number, highlighting the fact that the
queue length for a particular buffer depends (via the threshold policy) on the queue lengths associated with
lower numbered buffers. Another new aspect of our proof lies in Section 9, where a certain uniform inte-
grability is used to prove convergence of normalized cost functions associated with the sequence of parallel
server systems, operating under the threshold policy, to the optimal cost function for the Brownian control
problem. To establish the uniform integrability, estimates of the probabilities that the residual processes
deviate far from zero need to be sufficiently precise (cf. Theorem 7.7). This accounts for the appearance
of the polynomial terms in (I)–(III) of Section 7.2. Also, in the proof of the uniform integrability of the
normalized idletime processes, a technical point that was overlooked in the proof of the analogous result in
[3] is corrected. Specifically, the proof is divided into two separate cases depending on the size of the time
index (cf. (9.34)–(9.36)). (In the proof of Theorem 5.3 in [3], the estimates in (173) and (176) should have
been divided into two cases corresponding tor2t > 2/ε̃ andr2t ≤ 2/ε̃.)

1.1 Notation and Terminology

The set of non-negative integers will be denoted byIN and the value+∞ will simply be denoted by∞. For
any real numberx, bxc will denote the integer part ofx, i.e., the greatest integer that is less than or equal to
x, anddxe will denote the smallest integer that is greater than or equal tox. We letIR+ denote[0,∞). The
m-dimensional (m ≥ 1) Euclidean space will be denoted byIRm andIRm

+ will denote them-dimensional
positive orthant,[0,∞)m. Let | · | denote the norm onIRm given by |x| =

∑m
i=1 |xi| for x ∈ IRm. We

define a sum over an empty index set to be zero. Vectors inIRm should be treated as column vectors unless
indicated otherwise, inequalities between vectors should be interpreted componentwise, the transpose of a
vectora will be denoted bya′, the diagonal matrix with the entries of a vectora on its diagonal will be
denoted bydiag(a), and the dot product of two vectorsa andb in IRm will be denoted bya · b. For any set
S, let |S| denote the cardinality ofS.

For each positive integerm, let Dm be the space of “Skorokhod paths” inIRm having time domainIR+.
That is,Dm is the set of all functionsω : IR+ → IRm that are right continuous onIR+ and have finite left
limits on (0,∞). The member ofDm that stays at the origin inIRm for all time will be denoted by0. For
ω ∈ Dm andt ≥ 0, let

‖ω‖t = sup
s∈[0,t]

|ω(s)|. (1.1)

ConsiderDm to be endowed with the usual SkorokhodJ1-topology (see [9]). LetMm denote the Borel
σ-algebra onDm associated with theJ1-topology. All of the continuous-time processes in this paper will be
assumed to have sample paths inDm for somem ≥ 1. (We shall frequently use the term process in place of
stochastic process.)

Suppose{W n}∞n=1 is a sequence of processes with sample paths inDm for somem ≥ 1. Then we
say that{W n}∞n=1 is tight if and only if the probability measures induced by theW n’s on (Dm,Mm)
form a tight sequence, i.e., they form a weakly relatively compact sequence in the space of probability
measures on(Dm,Mm). The notation “W n ⇒ W ”, whereW is a process with sample paths inDm, will
mean that the probability measures induced by theW n’s on (Dm,Mm) converge weakly to the probability
measure on(Dm,Mm) induced byW . If for eachn, W n andW are defined on the same probability space,
we say thatW n converges toW uniformly on compact time intervals in probability (u.o.c. in prob.), if
P(‖W n − W‖t ≥ ε) → 0 asn → ∞ for eachε > 0 and t ≥ 0. We note that if{W n} is a sequence
of processes andW is a continuous deterministic process (all defined on the same probability space) then
W n ⇒ W is equivalent toW n → W u.o.c. in prob. This is implicitly used several times in the proofs
below to combine statements involving convergence in distribution to deterministic processes.
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2 Parallel Server System

2.1 System Structure

Our parallel server system consists ofI infinite capacity buffers for holding jobs awaiting service, indexed
by i ∈ I ≡ {1, . . . , I}, andK (non-identical) servers working in parallel, indexed byk ∈ K ≡ {1, . . . ,K}.
Each buffer has its own stream of jobs arriving from outside the system. Arrivals to bufferi are called
classi jobs and jobs are ordered within each buffer according to their arrival times, with the earliest arrival
being at the head of the line. Each entering job requires a single service before it exits the system. Several
different servers may be capable of processing (or serving) a particular job class. Service of a given job
classi by a given serverk is called a processing activity. We assume that there areJ ≤ I · K possible
processing activities labeled byj ∈ J ≡ {1, . . . ,J}. The correspondences between activities and classes,
and activities and servers, are described by two deterministic matricesC, A, whereC is anI × J matrix
with

Cij =

{
1 if activity j processes classi,
0 otherwise,

(2.1)

andA is aK × J matrix with

Akj =

{
1 if serverk performs activityj,
0 otherwise.

(2.2)

Note that each column ofC contains the number one exactly once and similarly forA, since each activity
j has exactly one classi(j) and one serverk(j) associated with it. We also assume that each row ofC and
each row ofA contains the number one at least once (i.e., each job class is capable of being processed by at
least one activity and each server is capable of performing at least one activity).

Once a job has commenced service at a server, it remains there until its service is complete, even if
its service is interrupted for some time (e.g., by preemption by a job of another class). A server may not
start on a new job of classi until it has finished serving any classi job that it is working on or that is in
suspension at the server. In addition, a server cannot work unless it has a job to work on. When taking a new
job from a buffer, a server always takes the job at the head of the line. (For concreteness, we suppose that
a deterministic tie-breaking rule is used when two (or more) servers want to simultaneously take jobs from
the same buffer, e.g., there is an ordering of the servers and lower numbered servers take jobs before higher
numbered ones.) This setup allows a job to be allocated to a server just before it begins service, rather than
upon arrival to the system. We assume that the system is initially empty.

2.2 Stochastic Primitives

All random variables and stochastic processes used in our model description are assumed to be defined on
a given complete probability space(Ω,F ,P). The expectation operator underP will be denoted byE.
For i ∈ I, we take as given a sequence of strictly positive i.i.d. random variables{ui(`), ` = 1, 2, . . . }
with meanλ−1

i ∈ (0,∞) and squared coefficient of variation (variance divided by the square of the mean)
a2

i ∈ [0,∞). We interpretui(`) as the interarrival time between the(` − 1)st and thè th arrival to classi
where, by convention, the “0th arrival” is assumed to occur at time zero. Settingξi(0) = 0 and

ξi(n) =
n∑

`=1

ui(`), n = 1, 2, . . . , (2.3)

we define
Ai(t) = sup{n ≥ 0 : ξi(n) ≤ t} for all t ≥ 0. (2.4)
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ThenAi(t) is the number of arrivals to classi that have occurred in[0, t], andλi is the long run arrival rate
to classi. For j ∈ J , we take as given a sequence of strictly positive i.i.d. random variables{vj(`), ` =
1, 2, . . . } with meanµ−1

j ∈ (0,∞) and squared coefficient of variationb2
j ∈ [0,∞). We interpretvj(`) as

the amount of service time required by the`th job processed by activityj, andµj as the long run rate at which
activity j could process its associated class of jobsi(j) if the associated serverk(j) worked continuously
and exclusively on this class. Forj ∈ J , let ηj(0) = 0,

ηj(n) =
n∑

`=1

vj(`), n = 1, 2, . . . , (2.5)

and
Sj(t) = sup{n ≥ 0 : ηj(n) ≤ t} for all t ≥ 0. (2.6)

Then Sj(t) is the number of jobs that activityj could process in[0, t] if the associated server worked
continuously and exclusively on the associated class of jobs during this time interval. The interarrival time
sequences{ui(`), ` = 1, 2, . . . }, i ∈ I, and service time sequences{vj(`), ` = 1, 2, . . . }, j ∈ J , are all
assumed to be mutually independent.

2.3 Scheduling Control and Performance Measures

Scheduling control is exerted by specifying aJ-dimensional allocation processT = {T (t), t ≥ 0} where

T (t) = (T1(t), . . . , TJ(t))′ for t ≥ 0, (2.7)

andTj(t) is the cumulative amount of service time devoted to activityj ∈ J by the associated serverk(j)
in the time interval[0, t]. NowT must satisfy certain properties that go along with its interpretation. Indeed,
one could give a discrete-event type description of the properties thatT must have, including any system
specific constraints such as no preemption of service. However, for our analysis, we shall only need the
properties ofT described in (2.11)–(2.16) below.

Let
I(t) = 1t − AT (t), t ≥ 0, (2.8)

where1 is theK-dimensional vector of all ones. Then for eachk ∈ K, Ik(t) is interpreted as the cumulative
amount of time that serverk has been idle up to timet. A natural constraint onT is that each component
of the cumulative idletime processI must be continuous and non-decreasing. This immediately implies
the property that each component ofT is Lipschitz continuous with a Lipschitz constant of one. For each
j ∈ J , Sj(Tj(t)) is interpreted as the number of complete jobs processed by activityj in [0, t]. For i ∈ I,
let

Qi(t) = Ai(t) −
J∑

j=1

CijSj(Tj(t)), t ≥ 0, (2.9)

which we write in vector form (with a slight abuse of notation forS(T (t))) as

Q(t) = A(t) −CS(T (t)), t ≥ 0. (2.10)

ThenQi(t) is interpreted as the number of classi jobs that are either in queue or “in progress” (i.e., being
served or in suspension) at timet. We regardQ andI as performance measures for our system.

7



We shall use the following minimal set of properties of any scheduling controlT with associated queue
length processQ and idletime processI. For all i ∈ I, j ∈ J , k ∈ K,

Tj(t) ∈ F for eacht ≥ 0, (2.11)

Tj is Lipschitz continuous with a Lipschitz constant of one, (2.12)

Tj is non-decreasing, andTj(0) = 0,
Ik is continuous, non-decreasing, andIk(0) = 0, (2.13)

Qi(t) ≥ 0 for all t ≥ 0. (2.14)

Properties (2.12) and (2.13) are for each sample path. For later reference, we collect here the queueing
system equations satisfied byQ andI:

Q(t) = A(t) − CS(T (t)), t ≥ 0, (2.15)

I(t) = 1t − AT (t), t ≥ 0, (2.16)

whereQ, T andI satisfy properties (2.11)–(2.14). We emphasize that these are descriptive equations sat-
isfied by the queueing system, givenC, A, A, S and a controlT , which suffice for the purposes of our
analysis. In particular, we do not intend them to be a complete, discrete-event type description of the dy-
namics.
Remark. The reader might expect thatT should satisfy some additional non-anticipating property. Al-
though this is a reasonable assumption to make, and indeed the policy we propose in Section 5 satisfies such
a condition, we have not restrictedT a priori in this way. Indeed, we shall see that, for the parallel server
system under the complete resource pooling condition, our policy is asymptotically optimal even when an-
ticipating policies are allowed. This is related to the fact that the Brownian control problem has a so-called
“pathwise solution”, cf. [17].

The cost function we shall use involves linear holding costs associated with the expense of holding
jobs of each class in the system until they have completed service. We defer the precise description of this
cost function to the next section, since it is formulated in terms of normalized queue lengths, where the
normalization is in diffusion scale. Indeed, in the next section, we describe the sequence of parallel server
systems to be used in formulating the notion of heavy traffic asymptotic optimality.

3 Sequence of Systems, Heavy Traffic, and the Cost Function

For the parallel server system described in the last section, the problem of finding a control policy that
minimizes a cost associated with holding jobs in the system is notoriously difficult. One possible means for
discriminating between policies is to look for policies that outperform others in some asymptotic regime.
Here we regard the parallel server system as a member of a sequence of systems indexed byr that is
approaching heavy traffic (this notion is defined below). In this asymptotic regime, the queue length process
is normalized with diffusive scaling – this corresponds to viewing the system over long intervals of time of
orderr2 (wherer will tend to infinity in the asymptotic limit) and regarding a single job as only having a
small contribution to the overall cost of storage, where this is quantified to be of order1/r. The setup in this
section is a generalization of that used in [3].

3.1 Sequence of Systems and Large Deviation Assumptions

Consider a sequence of parallel server systems indexed byr, wherer tends to infinity through a sequence
of values in[1,∞). These systems all have the same basic structure as that described in Section 2, except
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that the arrival and service rates, scheduling control, and form of the cost function (which is defined below
in Section 3.3) are allowed to depend onr. Accordingly, we shall indicate the dependence of relevant
parameters and processes onr by appending a superscript to them. We assume that the interarrival and
service times are given for eachr ≥ 1, i ∈ I, j ∈ J , by

ur
i (`) =

1
λr

i

ǔi(`), vr
j (`) =

1
µr

j

v̌j(`), for ` = 1, 2, . . . , (3.1)

where theǔi(`), v̌j(`), do not depend onr, have mean one and squared coefficients of variationa2
i , b2

j ,
respectively. The sequences{ǔi(`), ` = 1, 2, . . .}, {v̌j(`), ` = 1, 2, . . .}, i ∈ I, j ∈ J are all mutually
independent sequences of i.i.d. random variables. (The above structure is a convenient means of allowing the
sequence of systems to approach heavy traffic by simply changing arrival and service rates while keeping the
underlying sources of variability̌ui(`), v̌j(`) fixed. This type of setup has been used previously by others in
treating heavy traffic limits, see e.g., Peterson [32]. For a first reading, the reader may like to simply choose
λr = λ andµr = µ for all r. Indeed, that simplification is made in the paper [40].)

We make the following assumption on the first order parameters associated with our sequence of sys-
tems.

Assumption 3.1 There are vectorsλ ∈ IRI
+, µ ∈ IRJ

+, such that

(i) λi > 0 for all i ∈ I, µj > 0 for all j ∈ J ,

(ii) λr → λ, µr → µ, asr → ∞.

In addition, we make the following exponential moment assumptions to ensure that certainlarge devia-
tion estimateshold for the renewal processesAr

i , i ∈ I, andSr
j , j ∈ J (cf. Lemma 6.7 below and Appendix

A in [3]).

Assumption 3.2 For i ∈ I, j ∈ J , and all` ≥ 1, let

ui(`) =
1
λi

ǔi(`), vj(`) =
1
µj

v̌j(`). (3.2)

Assume that there is a non-empty open neighborhoodO0 of 0 ∈ IR such that for alll ∈ O0,

Λa
i (l) ≡ log E[elui(1)] < ∞, for all i ∈ I, and (3.3)

Λs
j(l) ≡ log E[elvj(1)] < ∞, for all j ∈ J . (3.4)

Note that (3.3) and (3.4) hold with̀in place of1 for all ` = 1, 2, . . ., since{ui(`), ` = 1, 2, . . .}, i ∈ I,
and{vj(`), ` = 1, 2, . . .}, j ∈ J , are each sequences of i.i.d. random variables.
Remark. This finiteness of exponential moments assumption allows us to prove asymptotic optimality of a
threshold policy with thresholds of orderlog r. We conjecture that this condition could be relaxed to a suffi-
ciently high finite moment assumption, and our method of proof would still work, provided larger thresholds
are used to allow for larger deviations of the primitive renewal processes from their rate processes. In this
case, Lemma 6.7 would need to be modified to use estimates based on sufficiently high finite moments,
rather than exponential moments (cf. [1, 5, 30, 34]). Here we have chosen the tradeoff of smaller thresholds
and exponential moment assumptions, rather than larger thresholds and certain finite moment assumptions.
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3.2 Heavy Traffic and Fluid Model

There is no conventional notion of heavy traffic for our model, since the nominal (or average) load on a server
depends on the scheduling policy. Harrison [15] (see also Laws [28] and Harrison and Van Mieghem [18])
has proposed a notion of heavy traffic for stochastic networks with scheduling control. For our sequence of
parallel server systems, Harrison’s condition is the same as Assumption 3.3 below. Here, and henceforth,
we define

R = C diag(µ).

Assumption 3.3 There is a unique optimal solution(ρ∗, x∗, ) of the linear program:

minimizeρ subject toRx = λ, Ax ≤ ρ1 and x ≥ 0. (3.5)

Moreover, that solution is such thatρ∗ = 1 andAx∗ = 1.

Remark. It will turn out that under Assumption 3.3,x∗
j is the average fraction of time that serverk(j)

should devote to activityj. For this reason,x∗ is called thenominal allocation vector.
It was shown in [40] that Assumption 3.3 is equivalent to a heavy traffic condition for a fluid model

(a formal law of large numbers approximation) associated with our sequence of parallel server systems.
We summarize that result here since the fluid model plays a role in establishing asymptotic optimality of a
control policy for our sequence of systems.

A fluid model solution(with zero initial condition) is a triple of continuous (deterministic) functions
(Q̄, T̄ , Ī) defined on[0,∞), whereQ̄ takes values inIRI, T̄ takes values inIRJ and Ī takes values inIRK,
such that

Q̄(t) = λt − RT̄ (t), t ≥ 0, (3.6)

Ī(t) = 1t − AT̄ (t), t ≥ 0, (3.7)

and for alli, j, k,

T̄j is Lipschitz continuous with a Lipschitz constant of one,

it is non-decreasing, and̄Tj(0) = 0, (3.8)

Īk is continuous, non-decreasing, andĪk(0) = 0, (3.9)

Q̄i(t) ≥ 0 for all t ≥ 0. (3.10)

A continuous functionT̄ : [0,∞) → IRJ such that (3.8)–(3.10) hold for̄Q, Ī defined by (3.6)–(3.7) will be
called afluid control. For a given fluid control̄T , we say the fluid system isbalancedif the associated fluid
“queue length”Q̄ does not change with time (cf. Harrison [12]). Here, since the system starts empty, that
meansQ̄ ≡ 0. In addition, we say the fluid systemincurs no idleness(or all fluid servers are fully occupied)
if Ī ≡ 0, i.e.,AT̄ (t) = 1t for all t ≥ 0.

Definition 3.4 The fluid model is in heavy traffic if the following two conditions hold:

(i) there is a unique fluid control̄T ∗ under which the fluid system is balanced, and

(ii) under T̄ ∗, the fluid system incurs no idleness.

Since any fluid control is differentiable at almost every time (by (3.8)), we can convert the above notion
of heavy traffic into one involving the ratesx∗(t) = ˙̄T ∗(t), where “̇ ” denotes time derivative. This leads to
the following lemma which is stated and proved in [40] (cf. Lemma 3.3 there).
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Lemma 3.5 The fluid model is in heavy traffic if and only if Assumption 3.3 holds.

We impose the following heavy traffic assumption on our sequence of parallel server systems, hence-
forth.

Assumption 3.6 (Heavy Traffic) For the sequence of parallel server systems defined in Section 3.1 and
satisfying Assumptions 3.1 and 3.2, assume that Assumption 3.3 holds and that there is a vectorθ ∈ IRI

such that

r(λr − Rrx∗) → θ, asr → ∞, (3.11)

whereRr = C diag(µr).

For the formulation of the Brownian control problem, it will be helpful to distinguishbasic activitiesj
which have a strictly positive nominal fluid allocation levelx∗

j from non-basic activitiesj for whichx∗
j = 0.

By relabeling the activities if necessary, we may and do assume henceforth thatx∗
j > 0 for j = 1, . . . ,B

andx∗
j = 0 for j = B + 1, . . . J. Thus there areB basic activities andJ− B non-basic activities.

3.3 Diffusion Scaling and the Cost Function

For a fixedr and scheduling controlT r, the associated queue length processQr = (Qr
1, . . . , Q

r
I)

′ and
idletime processIr = (Ir

1 , . . . Ir
K)′ are given by (2.15)–(2.16) where the superscriptr needs to be appended

to A, S, Q, I andT there. The diffusion scaled queue length processQ̂r and idletime procesŝIr are defined
by

Q̂r(t) = r−1Qr(r2t), Îr(t) = r−1Ir(r2t), t ≥ 0. (3.12)

We consider an expected cumulative discounted holding cost for the diffusion scaled queue length process
and controlT r:

Ĵr(T r) = E
(∫ ∞

0
e−γt h · Q̂r(t) dt

)
, (3.13)

whereγ > 0 is a fixed constant (discount factor) andh = (h1, . . . , hI)′, hi > 0 for all i ∈ I, is a constant
vector of holding costs per unit time per unit of diffusion scaled queue length. Recall that “· ” denotes the
dot product between two vectors.

To write equations for̂Qr, Îr, we introduce centered and diffusion scaled versionsÂr, Ŝr of the primitive
processesAr, Sr:

Âr(t) = r−1
(
Ar(r2t) − λrr2t

)
, Ŝr(t) = r−1

(
Sr(r2t) − µrr2t

)
, (3.14)

a deviation procesŝY r (which measures normalized deviations of server time allocations from the nominal
allocations given byx∗):

Ŷ r(t) = r−1
(
x∗r2t − T r(r2t)

)
, (3.15)

and a fluid scaled allocation processT̄ r:

T̄ r(t) = r−2T r(r2t). (3.16)

On substituting the above into (2.15)–(2.16), we obtain

Q̂r(t) = Âr(t) − CŜr(T̄ r(t)) + r(λr − Rrx∗)t + RrŶ r(t), (3.17)

Îr(t) = AŶ r(t), (3.18)
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where by (2.12)–(2.14) we have

Îr
k is continuous, non-decreasing andÎr

k(0) = 0, for all k ∈ K, (3.19)

Q̂r
i (t) ≥ 0 for all t ≥ 0 andi ∈ I. (3.20)

On combining Assumption 3.1 with the finite variance and mutual independence of the stochastic prim-
itive sequences of i.i.d. random variables{ǔi(`)}∞`=1, i ∈ I, {v̌j(`)}∞`=1, j ∈ J , we may deduce from
renewal process functional central limit theorems (cf. [21]) that

(Âr, Ŝr) ⇒ (Ã, S̃), asr → ∞, (3.21)

whereÃ, S̃ are independent,̃A is anI-dimensional driftless Brownian motion that starts from the origin
and has a diagonal covariance matrix whoseith diagonal entry isλia

2
i , andS̃ is aJ-dimensional driftless

Brownian motion that starts from the origin and has diagonal covariance matrix whosejth diagonal entry is
µjb

2
j .

4 Brownian Control Problem

4.1 Formulation

Under the heavy traffic assumption of the previous section, to keep queue lengths from growing on average,
it seems desirable to choose a control policy for the sequence of parallel server systems that asymptotically
on average allocates service to the processing activities in accordance with the proportions given byx∗.
To see how to achieve this and to do so in an optimal manner, following a method proposed by Harrison
[11, 14, 17], we consider the following Brownian control problem which is a formal diffusion approximation
to control problems for the sequence of parallel server systems. The relationship between the Brownian
model and the fluid model is analogous to the relationship between the central limit theorem and the law of
large numbers.

Definition 4.1 (Brownian control problem)

minimize E
(∫ ∞

0
e−γt h · Q̃(t) dt

)
(4.1)

using aJ-dimensional control process̃Y = (Ỹ1, . . . , ỸJ)′ such that

Q̃(t) = X̃(t) + RỸ (t) for all t ≥ 0, (4.2)

Ĩ(t) = AỸ (t) for all t ≥ 0, (4.3)

Ĩk is non-decreasing and̃Ik(0) ≥ 0, for all k ∈ K, (4.4)

Ỹj is non-increasing and̃Yj(0) ≤ 0, for j = B + 1, . . . ,J, (4.5)

Q̃i(t) ≥ 0 for all t ≥ 0, i ∈ I, (4.6)

whereX̃ is an I-dimensional Brownian motion that starts from the origin, has driftθ (cf. (3.11)) and a
diagonal covariance matrix whoseith diagonal entry is equal toλia

2
i +
∑J

j=1 Cij µjb
2
jx

∗
j for i ∈ I.

The above Brownian control problem is a slight variant of that used by Harrison and L´opez [17]. In
particular, we allowỸ to anticipate the future of̃X. The process̃X is the formal limit in distribution ofX̂r,
where fort ≥ 0,

X̂r(t) ≡ Âr(t) − CŜr(T̄ r(t)) + r(λr − Rrx∗)t. (4.7)
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The control process̃Y in the Brownian control problem is a formal limit of the deviation processesŶ r (cf.
(3.15)), where convergence of̂Y r(0) to Ỹ (0) is not required. The non-increasing assumption in property
(4.5) corresponds to the fact thatŶ r

j (t) = −r−1T r
j (r2t) is non-increasing wheneverj is a non-basic activity.

The initial conditions oñI andỸj, j = B + 1, . . . ,J, in (4.4)–(4.5) are relaxed from those in the prelimit
to allow for the possibility of an initial jump in the queue length in the Brownian control problem. (In fact,
for the optimal solution of the Brownian control problem, under the complete resource pooling condition to
be assumed later, such a jump will not occur and then the Brownian control problem is equivalent to one in
which Ĩ(0) = 0, Ỹ (0) = 0.)

4.2 Solution via Workload Assuming Complete Resource Pooling

We focus here on the case in which there is a unique optimal solution of the following program which is
dual to the linear program (3.5).
Dual Program

maximizey · λ subject toy′R ≤ z′A, z · 1 ≤ 1 and z ≥ 0. (4.8)

Theorem 4.3 below combines results of Harrison and L´opez [17] and Williams [40] to provide various char-
acterizations of this case. For the statement of this result, we need the following notion of communicating
servers.

Definition 4.2 Consider the graphG in which servers and buffers form the nodes and (undirected) edges
between nodes are given by basic activities. We say that all servers communicate via basic activities if, for
each pair of servers, there is a path inG joining all of the servers.

Theorem 4.3 The following conditions are equivalent:

(i) the dual program (4.8) has a unique optimal solution(y∗, z∗),

(ii) the number of basic activitiesB is equal toI + K − 1,

(iii) all servers communicate via basic activities,

(iv) the graphG is a tree.

Proof. The equivalence of the first three statements of the theorem was shown by Harrison and L´opez [17]
and the equivalence with the last statement was shown in [40].2

Henceforth we make the following assumption.

Assumption 4.4 (Complete Resource Pooling) The equivalent conditions (i)–(iv) of Theorem 4.3 hold.

Let (y∗, z∗) be the unique optimal solution of (4.8). By complementary slackness,((y∗)′R)j = ((z∗)′A)j
for j = 1, . . . B. Let u∗ be the(J − B)-dimensional vector of dual “slack variables” defined by((y∗)′R −
(z∗)′A)j + u∗

j−B = 0 for j = B + 1, . . . ,J.

Lemma 4.5 We havey∗ > 0, z∗ > 0, u∗ > 0,

(y∗)′R = (z∗)′A− [0′ (u∗)′], and z∗ · 1 = 1, (4.9)

where1 is theK-dimensional vector of ones,0′ is aB-dimensional row vector of zeros.
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Proof. This is proved in [17] (Corollary to Proposition 3) using the relation between the primal and dual
linear programs.2

Now, we review a solution of the Brownian control problem obtained by Harrison and L´opez [17].
For Q̃ satisfying (4.2)–(4.6), definẽW = y∗ · Q̃, which Harrison [15] calls the (Brownian) workload.

Let ỸN be the (J − B)-dimensional process whose components areỸj, j = B + 1, . . . ,J. By Lemma 4.5
and (4.2)–(4.6),

W̃ (t) = y∗ · X̃(t) + Ṽ (t) for all t ≥ 0, (4.10)

where

Ṽ ≡ z∗ · Ĩ − u∗ · ỸN is non-decreasing and̃V (0) ≥ 0, (4.11)

W̃ (t) ≥ 0 for all t ≥ 0. (4.12)

Now, for eacht ≥ 0, since the holding cost vectorh > 0 andy∗ > 0, we have

h · Q̃(t) =
I∑

i=1

(
hi

y∗i

)
y∗i Q̃i(t) ≥ h∗W̃ (t) (4.13)

where

h∗ ≡
I

min
i=1

(
hi

y∗i

)
. (4.14)

It is well-known and straightforward to see that any solution pair(W̃ , Ṽ ) of (4.10)–(4.12) must satisfy for
all t ≥ 0,

Ṽ (t) ≥ Ṽ ∗(t) ≡ sup
0≤s≤t

(
−y∗ · X̃(s)

)
, (4.15)

and henceW̃ (t) ≥ W̃ ∗(t) where

W̃ ∗(t) = y∗ · X̃(t) + Ṽ ∗(t). (4.16)

The processW̃ ∗ is a one-dimensionalreflected Brownian motiondriven by the one-dimensional Brownian
motiony∗ · X̃, andṼ ∗ is its local time at zero (see e.g., [8], Chapter 8). In particular,Ṽ ∗ can have a point
of increase at timet only if W̃ ∗(t) = 0.

Now, let i∗ be a class index such thath∗ = hi∗/y
∗
i∗ , i.e., the minimum in (4.14) is achieved ati = i∗,

and letk∗ be a server that can serve classi∗ via a basic activity. Note that neitheri∗ nork∗ need be unique in
general. Then the following choices̃Q∗ andĨ∗ for Q̃ andĨ ensure that for eacht ≥ 0, properties (4.4)–(4.6)
hold and the inequality in (4.13) is an equality with̃W (t) = W̃ ∗(t) there:

Q̃∗
i∗(t) = W̃ ∗(t)/y∗i∗ , Q̃∗

i (t) = 0 for all i 6= i∗, (4.17)

Ĩ∗k∗(t) = Ṽ ∗(t)/z∗k∗ , Ĩ∗k(t) = 0 for k 6= k∗, Ỹ ∗
N = 0. (4.18)

A control process̃Y ∗ such that (4.2)–(4.6) hold with̃Q∗, Ỹ ∗, Ĩ∗ in place ofQ̃, Ỹ , Ĩ there is given in [40]. It
can be readily verified that this is an optimal solution for the Brownian control problem (cf. [17]) and the
associated minimum cost is

J∗ ≡ E
(∫ ∞

0
e−γt h · Q̃∗(t) dt

)
= h∗E

(∫ ∞

0
e−γt W̃ ∗(t) dt

)
. (4.19)

The quantityJ∗ is finite and can be computed as in Section 5.3 of [10].
Now, even though the Brownian control problem can be analyzed exactly (as above), the solution ob-

tained does not automatically translate to a policy for the sequence of parallel server systems. However,
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some desirable features are suggested by the form of (4.17)–(4.18), namely, (a) try to keep the bulk of the
work in the classi∗ with the lowest (or equal lowest) ratio of holding cost to workload contribution, i.e., the
classi with the lowest value ofhi/y

∗
i , (b) try to ensure that the bulk of the idleness is incurred only when

there is almost no work in the entire system, and (c) try to ensure that the bulk of the idletime is incurred by
serverk∗ alone.

4.3 Approaches to Interpreting the Solution

Harrison [13] has proposed a general scheme (called BIGSTEP) for obtaining candidate policies for a queue-
ing control problem from a solution of the associated Brownian control problem. The policies obtained in
this manner are so-called discrete-review policies which allow review of the system status and changes in
the control rule only at a fixed discrete set of times. For a two-server example (with Poisson arrivals, deter-
ministic service times and particular values forλ, µ), a discrete-review policy was constructed and shown
to be asymptotically optimal in Harrison [14]. Based on their solution of the Brownian control problem
and the general scheme laid out by Harrison [13], Harrison and L´opez [17] proposed the use of a discrete
review policy for the multiserver problem considered here, but they did not prove asymptotic optimality of
this policy. Recently, Ata and Kumar [1] have proved asymptotic optimality of a discrete review policy for
open stochastic processing networks that include parallel server systems, under heavy traffic and complete
resource pooling conditions.

Another approach to translation of solutions of Brownian control problems into viable policies has been
proposed by Kushner et al. (see e.g., [24, 25, 26]). However this also involves discretization by way of
numerical approximation. We note that, of the works by Kushner et al. mentioned above, the paper by
Kushner and Chen [24] is the closest to the current one in that it considers a parallel server model. However,
it is in a very different parameter regime, namely one that corresponds to heavy traffic but withno resource
pooling.

Assuming the complete resource pooling condition, in the next section we describe a simple “continuous
review” policy for the sequence of parallel server systems, which allows changes in the control to be made
at random times and in particular at times when the system status changes. This policy is a dynamic priority
policy in which priorities for certain “transition” activities depend on the number of jobs in the associated
class relative to certain threshold or “safety-stock” levels. Changes in the priorities only occur as a threshold
is crossed. This threshold policy was proposed in [40]. A few more details of its description are given here
to facilitate our analysis. We prove in Section 9 that this policy is asymptotically optimal. In [3], we have
already proved that this is so for the special case of a two-server two-buffer system. An important feature of
that proof was that the limiting (under diffusion scale) queue length and idleness processes were effectively
one-dimensional, i.e., a form of state-space collapse occurred in the diffusion limit. A similar phenomenon
occurs here for our multiserver system (cf. Theorem 5.1).

5 Threshold Policy and Main Results

In this section, we describe a dynamic threshold policy for our sequence of parallel server systems and
state our main results, which imply that this policy is asymptotically optimal. Recall that we are assuming
throughout that the heavy traffic (Assumption 3.6) and complete resource pooling (Assumption 4.4) condi-
tions hold. The threshold policy takes advantage of the tree structure of the server-buffer treeG. In reviewing
our description of the policy, the reader may find it helpful to refer to the examples in [40], where a version
of this policy was first described. We note that there can be many asymptotically optimal policies. The one
described here is simply proposed as one that is intuitively appealing and that is asymptotically optimal.
Indeed, independently, Squillante et al. [33] proposed a tree-based threshold priority policy for a parallel
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server system. However, their policy appears to be different from the one described here.

5.1 Tree Conventions

The threshold policy only involves the use of basic activities (and so in the following description of the
policy, the word “activity” will be synonymous with “basic activity”). Also, the terms class and buffer will
be used interchangeably. A key to the description of the policy is a hierarchical structure of the server-buffer
treeG and an associated protocol for the dynamic allocation of class priorities at each server. This protocol
is described in an iterative manner, working from the bottom of the tree up towards the root. (One should
imagine a tree as growing downwards from its root and the root as being at the highest level.) A server tree
S, which results from suppressing the buffers inG, will be helpful for describing the iterative procedure.
Recall the solution of the Brownian control problem described in Section 4.2. The root of the server-buffer
treeG (and of the server treeS) is taken to be a serverk∗ which serves the “cheapest” classi∗ via a (basic)
activity. Classes (or buffers) that link one level of servers to those at the next highest level in the treeG are
calledtransition classes(or transition buffers).

5.2 Threshold Policy

To describe the threshold policy, we first focus on the server treeS and imagine it arranged in levels with
the rootk∗ at the highest level ofS. We proceed inductively up through the levels in the treeS.

First, consider a server at the lowest level. As a server within the server-buffer treeG, this server is to
service its classes according to a priority scheme that gives lowest priority to the class that is immediately
above the server inG. This class is also served by a server in the next level up inS and so is a transition
class. There will always be such a class unless the server is at the root of the tree. The priority ranking of the
other classes that a server at the lowest level serves is not so important. These are all terminal classes in that
there are no servers below them. Here, for concreteness, we rank the classes so that for a given server, the
lower numbered classes receive priority over the higher numbered ones. For future use, we place a threshold
on the transition class immediately above each server in the lowest level ofS.

Now go to the next level up in the server treeS. This level may have “terminal” server nodes and server
nodes that lead to server nodes lower down the server tree. As servers in the server-buffer treeG, each server
at this level performs its activities in the following prioritized manner. Activities leading (via transition
buffers) to server nodes lower down the tree are given highest priority (if there is more than one such
activity, rank the activities so that activities serving lower numbered classes are served first). However, if the
number of jobs in a transition class associated with such an activity is at or below the threshold for that class,
service of that activity is suspended. The next priority is given to activities that service (terminal) classes
that are only served by that server (again ranked according to a scheme that gives lower numbered classes
higher priority), and lowest priority is given to the activity serving the transition class that is immediately
above the server in the server-buffer tree. This transition class should again have a threshold placed on it
such that service of that class by the server at the next highest level will be suspended when the number of
jobs in the class is equal to or below the threshold level. If two or more servers simultaneously begin to
serve a particular transition buffer, a tie breaking rule is used to decide which server takes a job first. For
concreteness we suppose that the lowest numbered server shall select a job before the next higher numbered
server, and so on. Note that two servers in the same level cannot both serve the same buffer below them
sinceG is a tree.

This process is repeated until the root of the server tree is reached. At the root, the same procedure is
applied as for lower server levels, except that there are no activities above the root server in the server-buffer
tree and an overriding rule is that lowest priority is given to the “cheapest” classi∗.
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The idea behind the threshold policy is to keep servers below the root level busy the bulk of the time
(indeed, they should only be rarely idle and their idletimes should vanish on diffusion scale as the heavy
traffic limit is approached), while simultaneously preventing the queue lengths of all classes excepti∗ from
growing appreciably on diffusion scale. Transition buffers are used to achieve these two competing goals.
Intuitively, when the queue length for a transition class gets to or below its threshold, any service of that
class by the server immediately above it in the tree is suspended and this causes temporary overloading (on
average) of the servers below, which prevents these servers from incurring much idleness. When the queue
length for the transition class builds up to a level above its threshold, then assistance from the higher server
is again permitted and the servers below are temporarily underloaded (on average) and so queue lengths for
classes serviced by these servers are prevented from growing too large. The intended effect of this policy
is to allow the movement (via the transition buffers) of excess work from lower level to higher level buffers
(and eventually, by an upwards cascade, to the buffer for classi∗), while simultaneously keeping all servers
busy the bulk of the time, unless the entire system is nearly empty and even then to ensure that the vast
majority of the idleness is incurred by the serverk∗ at the root of the tree.

5.3 Threshold Sizes

For eachr, the size of the thresholds in therth parallel server system is to be of orderlog r. However,
while each threshold is of orderlog r, for our proofs, the threshold sizes need to increase moderately as one
moves up and across the tree to compensate for an associated accumulation of stochastic variability. This is
related to the hierarchical structure of the threshold policy under which allocations to activities associated
with transition buffers higher up the tree can depend on allocations to activities much farther down the tree.
These transition buffers need larger thresholds than their counterparts below to allow enough time for their
allocation processes to approach their long term averages before the associated queue lengths approach zero
or twice the threshold size. For similar reasons, the threshold size for a buffer belonging to a group of
transition buffers served by one server from above, should be larger the lower the priority of the buffer. To
facilitate the description of this increase in threshold sizes, in Section 6.1 we show how the buffers can be
renumbered, so that higher priority buffers for a given server have lower numbers and buffers higher up the
tree are assigned higher numbers. This renumbering does not change the threshold policy, it simply allows
us to streamline its detailed description. In particular, under this scheme, the size of the threshold for each
transition buffer increases with its numbering. A detailed specification of the size of the thresholds is given
in Section 6.2.

5.4 Main Results

In Sections 7 and 8, we prove the following limit theorem for a certain sequence of allocation processes
{T r,∗}. For eachr, T r,∗ is obtained by applying the aforementioned threshold policy in therth parallel
server system. The sizes of the thresholds on the transition buffers are of orderlog r. The specific threshold
sizes, which, as mentioned above, increase as one moves across and up the server-buffer tree, are specified
precisely in the next section (cf. (6.4)).

Theorem 5.1 Consider the sequence of parallel server systems indexed byr, where therth system oper-
ates under the allocation processT r,∗ described above. Then the associated normalized queue length and
idletime processes satisfy

(Q̂r, Îr) ⇒ (Q̃∗, Ĩ∗), as r → ∞, (5.1)

whereQ̃∗
i = 0 for all i ∈ I\{i∗}, Ĩ∗k = 0 for all k ∈ K\{k∗}, Q̃∗

i∗ is a one-dimensional reflected Brownian
motion that starts from the origin and has drift(y∗ · θ)/y∗i∗ and variance parameter

∑I
i=1(y

∗
i )

2(λia
2
i +
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∑J
j=1 Cijµjb

2
jx

∗
j)/(y

∗
i∗)

2, and Ĩ∗k∗ is a specific multiple of the local time at the origin ofQ̃∗
i∗ (In fact, Q̃∗

i∗ ,

Ĩ∗k∗ are equivalent in law to the processes given by (4.15)–(4.18)).

Recall the definitions ofJ∗ andĴr from (4.19) and (3.13), respectively. The following theorem is the main
result of this paper. It is proved in Section 9 using Theorem 5.1. It shows thatJ∗ is the best that one can
achieve asymptotically and that this asymptotically minimal cost is achieved by the sequence of dynamic
controls{T r,∗}. Thus we conclude that our threshold policy is asymptotically optimal.

Theorem 5.2 (Asymptotic Optimality) Suppose that{T r} is any sequence of scheduling controls (one for
each member of the sequence of parallel server systems). Then

lim inf
r→∞

Ĵr(T r) ≥ J∗ = lim
r→∞

Ĵr(T r,∗), (5.2)

andJ∗ < ∞.

Remark. Note that our threshold policy prescribes that a threshold be placed on classi∗ if that class is a
transition class. We conjecture that the policy which removes the threshold in this case is also asymptotically
optimal, but we keep the threshold here as a means to simplify our proof. In particular, servers belowi∗ may
experience significant idletime if the threshold is removed. Our threshold policy also involves preemption
of service. There is a corresponding policy without preemption that we conjecture has the same behavior in
the heavy traffic limit, since in that regime a maximum ofJ jobs (in suspension or not) should not impact
the asymptotic behavior of the system.

6 Preliminaries and Outline of the Proof

In this section, we will precisely specify the threshold sizes used for{T r,∗}, give some preliminary defi-
nitions and results, and outline the proofs of Theorems 5.1 and 5.2. Details of the proofs are contained in
Sections 7–9.

Recall from Section 2 thatI, K, andJ index job classes, servers, and activities, respectively.
Basic Activities Convention. Since our threshold policy only uses basic activities, to simplify notation,
in this section and the next (Sections 6 and 7) only, the index setJ will just include the basic activities
1, 2, . . . ,B. With this convention,J will be synonymous withB.

6.1 The Server-Buffer TreeG: Layers and Buffer Renumbering

To facilitate our proof, we refine our description of the server-buffer tree,G. We say that the server-buffer
tree consists of one or morelayers, where a layer consists of a server level along with the buffer level
immediately below it. (At the lowest layer, the buffer level may be empty.) Activities that serve the buffers
(from above and below) in a particular layer are also considered part of that same layer. We denote the
number of layers byl∗ and enumerate the layers in increasing order as one moves up the tree, so that layer
1 is the lowest layer and layerl∗ is the top layer, consisting of serverk∗, the buffers served by this server
(including bufferi∗), and the corresponding activities. Assumingl > 1, Figure 1 depicts layersl andl − 1
in a server-buffer tree.

For each layerl = 1, . . . , l∗, we denote the collection of servers in layerl by Kl and the collection of
buffers in layerl by I l. Fork ∈ Kl, the collection of buffers in layerl served by serverk is denoted byIk

(in Figure 1,i ∈ Ik). The activity that serves bufferi ∈ Ik using serverk is labeleda(i) (“a” is mnemonic
for “above”), the collection of activities that serve bufferi from below is denoted byJ i, and the collection
of servers in layerl − 1 that serve bufferi using the activities inJ i is denoted byKi (the underscores
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indicate that the quantities are “below”). We letJi denote the collection of all activities that service buffer
i, i.e., activitya(i) together withJ i. Note that for each bufferi ∈ I1, J i = ∅, Ki = ∅, i.e., layer1 does not
contain any activities that serve buffers in this layer from below. In fact, we may even haveI1 = ∅.

Without loss of generality, we assume the following left-to-right arrangement and renumbering conven-
tion for buffers in the server-buffer treeG. This simplifies the description of the priorities associated with
our threshold policy. (The simplest way to think of doing the arrangement is to work from the top of the tree
downwards.)
Arrangement Convention. For k ∈ K \ {k∗}, the buffers inIk are arranged so that the transition buffers
are positioned to the left of the non-transition buffers, and within the groups of transition and non-transition
buffers, the lower numbered buffers are to the left of the higher numbered ones. Fork = k∗, the arrangement
in the previous sentence holds with the exception that bufferi∗ is placed at the far right in levelI l∗ = Ik∗.
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Figure 1: Layersl andl − 1 of a server-buffer tree

Renumbering Convention. Starting from layer1, if I1 6= ∅, we enumerate the buffers inI1 in increasing
order from left to right, i.e., the buffer farthest to the left is buffer 1 and the one farthest to the right is buffer
|I1|. Continuing with layer2, the buffer farthest to the left is labeled|I1| + 1, and the one farthest to the
right is labeled|I1| + |I2|, and so on ending with layerl∗. If I1 = ∅, we use the same scheme except that
buffer1 will then be the buffer farthest to the left in layer2.

Under the arrangement and renumbering conventions, for any serverk, all of the buffers served byk are
numbered such that lower priority buffers have higher numbers. (This is true whether the buffers are above
or below the server and whether they are transition or non-transition buffers.) In particular, fork 6= k∗,
the higher priority transition buffers inIk are numbered lower than the non-transition buffers inIk and the
transition buffer abovek has a higher number than all of the buffers inIk. If k = k∗, the same statement
holds with the exception thati∗ is the highest numbered buffer and has the lowest priority among all buffers
in Ik∗. It also follows from our numbering scheme thati∗ = I.
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6.2 Threshold Sizes and Transient Nominal Activity Rates

Fork ∈ K such thatIk 6= ∅ andi ∈ Ik, let

x+
i =

∑
i′∈Ik

i′≤i

x∗
a(i′), (6.1)

and for eachi′ ∈ Ik, i′ ≤ i, let

x̂i,i′ =
x∗

a(i′)

x+
i

. (6.2)

(Note that this definesx+
i andx̂i,i for all i ∈ I since each buffer is below exactly one server.)

We refer to thêxi,i′ astransient nominal activity ratesfor the following reason. Sincex∗
a(i′) determines

the overall average fraction of time that serverk should devote to activitya(i′), and since activitiesa(i′),
i′ > i, i′ ∈ Ik, will be turned off during a period in which bufferi either exceeds its threshold if it is a
transition buffer or is non-empty if it is a non-transition buffer,x̂i,i′ , i′ ≤ i, i′ ∈ Ik, might be interpreted as
the average fraction of time that serverk should devote to activitya(i′) during such a period of time.

We note that fori ∈ Ik, ∑
i′∈Ik

i′≤i

x̂i,i′ = 1, (6.3)

and if i 6= i∗, i′ ∈ Ik, i′ ≤ i, then x̂i,i′ > x∗
a(i′) since thenx+

i < 1 (if k ∈ Kl and l 6= l∗, serverk
serves a buffer from layerl + 1, by an activityb(k) that is abovek, and so by the heavy traffic condition,
x∗

b(k) +
∑

i′∈Ik
x∗

a(i′) = 1, and ifk ∈ Kl∗ , thenk = k∗ and
∑

i′∈Ik∗
x∗

a(i′) = 1, wherei′ ≤ i∗ for all i′ in
Ik∗).

We now define the size of the thresholds to be used with our threshold policy. For eachr ≥ 1, let
Lr

0 = dc log re for a sufficiently large constantc. The minimum size ofc is determined by the proofs of
Lemmas 7.3–7.6 and Theorem 5.2 (see the remark below). For1 ≤ i ≤ I, let

Lr
i =

⌈
Lr

i−1

ε3
i−1

⌉
, (6.4)

where{εi}I−1
i=0 is defined as follows. We also define a constantεI in this process. First we chooseε̂ > 0 such

that

ε̂ < min

{
dδminδminµminλminx

∗
min

2048(J + 2)µmaxλmaxδmaxµsum
,

∏I
i=1 γi

II

}
, (6.5)

whereλmin = min{1, λi : i ∈ I}, µmin = min{1, µj : j ∈ J }, λmax = max{1, λi : i ∈ I}, µmax =
max{1, µj : j ∈ J }, dδmin = min{1, λi−

∑
j∈J

i
x∗

jµj : i ∈ I}, δmin = min{1,
∑

j∈J
i
x∗

jµj + x̂i,iµa(i)−
λi : i ∈ I\{i∗}}, δmax = max{1,

∑
j∈J

i
x∗

jµj + x̂i,iµa(i) − λi : i ∈ I}, x∗
min = min{x∗

j : j ∈ J },

µsum = max{1,
∑

j∈J µj}, and

γi =
µa(i)

64
∑

j∈Ji
µj

, 1 ≤ i ≤ I. (6.6)
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Then we define by backward induction oni,

εI =
ε̂

I
, εi =

γi+1εi+1

I
, 0 ≤ i < I. (6.7)

(Note thatγi < 1 for all i ∈ I, andεi < εi+1 ≤ ε̂ < 1, i = 0, 1, 2, . . . I − 1.) Finally, in therth system, if
i is a transition buffer, we letLr

i be the threshold size for bufferi. If i is a non-transition buffer,Lr
i is not

used to define a threshold, it is simply defined to facilitate the iterative definition ofLr
i , i = 1, . . . , I.

Remark. For our method of proof to work, the constantc must be sufficiently large. In the proofs of Lem-
mas 7.3–7.6 and of uniform integrability in the proof of Theorem 5.2, a means for determining a valuec∗

is described such that our method works providedc > c∗. This value is determined from several applica-
tions of large deviation estimates for the renewal processes associated with the interarrival and service time
sequences (cf. Assumption 3.2). As in [3], we have not attempted to give a concise formula forc∗ nor to
optimize its value, since the relevant fact is that sufficiently large thresholds of orderlog r work and this
order is the smallest for which our proof works. (For analysis and approximate analysis of the effects of
different threshold sizes for some dynamic scheduling problems, see for example, [35, 36] and [31, 33].)

6.3 State Space Collapse Result and Outline of Proof

A key element in the proof of Theorem 5.1 is to first show the following “state space collapse” result.

Theorem 6.1 Consider the sequence of parallel server systems indexed byr, where therth system operates
under the scheduling control,T r,∗, described in Sections 5 and 6.2. Then(

Q̂r
i , Î

r
k : i ∈ I\{i∗} , k ∈ K\{k∗}

)
⇒ 0 asr → ∞, (6.8)

where0 is the function inDI+K−2 that remains at the origin ofIRI+K−2 for all time.

The idea behind the proof of this theorem is that, for sufficiently larger, under the threshold control
T r,∗, for a transition classi ∈ I\{i∗}, once the queue length processQr

i has first reached its threshold level
Lr

i (cf. (6.4)), over time intervals of orderr2 in length,Qr
i rarely deviates as much asLr

i − |Ji| from the
threshold level, since when it is above this level, it is driven down towards the level at an “average” rate of
x̂i,iµ

r
a(i) +

∑
j∈J

i
x∗

jµ
r
j − λr

i > 0, and when it is below the level, it is driven up towards the level at an

average rate ofλr
i −

∑
j∈J

i
x∗

jµ
r
j > 0. Similarly, if i∗ is a transition class, onceQr

i∗ has reached the level

Lr
i∗ , Q̂r

i∗ rarely reaches as low as the low level|Ji∗ |. However, sincei∗ is the cheapest buffer,Qr
i∗ may reach

considerably aboveLr
i∗ . For a non-transition classi 6= i∗, J i = ∅ andQ̂r

i is driven down towards zero at
an average rate of̂xi,iµ

r
a(i) − λr

i > 0. (The claimed positivity of the quantities above holds for larger since
Rx∗ = λ (cf. Assumptions 3.1 and 3.6) and1 ≥ x̂i,i > x∗

a(i) for i 6= i∗.) The behavior of the queue length
processQr

i for a transition bufferi ∈ I has a consequential effect on the idleness processesIr
k , for k ∈ Ki,

since idletime for serverk cannot increase when the queue length processQr
i is above the level|Ji|.

Estimates associated with the above ideas, along with estimates on the cumulative idletime for server
k ∈ Ki until Qr

i reachesLr
i (for a transition classi), are stated formally in Theorem 7.1. The proof of this

theorem uses large deviation estimates for the primitive renewal processes and estimates for the cumulative
allocation processes (cf. Lemma 7.3). The proof employs an induction on the buffers in the server-buffer
tree, starting fromi = 1 and iterating to bufferi = I − 1. The bufferi∗ (when it is a transition buffer)
is treated separately, although this treatment uses the consequences of the induction proof. The induction
setup is described in Section 7.2 and the proofs are in Sections 7.3–7.7. Theorem 6.1 follows from Theorem
7.1 using the fact that the thresholdLr

i being of orderlog r implies that(Lr
i −|J i|)/r goes to zero asr goes

to infinity.
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Once Theorem 6.1 is established, one can show, using the model equations for queue length and idletime
(cf. (2.15)–(2.16)), that the fluid scaled allocationsT̄ r,∗( · ) ≡ r−2T r,∗(r2 · ) associated withT r,∗ satisfy

T̄ r,∗ ⇒ T̄ ∗, asr → ∞, (6.9)

where
T̄ ∗(t) ≡ x∗t, t ≥ 0. (6.10)

One can then combine the above to prove Theorem 5.1. These results are proved in Section 8.
For the proof of Theorem 5.2, we first show (cf. Lemma 9.1) that for any subsequence that achieves the

“liminf” on the left side of (5.2) as a limit and for which the “liminf” is finite, the fluid level asymptotic
behavior described in (6.9) must hold along the subsequence, with{T r} in place of{T r,∗} there. This,
together with a pathwise lower bound forhr · Q̂r, wherehr is a perturbation ofh given in (9.12), allows
us to establish the inequality in (5.2). The equality in (5.2) follows from Theorem 5.1 after showing that a
certain uniform integrability condition holds.

6.4 Residual Processes and Shifted Allocation Processes

Key to our proof of Theorem 6.1 is the behavior of what we call theresidual processesdefined fori ∈ I,
r ≥ 1, s ≥ 0, by

Rr
i (s) =

{
Qr

i (s) − Lr
i , if i is a transition class,

Qr
i (s), otherwise.

(6.11)

For the case wheni 6= i∗ is a transition buffer, the idea of our proof is to move the center of one’s
attention to the threshold and to show thatQr

i reaches the threshold levelLr
i relatively quickly and then

“chatters” back and forth across this threshold, not frequently deviating “far” from it, so thatQr
i rarely again

goes as low as the level|J i|, or as high as the level2Lr
i − |J i|. When translated into the behavior ofRr

i ,
this means that we show thatRr

i reaches the level zero relatively quickly and then it chatters back and forth
across the zero level, rarely deviating by as much as±(Lr

i − |J i|) from this level (cf. Theorem 7.1). If
i 6= i∗ is a non-transition buffer, we show thatQr

i (or equivalentlyRr
i ) rarely goes above the levelLr

i .
For describing the excursions ofRr

i above zero, we introduce the following notation.

Definition 6.2 For i ∈ I, let τ r
i,0 = inf{s ≥ 0 : Rr

i (s) ≥ 0}, τ r
i,1 = inf{s ≥ τ r

i,0 : Rr
i (s) ≥ 1},

τ r
i,2 = inf{s ≥ τ r

i,1 : Rr
i (s) ≤ 0} and define recursivelyτ r

i,2n−1 = inf{s ≥ τ r
i,2n−2 : Rr

i (s) ≥ 1},
τ r
i,2n = inf{s ≥ τ r

i,2n−1 : Rr
i (s) ≤ 0}, for n = 2, 3, . . .. For eachn ≥ 1, we say that[τ r

i,2n−1, τ
r
i,2n] is

the nth “up” excursion interval forRr
i (·), and on{τ r

i,2n−1 < ∞} we letβr
i,n = τ r

i,2n − τ r
i,2n−1, and on

{τ r
i,2n−1 = ∞} we letβr

i,n = 0.

For describing the “down” excursion intervals ofRr
i wheni ∈ I is a transition class, we define

dRr
i ≡ −Rr

i = Lr
i − Qr

i . (6.12)

If i is not a transition class, we setdRi ≡ 0, and hence the following definition is only non-trivial for a
transition classi.

Definition 6.3 For i ∈ I, let dτ r
i,1 = inf{s ≥ τ r

i,0 : dRr
i (s) ≥ 1}, dτ r

i,2 = inf{s ≥ dτ r
i,1 : dRr

i (s) ≤ 0} and
define recursivelydτ r

i,2n−1 = inf{s ≥ dτ r
i,2n−2 : dRr

i (s) ≥ 1}, dτ r
i,2n = inf{s ≥ dτ r

i,2n−1 : dRr
i (s) ≤ 0}, for

n = 2, 3, . . .. For eachn ≥ 1, we say that[dτ r
i,2n−1,

dτ r
i,2n] is thenth down excursion interval forRr

i (·), and

on{dτ r
i,2n−1 < ∞} we letdβr

i,n = dτ r
i,2n − dτ r

i,2n−1, and on{dτ r
i,2n−1 = ∞} we definedβr

i,n = 0.
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Estimates of the amount of time that activities inJi are on during thenth (up/down) excursion interval
for Rr

i are needed to obtain estimates of the value ofRr
i during such an interval (cf. (7.40)). Such estimates

for the activities inJ idepend in turn on estimates for the on-time of activities farther down the tree, whereas
estimates for the on-time of activitya(i) depend on estimates for the on-time of the (higher priority) activities
that are served from above by the same server that serves bufferi from above. To keep track of all relevant
on-times, for eachi ∈ I, j ∈ J , we define shifted allocation processes forn ≥ 1 ands ≥ 0, by

T r,n
i,j (s) = T r

j (τ r
i,2n−1 + s) − T r

j (τ r
i,2n−1), on{τ r

i,2n−1 < ∞}, (6.13)
dT r,n

i,j (s) = T r
j (dτ r

i,2n−1 + s) − T r
j (dτ r

i,2n−1), on{dτ r
i,2n−1 < ∞}, (6.14)

and on{τ r
i,2n−1 = ∞} let T r,n

i,j ≡ 0, and on{dτ r
i,2n−1 = ∞} let dT r,n

i,j ≡ 0. We have that on{τ r
i,2n−1 < ∞},

T r,n
i,j measures the on-time of activityj ∈ J following an up-crossing to or above the level one byRr

i ,

and, for a transition classi, on{dτ r
i,2n−1 < ∞}, dT r,n

i,j measures the on-time of activityj following a down-

crossing to or below level minus one byRr
i . Note thatdT r,n

i,j ≡ 0 if i is not a transition class.

6.5 Preliminaries on Stopped Arrival and Service Processes

For the proof of (7.1) in Theorem 7.1, we need to establish some preliminary results concerning the proper-
ties of the arrival and service processes stopped at certain hitting times, so that we can apply the results of
Appendix A in [3] to shifted versions of these processes.

Let IN∞ = IN ∪ {∞}. ConsiderINI
∞ × INJ

∞ to be partially ordered by componentwise inequality, i.e.,
(n,m) ≤ (p, q) if and only if ni ≤ pi, andmj ≤ qj for all i ∈ I, j ∈ J . Recall from Section 2.2
the definition, for therth system, of the cumulative interarrival time process for classi ∈ I, ξr

i , and the
cumulative service time process for activityj ∈ J , ηr

j . For each(p, q) ∈ INI
∞ × INJ

∞ let

Fr
pq = σ{ξr

i (· ∧ (pi + 1)), ηr
j (· ∧ (qj + 1)) : i ∈ I, j ∈ J } ∨ P0,

whereP0 denotes the collection ofP-null sets in the complete probability space(Ω,F ,P). Then{Fr
pq :

(p, q) ∈ INI
∞ × INJ

∞} is a multiparameter filtration (cf. Ethier and Kurtz [9], p. 85).

Definition 6.4 A (multiparameter) stopping time relative to{Fr
pq : (p, q) ∈ INI

∞ × INJ
∞} is a random

variableT taking values inINI
∞ × INJ

∞ such that

{T = (p, q)} ∈ Fr
pq for all (p, q) ∈ INI

∞ × INJ
∞. (6.15)

Theσ-algebra associated with such a stopping timeT is

Fr
T = {B ∈ F : B ∩ {T = (p, q)} ∈ Fr

pq for all (p, q) ∈ INI
∞ × INJ

∞}. (6.16)

Lemma 6.5 Supposer ≥ 1 is such thatLr
0 ≥ J + 1. Then, for eachι ∈ I, n ≥ 1,

T r
n,ι ≡

(
Ar

i (τ
r
ι,2n−1), S

r
j (T r

j (τ r
ι,2n−1)) : i ∈ I, j ∈ J

)
,

dT r
n,ι ≡

(
Ar

i (
dτ r

ι,2n−1), S
r
j (T r

j (dτ r
ι,2n−1)) : i ∈ I, j ∈ J

)
are (multiparameter) stopping times relative to the filtration{Fr

pq : (p, q) ∈ INI
∞ × INJ

∞}, where we adopt
the convention that each ofAr

i (·), Sr
j (T

r
j (·)), i ∈ I, j ∈ J , takes the value∞ when evaluated at the time

∞.
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Remark. Here we needr large enough to simplify the proof of Lemma 6.5. Since, in the sequel, we letr
approach infinity, this result will suffice for our purposes.
Proof. This lemma can be proved in a similar manner to Lemma 8.3 in [39]. A proof is given in the appendix
to [2]. 2

Lemma 6.6 Let T be a (multiparameter) stopping time relative to the filtration{Fr
pq : (p, q) ∈ INI

∞ ×
INJ

∞}. LetT I denote the firstI components ofT andT J denote the otherJ (= B) components ofT so
that T = (T I ,T J ). In the following, for notational convenience, we make the convention that each of
ur

i (·), vr
j (·), i ∈ I, j ∈ J , takes the value∞ when its argument takes the value∞. Then,

(ur
i (T I

i + 1), vr
j (T J

j + 1) : i ∈ I, j ∈ J ) ∈ Fr
T , (6.17)

and, on{T ∈ INI × INJ}, the conditional distribution of{(ur
i (T I

i + n), vr
j (T J

j + n) : i ∈ I, j ∈ J ), n =
2, 3, . . .} givenFr

T is the same as the (unconditioned) distribution of the original family of i.i.d. random
variables{(ur

i (n), vr
j (n) : i ∈ I, j ∈ J ), n = 1, 2, . . .}.

Proof. For a proof with|I| = 1, |J | = 2, see the proof of Lemma 7.6 in [3]. The general proof is similar.
2

6.6 Large Deviation Bounds for Renewal Processes

The following lemma, which will be used extensively in proving state space collapse in Section 7, summa-
rizes the results of the discussion in Appendix A in [3].

Lemma 6.7 Let{ζ(i)}∞i=1 be a sequence of strictly positive independent random variables, where{ζ(i)}∞i=2

are identically distributed with finite mean1/ν, for someν ∈ (0,∞), andζ(1) may have a different distri-
bution fromζ(i) for i > 1. Assume that there is a nonempty open neighborhoodO of 0 ∈ IR such that for
i = 2, 3, . . .,

Λ(l) ≡ log E
(
elζ(i)

)
< ∞ for all l ∈ O. (6.18)

Let the values ofr ≥ 1 range through a sequence that increases to infinity. For eachr, let νr > 0 and
suppose thatlimr→∞ νr = ν. For eachr andi = 2, 3, . . ., let

ζr(i) =
ν

νr
ζ(i). (6.19)

Given0 < ε < ν/2, let rε ≥ 1 be such that forr ≥ rε,

|νr − ν| < ε, (6.20)
νr

ν

(
1

νr + ε
2

)
≤ 1

ν

(
1

1 + ε
3ν

)
<

1
ν

, (6.21)

1
ν

(
1 +

ε

2(νr − ε)

)
≥ 1

ν

(
1 +

ε

2ν

)
>

1
ν
. (6.22)

For eachr ≥ 1, s ≥ 0, let

N r(s) = sup

{
n ≥ 0 :

n∑
i=1

ζr(i) ≤ s

}
. (6.23)
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Then forr ≥ rε, s > 2/ε,

P(N r(s) > (νr + ε)s) ≤ exp
(
−((νr + ε)s − 1)Λ∗

(
1
ν

(
1

1 + ε
3ν

)))

≤ exp
(
−(νs − 1)Λ∗

(
1
ν

(
1

1 + ε
3ν

)))
, (6.24)

and forr ≥ rε, s ≥ 0,

P(N r(s) < (νr − ε)s) ≤ exp
(
−(νr − ε)sΛ∗

(
1
ν

(
1 +

ε

2ν

)))

+P
(
ζr(1) >

ε

2νr
s
)

≤ exp
(
−(ν − 2ε)sΛ∗

(
1
ν

(
1 +

ε

2ν

)))

+P
(
ζr(1) >

ε

2νr
s
)

, (6.25)

where

Λ∗(x) ≡ sup
l∈IR

(lx − Λ(l)), (6.26)

and where the values of the quantities involvingΛ∗ in the above are strictly positive. (The functionΛ∗ is
called the Legendre-Fenchel transform ofΛ.) Furthermore, ifζ(1) has the same distribution as{ζ(i)}∞i=2,
then for eachr ≥ 1, s ≥ 0 and0 < l0 ∈ O, for anyn ≥ 1,

P
(

n
max
i=1

ζr(i) >
ε

2νr
s

)
≤ n exp

(
− l0εs

2ν

)
exp

(
Λ(l0)

)
. (6.27)

7 Proof of State Space Collapse

Throughout this section, it is assumed that in therth parallel server system we use the allocation process
T r,∗ associated with the threshold policy described in Sections 5 and 6.2. To simplify notation, here we shall
simply writeT r in place ofT r,∗, since no other policy is considered in this section. The associated queue
length and idletime processes will be denoted byQr, Ir, respectively.

Recall the definition of the residual processes (cf. (6.11)), and the role ofc in the definition ofLr
0 (cf.

Section 6.2). For the following theorem, which is the main technical result of this section and from which
Theorem 6.1 will follow, there isc∗ > 0 such that the results hold provided the fixed constantc is greater
thanc∗ (cf. the proof of Theorem 7.1).

Theorem 7.1 For eachi ∈ I\{i∗}, k ∈ Ki, t ≥ 0, andε > 0,

P
(

sup
τr
i,0≤s≤r2t

|Rr
i (s)| ≥ Lr

i − |J i|
)

→ 0 asr → ∞, (7.1)

P
(
Ir
k(τ r

i,0) ≥ rε
)

→ 0 asr → ∞, (7.2)

P
(
Ir
k(r2t) − Ir

k(τ r
i,0

)
> 0, τ r

i,0 < r2t) → 0 asr → ∞, (7.3)
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and, in addition, ifi∗ is a transition class, then for eachk ∈ Ki∗ , t ≥ 0, andε > 0,

P
(

inf
τr
i∗,0

≤s≤r2t
Qr

i∗(s) ≤ |J i∗ |
)

→ 0 asr → ∞, (7.4)

P
(
Ir
k(τ r

i∗,0) ≥ rε
)

→ 0 asr → ∞, (7.5)

P
(
Ir
k(r2t) − Ir

k(τ r
i∗,0

)
> 0, τ r

i∗,0 < r2t) → 0 asr → ∞. (7.6)

Here,τ r
i,0 = inf{s ≥ 0 : Qr

i (s) ≥ Lr
i } if classi is a transition class,τ r

i,0 ≡ 0 if classi is a non-transition
class, and|J i| is the number of basic activities that serve classi from below in the server-buffer tree (cf.
Figure 1).

Here we have used the convention in (7.2)–(7.3) and (7.5)–(7.6) thatIr
k(τ r

i,0) = limt→∞ Ir
k(t), on

{τ r
i,0 = ∞}, and in (7.1) (respectively, (7.4)) that the supremum (respectively, infimum) over an empty

set is defined to equal−∞ (respectively,∞).
Remark. Although the results in Theorem 7.1 suffice for the proof of Theorem 6.1 and subsequently for
Theorem 5.1, a refinement of Theorem 7.1, with estimates of the left members in (7.1)–(7.3), (cf. Theorem
7.7) is needed to establish certain uniform integrability used in the proof of Theorem 5.2.

7.1 Auxiliary Constants for the Induction Proof

In this subsection, we introduce various constants and establish various inequalities that hold forr suffi-
ciently large. These are used in in the proofs of Theorems 7.1 and 7.7 (see below). The reader may wish to
simply skim this subsection at first, and only refer back to it as needed for reading proofs.

The following constants grow logarithmically withr. For i ∈ I, r ≥ 1, Lr
i , andεi as defined in (6.4)

and (6.7), respectively, let

sr
i =

Lr
i − (|J i| + 2)

(λr
i + εi)

, (7.7)

tri =
8Lr

i

λi −
∑

j∈J
i
x∗

jµj
. (7.8)

Note that ifi is a non-transition class then the denominator in (7.8) is equal toλi > 0 (by our convention
that a sum over an empty set is zero), and ifi is a transition class then the denominator is also positive since
λi = x∗

a(i)µa(i) +
∑

j∈J
i
x∗

jµj (cf. (3.5)). Let

sr
0 = tr0 = dsr

0 = Lr
0, (7.9)

and, for eachi ∈ I, r ≥ 1, let

dsr
i =

Lr
i − (|J i| + 2)∑

j∈J
i
(µr

j + εi)(x∗
j + εi)

, if i is a transition class, (7.10)

otherwise letdsr
i = Lr

i . Finally, for eachr ≥ 1, let

M r = max
{

sr
i , t

r
i ,

dsr
i : i ∈ I

}
. (7.11)

Several lemmas are used in establishing Theorems 7.1 and 7.7 (including Lemmas 7.3–7.6 of Section
7.2). For the proofs of these lemmas we require thatr ≥ 1 is large enough so that various relations involv-
ing the auxiliary constants defined above and the parameters for therth parallel server system hold. It is
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important to note that, for this, the size ofr should not depend on the variablet referred to in those theorems
and lemmas. We first require thatr is large enough that

sr
i ≥ sr

i−1, tri ≥ tri−1,
dsr

i ≥ dsr
i−1, for i = 1, . . . , I. (7.12)

For eachi ∈ I, let

δi =
∑
j∈J

i

x∗
jµj + x̂i,iµa(i) − λi. (7.13)

Then,δi > 0 for i ∈ I\{i∗} sinceλi =
∑

j∈J
i
x∗

jµj + x∗
a(i)µa(i) <

∑
j∈J

i
x∗

jµj + x̂i,iµa(i), using the
fact thatx∗

a(i) < x̂i,i for i 6= i∗ (cf. (6.2)). For part of the proof of Lemma 7.3 (associated with (I.1) and up
excursions) we require that for alli ∈ I\{i∗},

|λr
i − λi| < min

{
εi

4
,
(µa(i) − εi)εi

32|Ji|

}
, (7.14)

|µr
j − µj| < min

{
εi

4
,
(µa(i) − εi)εi

32|Ji|

}
, for all j ∈ Ji, (7.15)

µr
j − εi >

4λi + δi

4λi + 2δi
µj for all j ∈ J i, (7.16)

µr
a(i) − εi >

4λi + 3
2δi

4λi + 2δi
µa(i), (7.17)

λr
i + εi <

(
2λi

2λi + δi

)∑
j∈J

i

x∗
jµj + x̂i,iµa(i)


 = λi +

λiδi

2λi + δi
, (7.18)

1 <
δi

4λi + 2δi
x̂i,iµa(i)s

r
i . (7.19)

(Note that (7.16)–(7.18) do not hold fori = i∗, for larger ≥ 1, since, in this case,δi∗ = 0, εi∗ > 0, and
λr

i∗ → λi∗ , µr
j → µj , j ∈ Ji∗ , asr → ∞.)

For eachi ∈ I, define

dδi = λi −
∑
j∈J

i

x∗
jµj, (7.20)

wheredδi > 0 sinceλi =
∑

j∈J
i
x∗

jµj + x∗
a(i)µa(i) >

∑
j∈J

i
x∗

jµj ≥ 0. For part of the proof of Lemma
7.3 (associated with (I.1) and down excursions) we require that ifi is a transition class,

µr
j + εi <

4λi − 3
2

dδi

4λi − 2 dδi
µj , for all j ∈ J i, (7.21)

λr
i − εi >

2λi

2λi − dδi

∑
j∈J

i

x∗
jµj, (7.22)

1 <


 λi

dδi

(4λi − dδi)(2λi − dδi)

∑
j∈J

i

x∗
jµj


 dsr

i . (7.23)

(Note that (7.23) does not hold for a non-transition classi since the right hand side there is zero for allr ≥ 1
by our convention that a sum over an empty index set is zero.)
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For each transition classi ∈ I, let

ε̃i =
εi
∑

j∈J
i
µj

1 − 2|J i|εi
. (7.24)

To use Lemma 6.7, we need̃εi < min{λi/2, µj/2 : j ∈ Ji} for each transition classi. To see that this
condition is satisfied, we note that by (6.5) and (6.7),εi < 1/4J < 1/4|J i| so thatε̃i < 2εi

∑
j∈J

i
µj <

min{λi/2, µj/2 : j ∈ Ji}. For part of the proof of Lemma 7.3 (associated with (I.2)), we require that for
each transition classi,

λr
i −

∑
j∈J

i

x∗
jµ

r
j ≥ 1

2

(
λi −

∑
j∈J

i

x∗
jµj

)
, (7.25)

|λi − λr
i | < ε̃i, |µj − µr

j | < ε̃i, for all j ∈ J i. (7.26)

For the proof of Lemma 7.6, for allι ≥ i, i ∈ I, ι ∈ I, we require that

sr
ι >

[εi

4

(
µa(i) −

µa(i)εi

16

)]−1
,

µr
a(i)

µa(i)
>

1
2
,

λr
ι

λι
<

3
2
, (7.27)

∣∣∣λr
i − x∗

a(i)µ
r
a(i) −

∑
j∈J

i

x∗
jµ

r
j

∣∣∣ <
µa(i)εi

32
, (7.28)

Lr
i >

εi(|J ι| + 2)max{µa(i), λi −
∑

j∈J
i
x∗

jµj}
min{λι,

∑
j∈Ji

(µj + ει)}
, (7.29)

and, in addition, ifι is a transition class,∑
j∈J

ι
(µj + ει)(x∗

j + ει)∑
j∈J

ι
(µr

j + ει)(x∗
j + ει)

>
1
2
, dsr

ι ≥ 2J
µr

a(i)εi
. (7.30)

For eachi ∈ I, let

ε̌i =
(µa(i) − εi)εi

16J
< min

{
λi

2
,
µj

2
: j ∈ Ji

}
. (7.31)

The inequality here holds by (6.5). In addition, ifi is a transition class, let

ε1,i =


∑

j∈J
i

(µj + εi)




−1

εi

16

(
µa(i) −

µa(i)εi

16

)
, (7.32)

and setε1,i = 1 if i is not a transition class. In either case, we also define

ε2,i =
µa(i)εi

16
(x∗

a(i) + εi)−1 <
µa(i)

2
. (7.33)

If i ∈ I is a transition class, for eachj ∈ J i let

ε3,j =
µa(i)εi

16|J i|
(x∗

j + ε1,i)−1 <
µj

2
. (7.34)
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The inequality (7.34) holds sinceεi < µminx
∗
min/µmax, by (6.5). To apply the large deviation bounds of

Lemma 6.7 in the proofs of Lemmas 7.3 and 7.6, we require that

Lr
0 > max

{
2
εi

,
2
ε̌i

,
2

(x∗
a(i) − εi)ε2,i

,
4

(x∗
j + εi)εi

,

2
(x∗

j + εi)ε̃i
,

2
(x∗

j + ε1,i)ε3,j
: i ∈ I, j ∈ J i.

}
. (7.35)

Assumption 7.2 We henceforth assume thatr∗ ≥ 1 is fixed such that for allr ≥ r∗, the following hold:

(i) conditions (7.12), (7.14)–(7.19), (7.21)–(7.23), (7.25)–(7.30), and (7.35) hold for alli ∈ I, ι ∈ I, with
the exceptions that (7.14)–(7.19) do not need to hold ifi = i∗, (7.21)–(7.23) and (7.25)–(7.26) do
not need to hold ifi is a non-transition class, and (7.30) does not need to hold ifι is a non-transition
class,

(ii) for eachi ∈ I, j ∈ J i, (6.20)–(6.22) hold with

(a) λr
i in place ofνr, λi in place ofν, and any ofεi, ε̃i, ε̌i, or ε̌i/2 in place ofε there,

(b) µr
j in place ofνr, µj in place ofν, and any ofεi, εi/2, ε̃i, ε̌i, or ε3,j , in place ofε there, and

(c) µr
a(i) in place ofνr, µa(i) in place ofν, andε2,i in place ofε there.

Remark. The condition before (6.20)–(6.22) that0 < ε < ν/2 is automatically satisfied for the choices of
ε, ν in Assumption 7.2.

7.2 Induction Setup

In the sequel we will use induction oni to show that the following (I)–(II) hold for eachi ∈ I \ {i∗}, and
we will show that (III) below holds wheni∗ is a transition buffer. Recall the definitions ofr∗, sr

i , tri , dsr
i ,

M r from Section 7.1. Note in particular thatr∗ is independent oft. We consider the following, (I)–(II), for
i ∈ I \ {i∗}.
(I) For all r ≥ r∗, t > 0 satisfyingr2t ≥ M r, and eachk ∈ Ki,

(I.1) P
(

sup
τr
i,0≤s≤r2t

|Rr
i (s)| ≥ Lr

i − |J i|
)

≤ p1,i(r2t)
(
C

(1)
1,i exp

(
− C

(2)
1,i Lr

0

)
+ C

(3)
1,i exp

(
− C

(4)
1,i r2t

))
,

(I.2) P
(
Ir
k(τ r

i,0) ≥ tri
)
≤ p2,i(r2t)

(
C

(1)
2,i exp

(
− C

(2)
2,i Lr

0

)
+ C

(3)
2,i exp

(
− C

(4)
2,i r2t

))
,

(I.3) P
(
Ir
k(r2t) − Ir

k(τ r
i,0) > 0, τ r

i,0 < r2t
)

≤ p3,i(r2t)
(
C

(1)
3,i exp

(
− C

(2)
3,i Lr

0

)
+ C

(3)
3,i exp

(
− C

(4)
3,i r2t

))
,

wherep1,i, p2,i, p3,i are polynomials with non-negative coefficients, andC
(m)
l,i , l = 1, 2, 3, m = 1, 2, 3, 4

are positive constants; the polynomials and constants do not depend ont or r. The polynomialsp1,i andp3,i

have degree at mosti + 1 andp2,i has degree at mosti.
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(II) For all r ≥ r∗, t > 0 satisfyingr2t ≥ M r, and eachι ∈ I with ι > i,

(II.1) sup
n≥1

P
(
T r,n

ι,a(i)(s
r
ι ) ≥ (x∗

a(i) + εi)sr
ι , sr

ι ≤ βr
ι,n, τ r

ι,2n−1 ≤ r2t
)

≤ p4,i(r2t)
(
C

(1)
4,i exp

(
− C

(2)
4,i Lr

0

)
+ C

(3)
4,i exp

(
− C

(4)
4,i r2t

))
,

(II.2) if ι is a transition class,

sup
n≥1

P
(

dT r,n
ι,a(i)(

dsr
ι ) ≤ (x∗

a(i) − εi)dsr
ι ,

dτ r
ι,2n−1 ≤ r2t

)
≤ p5,i(r2t)

(
C

(1)
5,i exp

(
− C

(2)
5,i Lr

0

)
+ C

(3)
5,i exp

(
− C

(4)
5,i r2t

))
,

(II.3) P
(
T r

a(i)(t
r
ι ) ≤ (x∗

a(i) − εi)trι
)

≤ p6,i(r2t)
(
C

(1)
6,i exp

(
− C

(2)
6,i Lr

0

)
+ C

(3)
6,i exp

(
− C

(4)
6,i r2t

))
,

wherep4,i, p5,i, p6,i are polynomials (of degree at mosti + 1) with non-negative coefficients, andC(m)
l,i ,

l = 4, 5, 6, m = 1, 2, 3, 4 are positive constants; the polynomials and constants do not depend ont or r.
Remark. The appearance of the variablet in the right side of (II.3) stems from an estimate obtained in
(7.115) involving the number of classi jobs in the system at timetrι ≤ M r ≤ r2t.

We consider the following, (III), ifi∗ is a transition class.
(III) For all r ≥ r∗, t > 0 satisfyingr2t ≥ M r, and eachk ∈ Ki∗ ,

(III.1) P
(

inf
τr
i∗,0

≤s≤r2t
Rr

i∗(s) ≤ −Lr
i∗ + |J i∗ |

)

≤ p1,i∗(r2t)
(
C

(1)
1,i∗ exp

(
− C

(2)
1,i∗L

r
0

)
+ C

(3)
1,i∗ exp

(
− C

(4)
1,i∗r

2t
))

,

(III.2) P
(
Ir
k(τ r

i∗,0) ≥ tri∗
)
≤ p2,i∗(r2t)

(
C

(1)
2,i∗ exp

(
− C

(2)
2,i∗L

r
0

)
+ C

(3)
2,i∗ exp

(
− C

(4)
2,i∗r

2t
))

,

(III.3) P
(
Ir
k(r2t) − Ir

k(τ r
i∗,0) > 0, τ r

i∗,0 < r2t
)

≤ p3,i∗(r2t)
(
C

(1)
3,i∗ exp

(
− C

(2)
3,i∗L

r
0

)
+ C

(3)
3,i∗ exp

(
− C

(4)
3,i∗r

2t
))

,

wherep1,i∗ , p2,i∗ , p3,i∗ are polynomials with non-negative coefficients, andC
(m)
l,i∗ , l = 1, 2, 3, m = 1, 2, 3, 4

are positive constants; the polynomials and constants do not depend ont or r. The polynomialsp1,i∗ and
p3,i∗ have degree at mostI + 1 andp2,i∗ has degree at mostI.

Property (I) is used to obtain the conclusions (7.1)–(7.3) in Theorem 7.1. Property (II) describes the
properties associated with bufferi that are carried along in the induction proof to prove (I) for buffersι > i
and to prove Property (III), which in turn is used to prove (7.4)–(7.6). The induction proof depends on the
following lemmas that are proved in Sections 7.3–7.6 below.

Lemma 7.3 Fix i ∈ I \ {i∗}. Suppose that for allr ≥ r∗, t > 0 satisfyingr2t ≥ M r, the following
properties (i)–(iii) hold for allj ∈ J i wheneveri is a transition buffer, and (iv) holds fori whether it is a

30



transition buffer or not:

(i) sup
n≥1

P
(
T r,n

i,j (sr
i ) ≤ (x∗

j − εi)sr
i , sr

i ≤ βr
i,n, τ r

i,2n−1 ≤ r2t
)

≤ p7,i(r2t)
(
C

(1)
7,i exp

(
− C

(2)
7,i Lr

0

)
+ C

(3)
7,i exp

(
− C

(4)
7,i r2t

))
,

(ii) sup
n≥1

P
(

dT r,n
i,j (dsr

i ) ≥ (x∗
j + εi)dsr

i ,
dτ r

i,2n−1 ≤ r2t
)

≤ p8,i(r2t)
(
C

(1)
8,i exp

(
− C

(2)
8,i Lr

0

)
+ C

(3)
8,i exp

(
− C

(4)
8,i r2t

))
,

(iii) P
(
T r

j (tri ) ≥ (x∗
j + εi)tri

)
≤ p9,i(r2t)

(
C

(1)
9,i exp

(
− C

(2)
9,i Lr

0

)
+ C

(3)
9,i exp

(
− C

(4)
9,i r2t

))
,

(iv) sup
n≥1

P
(
T r,n

i,a(i)(s
r
i ) ≤ (x̂i,i − εi)sr

i , sr
i ≤ βr

i,n, τ r
i,2n−1 ≤ r2t

)
≤ p10,i(r2t)

(
C

(1)
10,i exp

(
− C

(2)
10,iL

r
0

)
+ C

(3)
10,i exp

(
− C

(4)
10,ir

2t
))

,

wherep7,i, p8,i, p9,i, p10,i are polynomials (of degree at mosti) with non-negative coefficients, andC(m)
l,i ,

l = 7, 8, 9, 10, m = 1, 2, 3, 4 are positive constants; the polynomials and constants are independent oft
andr. Then,(I) holds fori.

Lemma 7.4 Let i ∈ I\{i∗}. Suppose that(I) and (II) hold withi′ in place ofi, for all i′ < i. Then, ifi is a
transition buffer,(i)–(iii) of Lemma 7.3 hold for allr ≥ r∗, t > 0 satisfyingr2t ≥ M r, and eachj ∈ J i.

Lemma 7.5 Let i ∈ I\{i∗}. Suppose that(I) and (II) hold withi′ in place ofi, for all i′ < i. Then (iv) of
Lemma 7.3 holds for allr ≥ r∗ andt > 0 satisfyingr2t ≥ M r.

Lemma 7.6 Let i ∈ I\{i∗}. Suppose that(I) and (II) hold with i′ in place ofi, for all i′ < i. Then(II)
holds fori.

Lemmas 7.3–7.6 combined with a formal induction yield the following.

Theorem 7.7 (I) and(II) hold for eachi ∈ I\{i∗}. In addition,(III) holds ifi∗ is a transition class.

With Lemmas 7.3–7.6 in place, the steps in the induction argument used in proving Theorem 7.7 are as
follows (assuming the ordering of the buffers is as described in Section 6.1).

1. Fix i ∈ I\{i∗}, and assume that (I) and (II) hold withi′ in place ofi, for all i′ < i (for i = 1, this is a
vacuous assumption).

2. Use Lemma 7.4 to show that(i)–(iii) in Lemma 7.3 hold for allj ∈ J i if i is a transition buffer, and
use Lemma 7.5 to show that(iv) holds fori.

3. Apply Lemma 7.3 to conclude that (I) holds fori.

4. Apply Lemma 7.6 to conclude that (II) holds fori.

It then follows that (I) and (II) hold for alli ∈ I\{i∗}. Then, if i∗ is a transition buffer, we combine the
proof of Lemma 7.4 and parts of the proof of Lemma 7.3 (adapted fori = i∗) with the fact that (II) holds
for ι = i∗ andi < i∗, to prove that (III) holds.

The formal proof of Theorem 7.7 is given in Section 7.7. As a guide to the reader, before beginning
the proofs of the lemmas and Theorems 7.7 and 7.1, we briefly describe some of the ideas involved in these
proofs.
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Lemma 7.3 is the main lemma that drives the induction. The result of this lemma yields that all queue
length processes and idletime processes (exceptQr

i∗ andIr
k∗) vanish on diffusion scale asr goes to infinity

(for c sufficiently large). To obtain (I) fori ∈ I\{i∗}, our proof requires that, in addition to large devia-
tion estimates on the primitive renewal processes, there are estimates on the allocation processes (in each
excursion interval for the residual process associated with bufferi) corresponding to the activities which
process classi jobs, i.e.,(i)–(iv) in Lemma 7.3 hold. Wheni is a transition buffer, the estimates(i)–(iii)
are derived from the induction assumptions for (II) (withi replaced byi′ < i in (II)), using the fact that,
for eachj ∈ J i, the utilization of activityj is constrained by the (higher priority) activities for serverk(j)
which serve buffers in the layer below that server. These estimates are obtained in the proof of Lemma 7.4,
which is contained in Section 7.4. Similarly, for(iv), the on-time of the activity,a(i), that serves bufferi
from above can be estimated (in an up excursion forRr

i ) by having estimates, derived from the induction as-
sumption for (II), on the (higher priority) activities associated with serverk(a(i)) (recall that buffers which
have higher priority for serverk(a(i)) are all numbered lower thani). These estimates are obtained in the
proof of Lemma 7.5 in Section 7.5. Finally, the proof of Lemma 7.6 in Section 7.6 (which uses the fact
that (I) holds for bufferi together with the induction assumption for (II), withi replaced byi′ < i in (II)),
completes the induction step by showing how to transition between layers.

For (III.1)–(III.3), assuming thati∗ is a transition buffer, we first use the proof of Lemma 7.4 (cf. Section
7.4) to show that(ii) and(iii) in Lemma 7.3 hold withi∗ in place ofi, r ≥ r∗, t > 0 satisfyingr2t ≥ M r,
and all j ∈ J i∗ , given that (I) and (II) hold for alli < i∗ (cf. (7.69) and (7.70), respectively). Then,
(III.1)–(III.3) can be proved in a similar manner to that in the proof of Lemma 7.3 in Section 7.3 (withi∗ in
place ofi there).

Properties (I) and (III) are used to prove (7.1)–(7.3) and (7.4)–(7.6), respectively, of Theorem 7.1, for a
sufficiently large constantc appearing in the definition ofLr

0.

7.3 Estimates on Allocation Processes Imply Residual Processes Stay Near Zero – Proof of
Lemma 7.3

Proof of Lemma 7.3. Fix i ∈ I\{i∗}. Suppose that for allr ≥ r∗, t > 0 satisfyingr2t ≥ M r, and each
j ∈ J i, (i)–(iv) hold. The proof that follows is an extension of the proof of Theorem 7.2 in [3]. For the
special case when classi is not a transition class, we haveKi = ∅, J i = ∅, τ r

i,0 ≡ 0, anddRr
i ≡ 0. This

implies that (I.2) holds trivially and the part of the proof of (I.1) given below for down excursions ofRr
i is

not needed.

Proof of (I.1). The idea of this proof is: (a) to show that the number of excursions ofRr
i from the zero

level is at most of orderr2t, with probability at least1 − K1 exp(−K ′
1r

2t) whereK1, K ′
1 are constants

not depending onr or t, and then (b) to estimate the probability that|Rr
i | reaches the levelLr

i − |J i| or
higher during any of the firstO(r2t) excursions. Using large deviation estimates for the renewal processes
Ar

i andSr
j , j ∈ Ji, and the assumptions of Lemma 7.3, this probability will be shown to be dominated by

an expression of the formpi(r2t)(C exp(−C ′Lr
i ) + C ′′ exp(−C ′′′r2t)), for all r ≥ r∗ andt > 0 satisfying

r2t > M r, wherepi is a polynomial of degree at mosti with non-negative coefficients, andC,C ′, C ′′, C ′′′

are non-negative constants not depending onr or t (cf. (7.57)). Then (a) and (b) are combined to yield (I.1).
We first consider the up excursions ofRr

i . For n ≥ 1, r ≥ 1, j ∈ Ji, on {τ r
i,2n−1 < ∞}, we define

shifted renewal processes, fors ≥ 0, as follows.
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Ar,n
i,i (s) = Ar

i (τ
r
i,2n−1 + s) − Ar

i (τ
r
i,2n−1), (7.36)

Sr,n
i,j (s) = Sr

j (T
r
j (τ r

i,2n−1) + s) − Sr
j (T

r
j (τ r

i,2n−1)), (7.37)

Ăr,n
i,i (s) = sup{m ≥ 0 : ξr

i (A
r
i (τ

r
i,2n−1) + m) − ξr

i (A
r
i (τ

r
i,2n−1)) ≤ s}, (7.38)

S̆r,n
i,j (s) = sup{m ≥ 0 : ηr

j (S
r
j (T

r
j (τ r

i,2n−1)) + m) − ηr
j (S

r
j (T

r
j (τ r

i,2n−1))) ≤ s}, (7.39)

and, for concreteness, on{τ r
i,2n−1 = ∞} we defineAr,n

i,i , Sr,n
i,j , Ăr,n

i,i , S̆r,n
i,j to be identically zero. Recall the

definition ofT r,n
i,j from Section 6.4.

Consider thenth up excursion interval forRr
i . We have that on{τ r

i,2n−1 < ∞}, for 0 ≤ s ≤ βr
i,n,

Rr
i (τ

r
i,2n−1 + s) = 1 + Ar,n

i,i (s) −
∑
j∈Ji

Sr,n
i,j (T r,n

i,j (s)), (7.40)

and, taking account of the fact that a new arrival to classi occurs atτ r
i,2n−1 < ∞ and a job may have been

partially served by activityj ∈ Ji at τ r
i,2n−1 < ∞, we also have that, fors ≥ 0,

Ar,n
i,i (s) = Ăr,n

i,i (s), and Sr,n
i,j (s) ≥ S̆r,n

i,j (s), j ∈ Ji. (7.41)

By (6.5), we have that

εi < min

{
µj

2
,
λi

2
,

(
1 − 4λi + δi

4λi + 3
2δi

)
x̂i,i,

(
1 − 4λi

4λi + δi

)
x∗

j : j ∈ Ji

}
, (7.42)

whereδi andx̂i,i are given in (7.13) and (6.2), respectively.
In the following, it is assumed thatr ≥ r∗ andt > 0 satisfiesr2t ≥ M r. Thenr2t > 2/εi by (7.9)–

(7.12), and (7.35). Definenr
i = b(λr

i + εi)r2tc + 1. Since each up excursion ofRr
i is initiated by an arrival

to classi, using the large deviations bounds for renewal processes given in Lemma 6.7 and the choice ofr∗

(cf. Assumption 7.2), we have the following estimate of the probability that at leastnr
i up excursions ofRr

i

have been initiated in[0, r2t] (τ r
i,2nr

i−1 is the beginning of the(nr
i )

th up excursion interval):

P(τ r
i,2nr

i −1 ≤ r2t) ≤ P(Ar
i (r

2t) ≥ nr
i )

≤ P(Ar
i (r

2t) > (λr
i + εi)r2t)

≤ K1 exp(−K ′
1r

2t), (7.43)

whereK1 = exp(Λa,∗
i ((λi(1 + εi/3λi))−1)) > 0, K ′

1 = λiΛ
a,∗
i ((λi(1 + εi/3λi))−1) > 0, depend on the

Legendre-Fenchel transformΛa,∗
i of the logarithmic moment generating functionΛa

i of ui(1) (cf. (3.3)),λi,
andεi, but are independent oft andr.

Now, decomposing the probability space according to whether the number of up excursions initiated in
[0, r2t] is greater than or equal tonr

i or less thannr
i , we have

P
(
Rr

i (s) ≥ Lr
i − |J i| somes ∈ [0, r2t]

)
≤ P

(
τ r
i,2nr

i−1 ≤ r2t
)

+
nr

i −1∑
n=1

P
(
Rr

i (s) ≥ Lr
i − |J i| somes ∈ (τ r

i,2n−1, τ
r
i,2n), τ r

i,2n−1 ≤ r2t
)
. (7.44)
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For each positive integern, let

Υr,n
i =

{
Ar,n

i,i (sr
i ) ≤ (λr

i + εi)sr
i ; Sr,n

i,j ((x̃i
j − εi)sr

i ) ≥ (µr
j − εi)(x̃i

j − εi)sr
i , j ∈ Ji;

T r,n
i,j (sr

i ) > (x̃i
j − εi)sr

i , j ∈ Ji; τ r
i,2n−1 ≤ r2t}, (7.45)

wherex̃i
j = x∗

j for j ∈ J i andx̃i
j = x̂i,i for j = a(i). The setΥr,n

i is a “good” set, in the sense that, on it,
various shifted stochastic processes can be bounded on one side at timesr

i by certain linear functions. These
bounds will enable us to show that onΥr,n

i , Rr
i will not reach the levelLr

i − |J i| in thenth up excursion
interval(τ r

i,2n−1, τ
r
i,2n) whose length is shorter thansr

i .
Let

ρr,n
i = ξr

i (A
r
i (τ

r
i,2n−1) + Lr

i − |J i| − 1) − ξr
i (A

r
i (τ

r
i,2n−1)) on{τ r

i,2n−1 < ∞}, (7.46)

and letρr,n
i ≡ 0 on{τ r

i,2n−1 = ∞}. Then,{
Rr

i (s) ≥ Lr
i − |J i| some s ∈ (τ r

i,2n−1, τ
r
i,2n), τ r

i,2n−1 < ∞
}

=
{
Rr

i (s) ≥ Lr
i − |J i| some s ∈ (τ r

i,2n−1, τ
r
i,2n), ρr,n

i ≤ βr
i,n, τ r

i,2n−1 < ∞
}

, (7.47)

since, on{τ r
i,2n−1 < ∞}, ρr,n

i is the minimum possible amount of time required forRr
i to reach the level

Lr
i − |J i| in thenth up excursion. Thus,

P
(
Rr

i (s) ≥ Lr
i − |J i| some s ∈ (τ r

i,2n−1, τ
r
i,2n), τ r

i,2n−1 ≤ r2t
)

≤ P
(
τ r
i,2n−1 ≤ r2t, (Υr,n

i )c, ρr,n
i ≤ βr

i,n

)
+P
(
Rr

i (s) ≥ Lr
i − |J i| some s ∈ (τ r

i,2n−1, τ
r
i,2n),Υr,n

i

)
. (7.48)

Now, onΥr,n
i , we have

1 + Ar,n
i,i (sr

i ) −
∑
j∈Ji

Sr,n
i,j (T r,n

i,j (sr
i ))

≤ 1 + (λr
i + εi)sr

i −
∑
j∈Ji

(x̃i
j − εi)(µr

j − εi)sr
i

≤ 1 +


 2λi

2λi + δi


∑

j∈Ji

x̃i
jµj




−
∑
j∈J

i

(
4λi

4λi + δi
x∗

j

4λi + δi

4λi + 2δi
µj

)
− 4λi + δi

4λi + 3
2δi

x̂i,i
4λi + 3

2δi

4λi + 2δi
µa(i)


 sr

i

= 1 − δi

4λi + 2δi
x̂i,iµa(i)s

r
i < 0, (7.49)

where, in the second inequality we have used (7.16)–(7.18) along with (7.42), and in the last inequality we
have used (7.19). It then follows from (7.40) that

βr
i,n = τ r

i,2n − τ r
i,2n−1 < sr

i onΥr,n
i . (7.50)

Furthermore, onΥr,n
i for 0 ≤ s ≤ sr

i ,

1 + Ar,n
i,i (s) −

∑
j∈Ji

Sr,n
i,j (T r,n

i,j (s)) ≤ 1 + (λr
i + εi)sr

i = Lr
i − |J i| − 1, (7.51)
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by (7.7). Hence by (7.40) we have that onΥr,n
i , Rr

i (s) < Lr
i − |J i| for s ∈ (τ r

i,2n−1, τ
r
i,2n), sincer ≥ r∗.

Thus the last probability in (7.48) is zero.
Splitting the probability space according to whetherρr,n

i < sr
i or ρr,n

i ≥ sr
i , and discarding some

qualifiers, we obtain

P
(
τ r
i,2n−1 ≤ r2t, (Υr,n

i )c, ρr,n
i ≤ βr

i,n

)
≤ P

(
ρr,n

i < sr
i , τ r

i,2n−1 ≤ r2t
)

+P
(
Ar,n

i,i (sr
i ) > (λr

i + εi)sr
i , τ r

i,2n−1 ≤ r2t
)

+
∑
j∈Ji

P
(
Sr,n

i,j (x̃i
j − εi)sr

i ) < (µr
j − εi)(x̃i

j − εi)sr
i , τ

r
i,2n−1 ≤ r2t

)

+
∑
j∈Ji

P
(
T r,n

i,j (sr
i ) ≤ (x̃i

j − εi)sr
i , sr

i ≤ βr
i,n, τ r

i,2n−1 ≤ r2t
)

. (7.52)

Now, the set{τ r
i,2n−1 < ∞} is contained in the set{T r

n,i ∈ INI× INJ} (cf. Lemma 6.5). Using Lemmas

6.5 and 6.6, we conclude that on{T r
n,i ∈ INI × INJ}, the conditional distribution of{ur

i (A
r
i (τ

r
i,2n−1) +

m), m = 1, 2, 3, . . .} givenFr
T r

n,i
is equal to that of a sequence of strictly positive independent random

variables where the members indexed bym = 2, 3, . . . are identically distributed with the same distribution
asur

i (1) (for the application of these lemmas, observe thatLr
0 ≥ J + 1 by (7.35) and (6.5) sinceεi ≤ ε̂ <

1/2(J + 1), andur
i (A

r
i (τ

r
i,2n−1) + 1) ∈ Fr

T r
n,i

). Then, as in equation (84) of [3], since we have assumed that

r ≥ r∗ andt > 0 satisfiesr2t ≥ M r, we have

P
(
Ar,n

i,i (sr
i ) > (λr

i + εi)sr
i , τ r

i,2n−1 ≤ r2t
)

≤ E
(
1{T r

n,i∈INI×INJ}P
(
Ăr,n

i,i (sr
i ) > (λr

i + εi)sr
i | Fr

T r
n,i

))

≤ exp

(
− ((λr

i + εi)sr
i − 1) Λa,∗

i

(
1
λi

(
1

1 + εi
3λi

)))

≤ K2 exp(−K ′
2L

r
i ), (7.53)

by Lemma 6.7 (sincesr
i > 2/εi by (7.9), (7.12), and (7.35)), and whereK2 = exp((|J i| + 3)Λa,∗

i ((λi(1 +
εi/3λi))−1)) > 0 andK ′

2 = Λa,∗
i ((λi(1 + εi/3λi))−1) > 0 do not depend ont, n, or r. Similarly, since

r ≥ r∗ andt > 0 satisfiesr2t ≥ M r, we have

P
(
ρr,n

i < sr
i , τ r

i,2n−1 ≤ r2t
)

≤ E
(
1{T r

n,i∈INI×INJ}P
(
ρr,n

i < sr
i | Fr

T r
n,i

))
≤ E

(
1{T r

n,i∈INI×INJ}P
(
Ăr,n

i,i (sr
i ) ≥ Lr

i − |J i| − 1 | Fr
T r

n,i

))
≤ E

(
1{T r

n,i∈INI×INJ}P
(
Ăr,n

i,i (sr
i ) > (λr

i + εi)sr
i | Fr

T r
n,i

))
≤ K2 exp(−K ′

2L
r
i ), (7.54)

where the third inequality follows by the definition ofsr
i (cf. (7.7)).

In a similar manner (cf. (85)–(86) of [3]), sincer ≥ r∗ andt > 0 satisfiesr2t ≥ M r, we have for all
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j ∈ Ji,

P
(
Sr,n

i,j ((x̃i
j − εi)sr

i ) < (µr
j − εi)(x̃i

j − εi)sr
i , τ r

i,2n−1 ≤ r2t
)

≤ E
(
1{T r

n,i∈INI×INJ}P
(
S̆r,n

i,j ((x̃i
j − εi)sr

i ) < (µr
j − εi)(x̃i

j − εi)sr
i , τ r

i,2n−1 ≤ r2t | Fr
T r

n,i

))
≤ exp

(
− (µj − 2εi)

(
x̃i

j − εi

)
sr
i Λ

s,∗
j

(
1
µj

(
1 +

εi

2µj

)))

+E

(
1{T r

n,i∈INI×INJ}P

(
vr,n
i,j >

εi

2µr
j

(x̃i
j − εi)sr

i , τ r
i,2n−1 ≤ r2t | Fr

T r
n,i

))
, (7.55)

by Lemma 6.7, wherevr,n
i,j = vr

j (S
r
j (T

r
j (τ r

i,2n−1)) + 1), andΛs,∗
j , j ∈ Ji is the Legendre-Fenchel transform

of the logarithmic moment generating functionΛs
j of vj(1), j ∈ Ji (cf. (3.4)). (Note here that when we use

(6.25) of Lemma 6.7, we do not need the condition thats > 2/ε required in (6.24), i.e., in the case above we
do not require that(x̃i

j − εi)sr
i > 2/εi.) In a similar manner to that for (87) in [3], using (6.27) and (6.24),

sincer ≥ r∗ andt > 0 satisfiesr2t ≥ M r, we have for allj ∈ Ji,

P

(
vr,n
i,j >

εi

2µr
j

(x̃i
j − εi)sr

i , τ r
i,2n−1 ≤ r2t

)

≤ P

(
Sr

j (r2t)+1
max
m=1

vr
j (m) >

εi

2µr
j

(x̃i
j − εi)sr

i

)

≤ P

(
b(µr

j +εi)r
2tc+1

max
m=1

vr
j (m) >

εi

2µr
j

(x̃i
j − εi)sr

i

)

+P
(
Sr

j (r
2t) > (µr

j + εi)r2t
)

≤
(
b(µr

j + εi)r2tc + 1
)
K4 exp(−K ′

4s
r
i ) + K5 exp(−K ′

5r
2t), (7.56)

where, by (6.27),K4 = max{exp(Λs
j(l0)) : j ∈ Ji} > 0, K ′

4 = min{(l0εi/2µj)(x̃i
j − εi) : j ∈ Ji} > 0

and0 < l0 ∈ O0 (cf. (3.4)). Also, by (6.24) and sincer2t ≥ M r > 2/εi, K5 = max{exp(Λs,∗
j ((µj(1 +

εi/3µj))−1)) : j ∈ Ji} > 0 andK ′
5 = min{µjΛ

s,∗
j ((µj(1 + εi/3µj))−1) : j ∈ Ji} > 0. Note thatK4,

K ′
4, K5, K ′

5 do not depend ont, n, or r. It follows that the last term in (7.55) is bounded by the expression
in (7.56).

Combining all of the above (from (7.43) onwards), we have for allr ≥ r∗ andt > 0 satisfyingr2t ≥
M r,

P
(
Rr

i (s) ≥ Lr
i − |J i| somes ∈ [0, r2t]

)
≤ K1 exp(−K ′

1r
2t)

+(nr
i − 1)

{
2K2 exp(−K ′

2L
r
i ) + |Ji|K3 exp(−K ′

3s
r
i )

+
∑
j∈Ji

(
b(µr

j + εi)r2tc + 1
)
K4 exp(−K ′

4s
r
i ) + |Ji|K5 exp(−K ′

5r
2t)

+
∑
j∈Ji

sup
n<nr

i

P
(
T r,n

i,j (sr
i ) ≤ (x̃i

j − εi)sr
i , sr

i ≤ βr
i,n, τ r

i,2n−1 ≤ r2t
)}

, (7.57)

whereK3 = 1, K ′
3 = min{(µj − 2εi)(x̃i

j − εi)Λ
s,∗
j (µ−1

j (1 + εi/2µj)) : j ∈ Ji} > 0 from (7.55).
Now we consider the down excursions ofRr

i . For this, we assume thatJ i 6= ∅, i.e., we assume that
classi is a transition class, since (7.57) suffices for the proof that (I.1) holds when classi is a non-transition
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class. The treatment of the down excursions is very similar to that for the up excursions except that we do
not need to introduce an analogue ofρr,n

i and the effects of the arrivals and services on pushingRr
i towards

zero are reversed. In particular, one can show that for allr ≥ r∗ andt > 0 satisfyingr2t ≥ M r,

P
(
Rr

i (s) ≤ |J i| − Lr
i somes ∈ [τ r

i,0, r
2t]
)

≤ K6 exp(−K ′
6r

2t) +
(
dnr

i − 1
){

K7 exp(−K ′
7
dsr

i )

+
(
b(λr

i + εi)r2tc + 1
)
K8 exp(−K ′

8
dsr

i ) + K9 exp(−K ′
9r

2t)

+K10 exp(−K ′
10

dsr
i )

+
∑
j∈J

i

sup
n<dnr

i

P
(

dT r,n
i,j (dsr

i ) ≥ (x∗
j + εi) dsr

i ,
dτ r

i,2n−1 ≤ r2t
)}

, (7.58)

wherednr
i =

⌊∑
j∈J

i
(µr

j + εi)r2t
⌋
+|J i|, K6 = |J i|max{exp(Λs,∗

j ((µj(1+εi/3µj))−1)) : j ∈ J i} > 0,

K ′
6 = min{µjΛ

s,∗
j ((µj(1+εi/3µj))−1) : j ∈ J i} > 0, K7 = 1, K ′

7 = (λi−2εi)Λ
a,∗
i (λ−1

i (1+εi/2λi)) >

0, K8 = exp(Λa
i (l0)) > 0, K ′

8 = l0εi/2λi > 0, 0 < l0 ∈ O0, K9 = exp(Λa,∗
i ((λi(1 + εi/3λi))−1)) > 0,

K ′
9 = λiΛ

a,∗
i ((λi(1 + εi/3λi))−1) > 0, K10 = |J i|max{exp(Λs,∗

j ((µj(1 + εi/6µj)−1)) : j ∈ J i} > 0,
andK ′

10 = min{µj(x∗
j + εi)Λ

s,∗
j ((µj(1 + εi/6µj)−1) : j ∈ J i} > 0. Details of the argument for this can

be found in [2].
On combining the results (7.57) and (7.58) for the up and down excursions, assumptions(i), (ii), and

(iv) of Lemma 7.3, the definitions ofnr
i , dnr

i , sr
i , dsr

i , Lr
i , and the fact thatsr

i ≥ Lr
0 anddsr

i ≥ Lr
0 for all

i ∈ I (by (7.9) and (7.12)), it follows that forr ≥ r∗ andt > 0 satisfyingr2t ≥ M r, we have that (I.1)
holds, Note that sincei ≥ 1, terms involving(r2t)2 are absorbed in the polynomial termp1,i(r2t).

Proof of (I.2). SinceKi = ∅, if i is a non-transition class, (I.2) trivially holds in this case. So it suffices to
consider the case wheni is a transition class. Note that for0 ≤ s ≤ τ r

i,0,

Qr
i (s) = Ar

i (s) −
∑
j∈J

i

Sr
j (T

r
j (s)), (7.59)

since activitya(i) will be turned off for suchs. By (6.5), (6.7), and (7.24), we have

0 < ε̃i < min

{
1,

λi −
∑

j∈J
i
x∗

jµj

4(|J i| + 2)
,

λi

2
,

µj

2
: j ∈ J i

}
. (7.60)
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Now,

P
(
Ir
k(τ r

i,0) ≥ tri
)

≤ P
(
τ r
i,0 ≥ tri

)
≤ P

(
Ar

i (t
r
i ) −

∑
j∈J

i

Sr
j (T
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)
. (7.61)

Now, for r ≥ r∗, using (7.25), (7.26), (7.24), (7.60), (7.8), and the fact thatx∗
j < 1 for all j ∈ J i, we have
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Hence, the first probability in the last expression of (7.61) is zero. From Lemma 6.7 (since(x∗
j+εi)tri > 2/ε̃i,

for all j ∈ J i, by (7.9), (7.12), and (7.35)), we have for allj ∈ J i, r ≥ r∗,

P
(
Sr

j ((x
∗
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r
i ), (7.63)

whereK11 = max{exp(Λs,∗
j ((µj(1+ε̃i/3µj))−1) : j ∈ J i} > 0, andK ′

11 = min{µj(x∗
j+εi)Λ

s,∗
j ((µj(1+

ε̃i/3µj))−1 : j ∈ J i} > 0. Using (6.27) in conjunction with Lemma 6.7, we have forr ≥ r∗, 0 < l0 ∈ O0,

P
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i ), (7.64)

whereK12 = max{1, exp(Λa
i (l0))} > 0, K ′

12 = min{(λi − 2ε̃i)Λ
a,∗
i (λ−1

i (1 + ε̃i/2λi)), l0ε̃i/2λi} > 0.
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Then, combining (7.61)–(7.64), we have for eachk ∈ Ki, for all r ≥ r∗,

P
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11t

r
i ) + K12 exp(−K ′
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r
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)
+
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P
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j (tri ) > (x∗
j + εi)tri

)
. (7.65)

By assumption(iii) of Lemma 7.3, the definitions oftri andLr
i , and the fact thattri ≥ Lr

0 (by (7.9) and
(7.12)) forr ≥ r∗, it follows that for allk ∈ Ki, r ≥ r∗, andt > 0 satisfyingr2t ≥ M r, we have

P
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)
≤ p2,i(r2t)

(
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(
− C
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)
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(
− C

(4)
2,i r2t
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, (7.66)

wherep2,i is a polynomial (of degree at mosti) with non-negative coefficients, andC(m)
2,i > 0, for m =

1, 2, 3, 4, and where the constants and the polynomial do not depend ont or r.

Proof of (I.3). SinceKi = ∅ if i is not a transition class, (I.3) holds trivially in this case. So supposei is
a transition class. Note that under the threshold policy, since classi (being above serverk) is the lowest
priority class for serverk ∈ Ki, Ir

k can increase only whenQr
i ≤ |Ki| = |J i|. The bound of|J i| occurs

here because there may be a classi job in service or in suspension at each of the other|J i| servers (|J i|− 1
servers below and one server abovei) that can serve classi. In particular, if serverk ∈ Ki incurs some
idletime in [τ r

i,0, r
2t], i.e., τ r

i,0 < r2t and Ir
k(r2t) − Ir

k(τ r
i,0) > 0, thenRr

i (s) ≤ −Lr
i + |J i| for some

s ∈ [τ r
i,0, r

2t]. Thus, forr ≥ r∗, t > 0 satisfyingr2t ≥ M r, andk ∈ Ki,
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, (7.67)

wherep3,i is a polynomial (of degree at mosti + 1) with non-negative coefficients, andC(m)
3,i > 0, for

m = 1, 2, 3, 4, by the validity of (I.1) proved above, where the constants and the polynomial do not depend
on t or r. 2

7.4 Estimates on Allocations for Activities Immediately Below Buffers – Proof of Lemma
7.4

Proof of Lemma 7.4.Fix i ∈ I\{i∗}. Suppose thati is a transition buffer, so thatJ i 6= ∅, and assume that
(I) and (II) hold withi′ in place ofi, for all i′ < i (for i = 1 this is a vacuous assumption). In the following,
recall (cf. Section 1.1) that a sum over an empty set is defined to equal zero. In particular, the results below
hold even ifIk = ∅.

Proof of (i). Forr ≥ r∗, t > 0 satisfyingr2t ≥ M r, j ∈ J i, k = k(j), andn ≥ 1, we have
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. (7.68)
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The first equality holds since serverk, k ∈ Ki, does not incur any idle time in thenth (up) excursion interval
for Rr

i which is of lengthβr
i,n, and the second equality holds since

∑
i′∈Ik

x∗
a(i′) + x∗

j = 1. For the last
inequality, we have used the fact thatεi ≥ Iεi′ ≥ |Ik|εi′ , by (6.7) (sinceγl ≤ 1 for all l ∈ I, and the fact
that i′ ∈ Ik satisfiesi′ < i by the ordering assumed for the buffer numbering). Hence, forr ≥ r∗, t > 0
satisfyingr2t ≥ M r, for eachj ∈ J i, (i) of Lemma 7.3 holds, since (II.1) was assumed to hold withi′ in
place ofi for all i′ < i and|Ik| < ∞.

Proof of (ii). Forr ≥ r∗, t > 0 satisfyingr2t ≥ M r, j ∈ J i, k = k(j), andn ≥ 1, we have
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. (7.69)

In the above, the equality follows from (2.8); the first inequality holds since the idletime process,Ir
k , is

non-decreasing and non-negative, and since
∑

i′∈Ik′
x∗

a(i′) + x∗
j = 1. Note also for the last inequality that

εi ≥ Iεi′ ≥ |Ik|εi′ . Hence, forr ≥ r∗, t > 0 satisfyingr2t ≥ M r, for eachj ∈ J i, (ii) of Lemma 7.3
holds, since (II.2) was assumed to hold withi′ in place ofi for all i′ < i, and|Ik| < ∞.

Proof of (iii). Forj ∈ J i, andk = k(j), we have in a similar manner to that for the proof of(ii) above that
for r ≥ r∗,
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Hence, forr ≥ r∗, t > 0 satisfyingr2t ≥ M r, for eachj ∈ J i, (iii) of Lemma 7.3 holds, since (II.3) was
assumed to hold withi′ in place ofi, for all i′ < i. 2

7.5 Estimates on Allocations for Activities Immediately Above Buffers – Proof of Lemma
7.5

Proof of Lemma 7.5.Fix i ∈ I\{i∗}, and letk = k(a(i)). Assume that (I) and (II) hold withi′ in place of
i, for all i′ < i. Note that by the priorities assigned to buffers by serverk, we have that∑

i′∈Ik

i′≤i

T r,n
i,a(i′)(s) = s, for 0 ≤ s ≤ βr

i,n, (7.71)
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since activities that have lower priority than activitya(i) will not be “on” and serverk will not idle in the
nth up excursion interval forRr

i . We then have forr ≥ r∗, t > 0 satisfyingr2t ≥ M r, andn ≥ 1,
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. (7.72)

The first equality follows by (7.71) and the second uses (6.3). The second to last inequality holds since
x̂i,i′ ≥ x∗

a(i′) for all i′ ∈ Ik, i′ < i, and the last inequality follows sinceεi ≥ Iεi′ ≥ |{i′′ ∈ Ik : i′′ < i}|εi′

for i′ < i. (Notice that if bufferi is the highest priority buffer for serverk, i.e.,{i′ ∈ Ik : i′ < i} = ∅,
then the first probability in (7.72) is zero sinceT r,n

i,a(i)(s
r
i ) = sr

i for sr
i ≤ βr

i,n, by (7.71).) Hence, forr ≥ r∗,

t > 0 satisfyingr2t ≥ M r, (iv) of Lemma 7.3 holds, since (II.1) was assumed to hold withi′ in place ofi,
for all i′ < i. 2

7.6 Transition Between Layers in the Server-Buffer Tree — Proof of Lemma 7.6

We will show below that (II) holds fori ∈ I\{i∗} given that (I) and (II) hold withi′ in place ofi, for all
i′ < i.
Proof of Lemma 7.6. Fix i ∈ I\{i∗}. Assume that (I) and (II) hold withi′ in place ofi, for all i′ < i.
Then, from Lemmas 7.3–7.5, we have that (I) holds fori as well. By (6.5) and (6.7), we have, for anyι ∈ I
satisfyingι > i,

εi < min
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, (7.73)

sinceεl < ε̂, for all l ∈ I. To validate the denominator in the third term in (7.73), we note that1024
∑

j∈Ji
(µj+

ει) ≤ 1024(µsum + |Ji|ε̂) ≤ 2048µsum. For the fifth term, we note that0 < λl −
∑

j∈J
l
x∗

jµj ≤ λmax for
all l ∈ I.
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Proof of (II.1). For r ≥ 1, n ≥ 1, s ≥ 0, ι ∈ I such thatι > i, j ∈ Ji, k = k(j), on{τ r
ι,2n−1 < ∞}, define
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and for concreteness on{τ r
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Now, for r ≥ r∗, t > 0 satisfyingr2t ≥ M r, ι ∈ I satisfyingι > i, andn ≥ 1,
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For the second inequality, we have used the fact that the number of classi jobs processed by activitya(i),
between timeτ r

ι,2n−1 and timeτ r
ι,2n−1 + sr

ι , namely,Sr,n
ι,a(i)(T
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by Lemmas 6.5–6.7 together with (6.27) and (7.33), in a similar manner to (7.55)–(7.56), forr ≥ r∗, n ≥ 1,
andt > 0 satisfyingr2t ≥ M r, we have
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For r ≥ 1, n ≥ 1, andι > i, let
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whereε1,i is defined in (7.32), and ifJ i = ∅, we omit the terms involvingj ∈ J i from the definition of
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For the first term in the right side of the inequality in (7.83) we have onΥr,n
ι,i that forr ≥ r∗,
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ι , (7.84)

where in the second inequality we have used the fact that
∑

j∈J
i
x∗

j ≤ 1. For the third inequality we have,

using (7.32) together with (7.15), ifJ i 6= ∅,

∑
j∈J

i

µr
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)
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µr
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16
. (7.85)

For the fourth inequality we have used (7.27), together with (7.15). The fifth inequality follows by (7.28).
The final inequality follows by (7.33). Hence, the first probability in the second expression of (7.83) is zero,
for all n ≥ 1, r ≥ r∗, t > 0 satisfyingr2t ≥ M r.

For the second term in the right side of the inequality in (7.83), using the result established at the
beginning of this proof that (I.1) holds fori, we have forr ≥ r∗, t > 0 satisfyingr2t ≥ M r,

P
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(4)
1,i r2t
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, (7.86)

wherep1,i is a polynomial (of degree at mosti + 1) with non-negative coefficients, andC(m)
1,i > 0, for

m = 1, 2, 3, 4, and where the polynomial and constants are independent oft and r. In (7.86), the first
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inequality holds sincesr
ι (for ι > i) is considerably larger thanLr

i . Specifically,
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]
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for r ≥ r∗. In the first inequality of (7.87), we have used (6.4), and the fact thatεl ≤ 1 for all l ∈ I.
In the second inequality, we have used (7.14) and (7.27), together with the fact thatει < λι/2, to obtain
λι/(λr

ι + ει) > 1/2. The third inequality follows sinceεi < ε̂ < µa(i)/256λι (cf. (7.73)), and the fourth
inequality follows from (7.29).

For the third term in the right side of the inequality in (7.83), using (7.15) and (7.31) to obtainµr
a(i)εi/16 ≥

ε̌i, and using the fact thatsr
ι > 2/ε̌i for all ι > i, we can proceed in a similar manner to that in (7.53), using

Lemmas 6.5–6.7, to obtain forr ≥ r∗, n ≥ 1 andt > 0 satisfyingr2t ≥ M r that
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)
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)
≤ K16 exp(−K ′

16s
r
ι ), (7.88)

whereK16 = exp(Λa,∗
i ((λi(1 + ε̌i/3λi))−1)) > 0 andK ′

16 = λiΛ
a,∗
i ((λi(1 + ε̌i/3λi))−1) > 0 do not

depend ont, n, or r.
Similarly, for the fourth term in the right side of the inequality in (7.83), we have, by a similar argument

to that for (7.55)–(7.56), that forr ≥ r∗, n ≥ 1, t > 0 satisfyingr2t ≥ M r, andj ∈ J i 6= ∅,
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whereK17 = 1, K ′
17 = min{(µj − 2ε̌i)(x∗

j − ε1,i)Λ
s,∗
j (µ−1

j (1 + ε̌i/2µj)) : j ∈ J i} > 0, K18 =
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j(l0)) > 0 : j ∈ J i}, K ′
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j ∈ J i} > 0, which are all independent oft, n, andr.
For the fifth term in the right side of the inequality in (7.83), we have forr ≥ r∗, n ≥ 1, t > 0 satisfying
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r2t ≥ M r, j ∈ J i 6= ∅, andk = k(j),
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For the first inequality in (7.90) we use the fact that
∑

i′∈Ik
x∗

a(i′) + x∗
j = 1. The last inequality in (7.90)

follows from the fact that whenJ i 6= ∅, for all i′ ∈ Ik,
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by (6.7) (sincei′ < i), and whereI ≥ (|Ik| + 1). The first inequality in (7.91) holds sinceεi ≤
min{µmin, 1}, by (6.5), and the second inequality follows by the definition ofγi (cf. (6.6)).

For the second term in the last expression in (7.90), we have that forr ≥ r∗, n ≥ 1, t > 0 satisfying
r2t ≥ M r,

sup
n≥1

P
(
Ir,n
ι,k (sr

ι ) ≥
ε1,i

I
sr
ι , τ r

ι,2n−1 ≤ r2t
)

≤ P(Ir
k(2r2t) − Ir

k(τ r
i,0) > 0, τ r

i,0 ≤ 2r2t)
+P(Ir

k(τ r
i,0) ≥ tri )

≤ p3,i(2r2t)
(
C

(1)
3,i exp

(
− C

(2)
3,i Lr

0

)
+ C

(3)
3,i exp

(
− 2C(4)

3,i r2t
))

+p2,i(r2t)
(
C

(1)
2,i exp

(
− C

(2)
2,i Lr

0

)
+ C

(3)
2,i exp

(
− C

(4)
2,i r2t

))
, (7.92)

wherep2,i andp3,i are polynomials (of degree at mosti andi + 1, respectively) with non-negative coeffi-

cients, andC(m)
l,i > 0, for l = 2, 3, m = 1, 2, 3, 4, since (I) holds fori (with 2t in place oft), andk ∈ Ki.

The polynomials and the constants do not depend ont, n, or r. The first inequality in (7.92) holds since on
{τ r
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ι ) ≤ Ir
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ι ) ≤ Ir

k(2r2t), assr
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(7.91),
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Here, in the second inequality in (7.93), we have used the fact thatεi < (
∏I

m=1 γm)/II ≤ γi/I, asγm ≤ 1
for all m (cf. (7.73)). In the third inequality of (7.93), we have used (6.4). In the fourth inequality we have
used the fact thatεi < (λi −

∑
j∈J

i
x∗

jµj)/(18λι) (cf. (7.73)) andεi < 1. In the fifth inequality we have

used (7.29) along with the estimateλι/(λr
ι + ει) > 1/2 used in proving (7.87).

Combining all of the above (from (7.80) onwards), we have for allr ≥ r∗, t > 0 satisfyingr2t ≥ M r,
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By the assumption that (II.1) holds withi′ in place ofi, for all i′ < i, the definition ofsr
ι , and the fact that

sr
l ≥ Lr

0, for all l ∈ I, it follows that forr ≥ r∗, t > 0 satisfyingr2t ≥ M r,
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, (7.95)

wherep4,i is a polynomial (of degree at mosti + 1) with positive coefficients, andC(m)
4,i > 0, for m =

1, 2, 3, 4. The polynomial and the constants do not depend ont or r. This completes the proof that (II.1)
holds fori.
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Proof of(II.2). Fix a transition classι > i. For eachr ≥ 1, n ≥ 1, s ≥ 0, j ∈ Ji, on{dτ r
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We have forr ≥ r∗, t > 0 satisfyingr2t ≥ M r, andn ≥ 1,
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where the last inequality in (7.97) uses (2.9).
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whereε2,i andε3,j are defined in (7.33) and (7.34), respectively.
Then, the last term in (7.97) is bounded above by

P
(

dAr,n
ι,i (dsr

ι )−
∑
j∈J

i

dSr,n
ι,j

(
dT r,n

ι,j (dsr
ι )
)

−dSr,n
ι,a(i)

(
(x∗

a(i) − εi) dsr
ι

)
< (µr

a(i)εi/32) dsr
ι ,

dΥr,n
ι,i , dτ r

ι,2n−1 ≤ r2t
)

+P
(

dAr,n
ι,i (dsr

ι ) < (λr
i − (µr

a(i)εi/32)) dsr
ι ,

dτ r
ι,2n−1 ≤ r2t

)
+P

(
dSr,n

ι,a(i)

(
(x∗

a(i) − εi) dsr
ι

)
> (µr

a(i) + ε2,i)(x∗
a(i) − εi) dsr

ι + 1, dτ r
ι,2n−1 ≤ r2t

)
+
∑
j∈J

i

P
(

dSr,n
ι,j

(
(x∗

j + ε1,i) dsr
ι

)
> (µr

j + ε3,j)(x∗
j + ε1,i) dsr

ι + 1, dτ r
ι,2n−1 ≤ r2t

)

+
∑
j∈J

i

P
(

dT r,n
ι,j (dsr

ι ) ≥ (x∗
j + ε1,i) dsr

ι ,
dτ r

ι,2n−1 ≤ r2t
)

. (7.99)

48



It can be verified (cf. (8.124) in [2] with|Ji| in place of2 there), using (7.28), (7.30), (7.85), (7.33),
(7.34), and the fact thatµa(i) < 2µr

a(i), that ondΥr,n
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and then the first probability in the right side of (7.99) is zero.
For the second, third and fourth terms in the right side of (7.99), in a similar manner to that in (7.88)–

(7.89), we have using Lemmas 6.5–6.7, that forr ≥ r∗ andt > 0 satisfyingr2t ≥ M r,
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20 = (λi− ε̌i)Λ

a,∗
i (λ−1

i (1+ ε̌i/4λi)) > 0, K21 = exp(Λa
i (l0)) > 0, K ′

21 = l0ε̌i/4λi > 0,
0 < l0 ∈ O0, K22 = exp(Λa,∗

i ((λi(1 + εi/3λi))−1)) > 0, K ′
22 = λiΛ

a,∗
i ((λi(1 + εi/3λi))−1) > 0,

K23 = |Ji|max{exp(Λs,∗
a(i)

((µa(i)(1+ ε2,i/3µa(i)))
−1)); exp(Λs,∗

j ((µj(1+ ε3,j/3µj))−1)) : j ∈ J i} > 0,
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s,∗
a(i)((µa(i)(1 + ε2,i/3µa(i)))−1); µj(x∗

j + ε1,i)Λ
s,∗
j ((µj(1 + ε3,j/3µj))−1) :

j ∈ J i} > 0.
For the last probability in (7.99), forr ≥ r∗, t > 0 satisfyingr2t ≥ M r, j ∈ J i, k = k(j), andn ≥ 1,

as in (7.69) and using (7.91), we have

P
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dτ r
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)
. (7.103)

Finally, for the first term in the last inequality in (7.97), we have that forr ≥ r∗, t > 0 satisfying
r2t ≥ M r,

P
(
Qr
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(3)
1,i exp(−2C(4)

1,i r2t)
)
, (7.104)

wherep1,i is a polynomial (of degree at mosti + 1) with non-negative coefficients, andC(m)
1,i > 0, for

m = 1, 2, 3, 4, since (I.1) was already proved to hold fori (with 2t in place oft). The polynomial and the
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constants do not depend ont or r. The first inequality above uses the fact thatM r ≥ dsr
ι , and the second

inequality holds since forr ≥ r∗,

εiµ
r
a(i)

32
· dsr

ι ≥ 2Lr
i , (7.105)

which can be verified as in [2], using (7.27), (7.30), (6.4), (7.29),εi < min
{

µa(i)

1024
P

j∈J i
(µj+ει)

, 1
}

(cf.

(7.73)).
Combining all of the above from (7.97) onwards, we have forr ≥ r∗, t > 0 satisfyingr2t ≥ M r,
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)
. (7.106)

By the induction assumption that (II.2) holds withi′ in place ofi for all i′ < i, we have that forr ≥ r∗,
t > 0 satisfyingr2t ≥ M r,
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n≥1

P
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, (7.107)

wherep5,i is a polynomial (of degree at mosti + 1) with non-negative coefficients, andC(m)
5,i > 0, for

m = 1, 2, 3, 4. The polynomial and the constants do not depend onr or t. It then follows that (II.2) holds
for i, sincedsr

ι ≥ Lr
0.

Proof of(II.3). For r ≥ r∗ andι > i fixed,
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Let,

Υr
ι,i =

{
Ar

i (t
r
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}
. (7.109)
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Now, for the last term in (7.108), we have
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. (7.110)

For the first term in the right side of (7.110) we have that onΥr
ι,i, for r ≥ r∗,
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r
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trι , (7.111)

in a similar manner to that in (7.100). Hence the first probability in the right side of (7.110) is zero.
For the second term in the right side of (7.110) we have, using (7.15) and (7.31), forr ≥ r∗,
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by Lemma 6.7 and (6.27), whereK24 = 1, K ′
24 = (λi − ε̌i)Λ

a,∗
i (λ−1

i (1 + ε̌i/4λi)) > 0, K25 =
exp(Λa

i (l0)) > 0, K ′
25 = l0ε̌i/4λi > 0, and0 < l0 ∈ O0.

For the third and fourth terms in the right side of (7.110) we have, using Lemma 6.7 (since(x∗
a(i) −

εi)trι > 2/ε2,i and(x∗
j + ε1,i)trι > 2/ε3,j , for all j ∈ J i, by (7.9), (7.12), and (7.35)), forr ≥ r∗,
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whereK26 = |Ji|max{exp(Λs,∗
a(i)((µa(i)(1 + ε2,i/3µa(i)))−1)); exp(Λs,∗

j ((µj(1 + ε3,j/3µj))−1)) : j ∈
J i} > 0, K ′
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j ((µj(1 +

ε3,j/3µj))−1) : j ∈ J i} > 0.
For the fifth term in the right side of (7.110) in a similar manner to that in (7.70) and using (7.91), we

have forj ∈ J i, k = k(j), andr ≥ r∗,
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(
T r
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. (7.114)
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For the first term in the last inequality in (7.108), we have that forr ≥ r∗, t > 0 satisfyingr2t ≥ M r,
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, (7.115)

wherep1,i is a polynomial (of degree at mosti + 1) with non-negative coefficients, andC(m)
1,i > 0, for

m = 1, 2, 3, 4, since (I.1) was already proved to hold fori. The polynomial and the constants do not depend
on t or r. For the first inequality in (7.115), we have used the fact that
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by (6.4), (7.27), and the fact thatεi < min
{

µa(i)

16(λι−
P

j∈J ι
x∗

j µj)
, 1
}

(cf. (7.73)).

Combining all of the above (from (7.108) onwards), we have for allr ≥ r∗, t > 0 satisfyingr2t ≥ M r,
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. (7.117)

By the induction assumption that (II.3) holds withi′ in place ofi, for all i′ < i, and the definition oftrι , it
follows that forr ≥ r∗, t > 0 satisfyingr2t ≥ M r,
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, (7.118)

wherep6,i is a polynomial (of degree at mosti + 1) with non-negative coefficients, andC(m)
6,i > 0 for

m = 1, 2, 3, 4. Thus, (II.3) holds fori. 2

7.7 Proofs of Theorems 6.1, 7.1, and 7.7

Proof of Theorem 7.7.Fix i ∈ I\{i∗} and assume that (I) and (II) hold for alli′ < i. Then, by Lemmas
7.4–7.5,(i)–(iv) in Lemma 7.3 hold forr ≥ r∗, t > 0 satisfyingr2t ≥ M r, for i and eachj ∈ J i, and
hence (I) holds fori by Lemma 7.3. By Lemma 7.6, we have that (II) also holds fori. The conclusion of the
first statement in Theorem 7.7 then follows by the induction principle.
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For (III), suppose thati∗ is a transition class, and letk ∈ Ki∗ . By the above, forr ≥ r∗, t > 0 satisfying
r2t ≥ M r, we have that (II) holds withi∗ in place ofι, i′ ∈ Ik in place ofi.

For r ≥ r∗, by the same proof as for Lemma 7.4,(ii) of Lemma 7.3 holds withi∗ in place ofi (cf.
(7.69)), and then in the same manner as in the proof of Lemma 7.3 (the part of the proof of (I.1) involving
down excursions ofRr

i∗ , with i∗ in place ofi there), it can be shown that forr ≥ r∗ andt > 0 satisfying
r2t ≥ M r,

P
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))

, (7.119)

wherep1,i∗ is a polynomial (of degree at mostI + 1) with non-negative coefficients, andC(m)
1,i∗ > 0, m =

1, 2, 3, 4 are independent ofr andt. Thus (III.1) holds.
To establish (III.2), we note that by the same proof as for Lemma 7.4, forr ≥ r∗ andt > 0 satisfying

r2t ≥ M r, (iii) of Lemma 7.3 holds withi∗ in place ofi (i.e., for j ∈ J i∗), since (II.3) holds withi∗ in
place ofι andi′ ∈ Ik (wherek = k(j)) in place ofi (cf. (7.70)). Then, by the same proof as for (I.2) in
Lemma 7.3 (withi∗ in place ofi there, cf. (7.59)–(7.66)), we have,
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, (7.120)

wherep2,i∗ is a polynomial (of degree at mostI) with non-negative coefficients, andC(m)
2,i∗ > 0, m =

1, 2, 3, 4 are independent ofr andt.
Finally, for (III.3) we argue as in the proof of (I.3) in Lemma 7.3 (cf. (7.67)), thatIr

k , k ∈ Ki∗ , can
increase only at timess ≥ 0 such thatQr
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, (7.121)

by (7.119). 2

Proof of Theorem 7.1.Note that (I) and (II) hold for alli ∈ I\{i∗} by Theorem 7.7.
Fix i ∈ I\{i∗}, k ∈ Ki, andε > 0. For t = 0, (7.1) and (7.3) hold trivially sinceRr

i (0) = 0 if τ r
i,0 = 0.

So we assume thatt > 0 is fixed. SinceM r = O(log r), there exists anrt ≥ r∗ such that for allr ≥ rt,
r2t ≥ M r. Then forr ≥ rt, by (I.1),
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Sincetri = o(r), there is anr′t ≥ rt such thattri ≤ rε for all r ≥ r′t. Then, by (I.2), forr ≥ r′t
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. (7.123)
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Finally, we have by (I.3) that forr ≥ rt,
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. (7.124)

SinceLr
0 = dc log re (and hence ford > 0, exp(−dLr

0) ≤ r−cd), it follows from (7.122)–(7.124) that there
is a constantc0 > 0 (not depending ont or r) such that ifc ≥ c0, the expressions in (7.122)–(7.124) tend to
zero asr → ∞ (for each fixedt > 0). This verifies (7.2)–(7.3).

For the proof of (7.4)–(7.6), suppose thati∗ is a transition class. Letk ∈ Ki∗ , andε > 0. Fort = 0, (7.4)
and (7.6) hold trivially sinceτ r

i∗,0 > 0 for a transition class, so we fixt > 0. Then, as above, forr ≥ rt, we
have thatr2t ≥ M r. We then have, forr ≥ rt, by (III.1),
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, (7.125)

Sincetri∗ = o(r), there existsr′′t ≥ rt such thattri∗ ≤ rε for all r ≥ r′′t . Then by (III.2), we have forr ≥ r′′t ,
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. (7.126)

Finally, we have by (III.3) that forr ≥ rt,
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. (7.127)

SinceLr
0 = dc log re, it follows that there is a constantc1 ≥ c0 (not depending ont or r), such that if

c ≥ c1, then the expressions in (7.125)–(7.127) tend to zero asr → ∞ (for each fixedt > 0). This proves
(7.4)–(7.6). 2

Proof of Theorem 6.1. It suffices to show that asr → ∞, (Q̂r
i : i ∈ I\{i∗}; Îr

k : k ∈ Ki, i ∈ I) ⇒ 0.
Note for this thatk ∈ K\{k∗} is either inKi for somei ∈ I\{i∗} or it is inKi∗ andi∗ is a transition class.

Fix t > 0 andε > 0. By Theorem 7.1 and the properties of{Lr
i }i∈I , there isr(ε, t) ≥ 1 such that

wheneverr ≥ r(ε, t) we have2Lr
i /r < ε and for alli ∈ I\{i∗}, k ∈ Ki,

P
(

sup
τr
i,0≤s≤r2t

|Rr
i (s)| ≥ Lr

i − |J i|
)

< ε, (7.128)
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i,0) > 0, τ r

i,0 < r2t
)

< ε, (7.130)

and if i∗ is a transition buffer, for allk ∈ Ki∗ ,

P
(
Ir
k(r2t) − Ir

k(τ r
i∗,0) > 0, τ r

i∗,0 < r2t
)

< ε. (7.131)
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Recalling the definition of‖ · ‖t from Section 1.1, we then have for allr ≥ r(ε, t),

P
(
‖Q̂r

i ‖t ≥ ε for somei ∈ I\{i∗}, or ‖Îr
k‖t ≥ ε for somek ∈ K\{k∗}

)
= P

(
‖Qr

i ‖r2t ≥ rε for somei ∈ I\{i∗}, or ‖Ir
k‖r2t ≥ rε for somek ∈ K\{k∗}

)
≤ P

(
sup

τr
i,0≤s≤r2t

Qr
i (s) ≥ 2Lr

i for somei ∈ I\{i∗}, or

Ir
k(τ r

i,0) ≥ rε for somek ∈ Ki andi ∈ I, or

τ r
i,0 < r2t andIr

k(r2t) − Ir
k(τ r

i,0) > 0 for somek ∈ Ki andi ∈ I
)

≤
∑

i∈I\{i∗}
P
(

sup
τr
i,0≤s≤r2t

|Rr
i (s)| ≥ Lr

i − |J i|
)

+
∑
i∈I

∑
k∈Ki

{
P
(
Ir
k(τ r

i,0) ≥ rε
)

+ P
(
Ir
k(r2t) − Ir

k(τ r
i,0) > 0, τ r

i,0 < r2t
)}

< (I + 2K − 3)ε. (7.132)

2

8 Weak Convergence under the Threshold Policy

This section is devoted to the proof of Theorem 5.1.

8.1 Fluid Limits for Allocation Processes

Recall the definitions from Section 2.2 of the functions,

i : J → I, k : J → K, (8.1)

where forj ∈ J , i(j) is the buffer processed by activityj andk(j) is the server which processes activityj.
Also, recall from Assumption 3.1 that

λr → λ, µr → µ, asr → ∞. (8.2)

Recall from Sections 5 and 6 thata(i) is the basic activity above bufferi in the server-buffer tree (where
only basic activities are included in that tree), andk∗ is the server at the root of the server-buffer tree in layer
l = l∗. Using the notation of Section 6.1, for eachr ≥ 1, for i ∈ I l∗, define

zr
k∗ = zk∗ , yr

i =
zr
k∗

µr
a(i)

, (8.3)

and for layerl = l∗ − 1, . . . , 1, define by backwards induction onl,

zr
k = yr

i(b(k))µ
r
b(k), for eachk ∈ Kl, (8.4)

yr
i =

zr
k(a(i))

µr
a(i)

, for eachi ∈ I l, (8.5)

whereb(k) is the basic activity immediately above serverk which links it to a buffer in the next highest layer
(see Figure 2). Herez∗k∗ is the variable, determined from one component of the unique optimal solution
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Figure 2: Activityb(k) above a serverk that is in layerl

(y∗, z∗) of the dual program (4.8). Then, since each basic activity either links a buffer in some layerl + 1 to
a server below it in layerl, or links a server in some layerl to a buffer immediately below it in layerl, we
have for each basic activityj,

yr
i(j)µ

r
j = zr

k(j), j = 1, . . . ,B, (8.6)

i.e., for any basic activityj, (
(yr)′Rr

)
j

=
(
(zr)′A

)
j
, (8.7)

whereyr = (yr
i : i ∈ I), zr = (zr

k : k ∈ K),

Rr = Cdiag(µr), Cij = δi,i(j), Akj = δk,k(j), for all i ∈ I, k ∈ K, j ∈ J , (8.8)

andδx,y = 1 if x = y andδx,y = 0 otherwise.
Lemmas 8.1, 8.4, and 8.3, which are proved below, will be used in Section 9 for the proof of asymptotic

optimality (Theorem 5.2) as well as in the proof of Lemma 8.5, which shows that the fluid scaled allocation
processes,{T̄ r,∗}, associated with the threshold policy, converge in distribution (asr goes to infinity) to the
nominal allocation processes̄T ∗ defined in (6.10).

Lemma 8.1 We have that(yr, zr) → (y∗, z∗) asr → ∞, where(y∗, z∗) is the optimal solution to the dual
linear program specified in (4.8).

Proof. We prove thatzr
k → z∗k, yr

k → y∗k, asr → ∞, for all k ∈ Kl, i ∈ I l, for l = 1, 2, . . . , l∗, by backward
induction onl. The result of the lemma then follows, since each server belongs to some layer and similarly
for each buffer. From (4.9) and (8.6), we have thaty∗i(j)µj = z∗k(j) andyr

i(j)µj = zr
k(j) for all basic activities

j = 1, 2, . . . ,B.
Note that layerl∗ has one serverk∗ and the buffers in that layer are indexed byIk∗ . We have that (by

definition)zr
k∗ = zk∗ . Then fori ∈ Ik∗ , we have by (8.2) and (8.3), that

yr
i =

z∗k∗

µr
a(i)

→ z∗k∗

µa(i)
=

z∗k(a(i))

µa(i)
= y∗i(a(i)) = y∗i , asr → ∞. (8.9)

Now, for the induction step, suppose that(yr
i , z

r
k) → (y∗i , z

∗
k) asr → ∞, for all i ∈ I l, k ∈ Kl, some

l ≥ 2. Fork ∈ K(l−1), i ∈ Ik, we have by (8.2), (8.6), and (4.9) that asr → ∞,

zr
k = yr

i(b(k))µ
r
b(k) → y∗i(b(k))µb(k) = z∗k(b(k)) = z∗k, (8.10)
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sincei(b(k)) ∈ I l, and

yr
i =

zr
k(a(i))

µr
a(i)

→
z∗k(a(i))

µa(i)
= y∗a(i) = y∗i , (8.11)

sincek(a(i)) = k. This completes the induction step and the conclusion of the lemma then follows.2

Definition 8.2 A sequence of processes with paths inDm for somem ≥ 1 is calledC-tight if it is tight in
Dm and any weak limit point of the sequence (obtained as a weak limit along a subsequence) has continuous
paths almost surely.

For Lemma 8.3 below, note that the result holds forany sequence of scheduling controls, not just for
those associated with our threshold policy. In addition to the scaled processes defined in Section 3.3, for any
r ≥ 1 and controlT r for therth parallel server system, we define the following fluid scaled processes. For
eacht ≥ 0, let

Ār(t) = r−2Ar(r2t), (8.12)

S̄r(t) = r−2Sr(r2t), (8.13)

Īr(t) = r−2Ir(r2t), (8.14)

Q̄r(t) = r−2Qr(r2t). (8.15)

Lemma 8.3 Let {T r} be any sequence of scheduling controls (one for each member of the sequence of
parallel server systems). Then{(

Q̄r(·), Ār(·), S̄r(·), T̄ r(·), Īr(·)
)}

is C-tight.

Proof. It follows from (3.21) that(
Ār(·), S̄r(·)

)
⇒
(
λ(·), µ(·)

)
asr → ∞, (8.16)

whereλ(t) = λt andµ(t) = µt for all t ≥ 0. In addition, since they correspond to cumulative allocations
of time, each of the components ofT r is Lipschitz continuous with a Lipschitz constant of one and this
property is preserved by the fluid scaled processesT̄ r. It follows immediately from this and (8.16) that
{(Ār(·), S̄r(·), T̄ r(·))} is C-tight, cf. Theorem 15.5 in [4]. From the equations (2.15)–(2.16) for queue
length and idletime we have that for eacht ≥ 0,

Q̄r(t) = Ār(t) − CS̄r(T̄ r(t)), (8.17)

Īr(t) = 1t −AT̄ r(t). (8.18)

Combining these with the C-tightness established above, the continuous mapping theorem, and a random
time change theorem (cf. [4], p. 145), we obtain the desired result. 2

Recall thatT r,∗ denotes the allocation process when our threshold policy is used in therth parallel server
system. For the non-basic activitiesj = B + 1, . . . ,J, T r,∗

j ≡ 0. We indicate the fact that this threshold
policy is being used by appending a superscript of∗ to the associated processes. By (3.15), (3.17), (3.18),
Assumption 3.3, and (8.8), for anyr ≥ 1,

Q̄r,∗(t) = r−1Âr(t) − r−1CŜr(T̄ r,∗(t)) + (λr − Rrx∗)t + Rr(x∗t − T̄ r,∗(t)), (8.19)

Īr,∗(t) = 1t −AT̄ r,∗(t), (8.20)

where1 is theK-dimensional vector of all ones. Recall from Assumption 3.6 that

r(λr − Rrx∗) → θ asr → ∞, (8.21)

whereθ ∈ IRI.
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Lemma 8.4 For (yr, zr) as defined in (8.3)–(8.5), we have that

(yr)′Rr
(
x∗t − T̄ r,∗(t)

)
= (zr)′Īr,∗(t), for all t ≥ 0.

Proof. Sincex∗
j = 0 andT̄ r,∗

j ≡ 0 for all non-basic activitiesj, we have from Assumption 3.3, (8.7) and
(8.20) that for allt ≥ 0,

(yr)′Rr
(
x∗t − T̄ r,∗(t)

)
= (zr)′

(
Ax∗t − AT̄ r,∗(t)

)
= (zr)′

(
1t − AT̄ r,∗(t)

)
= (zr)′Īr,∗(t). (8.22)

2

Lemma 8.5 below is needed in the proof of Theorem 5.1, in combining the functional central limit result
(3.21), with a random time change theorem.

Lemma 8.5 For the fluid scaled allocation processes,T̄ r,∗
j , j ∈ J , we have,

T̄ r,∗ ⇒ T̄ ∗ asr → ∞, (8.23)

whereT̄ ∗(t) = x∗t, for all t ≥ 0.

Proof. We note first that sincēT r,∗
j ≡ 0 and T̄ ∗

j ≡ 0 for j = B + 1, . . . ,J, for all r ≥ 1, we have that
(trivially)

T̄ r,∗
j (·) ⇒ T̄ ∗

j (·) asr → ∞, for j = B + 1, . . . ,J. (8.24)

Now from (3.21) and the fact that̄T r,∗
j (t) ≤ t, j ∈ J , for all t ≥ 0, we have that

(
r−1Âr

i (·), r−1Ŝr
j (T̄

r,∗
j (·)) : i ∈ I, j ∈ J

)
⇒ 0, asr → ∞. (8.25)

Using (8.19) and Lemma 8.4 we have that for eacht ≥ 0,

yr · Q̄r,∗(t) = yr · X̄r,∗(t) + zr · Īr,∗(t), (8.26)

where

X̄r,∗(t) = r−1Âr(t) − r−1CŜr(T̄ r,∗(t)) + (λr − Rrx∗)t, (8.27)

and by (8.25), (8.2) and (8.21),

X̄r,∗(·) ⇒ 0 asr → ∞. (8.28)

Thus, fort ≥ 0,

yr
i∗Q̄

r,∗
i∗ (t) = ζ̄r,∗(t) + zr

k∗ Ī
r,∗
k∗ (t), (8.29)

where, by (8.26), (8.28), Lemma 8.1, and Theorem 6.1 we have

ζ̄r,∗(·) ≡ yr · X̄r,∗(·) −
∑

i∈I\{i∗}
yr

i Q̄
r,∗
i (·) +

∑
k∈K\{k∗}

zr
k Ī

r,∗
k (·) ⇒ 0 asr → ∞. (8.30)

Hereyr > 0, zr > 0, Q̄r,∗
i∗ ≥ 0, ζ̄r,∗(0) = 0, Īr,∗

k∗ (0) = 0, Īr,∗
k∗ (·) is continuous and non-decreasing.

Furthermore, forr sufficiently large, in therth system operating under the threshold policy, the idletime at
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serverk∗ can increase only if the queue length at bufferi∗ is at or below the levelLr
i∗ . HenceĪr,∗

k∗ can only
increase ifQ̄r,∗

i∗ is at or below the levelLr
i∗/r

2. (Here, wheni∗ is a transition buffer,r needs to be large
enough thatLr

i∗ ≥ |J i∗ |. For if Lr
i∗ < Qr,∗

i∗ (t) ≤ |J i∗ |, then the idletime at serverk∗ might increase att if
theQr,∗

i∗ (t) jobs are in service or in suspension at the servers inKi∗ . If i∗ is a non-transition buffer, server
k∗ is busy whenever bufferi∗ is nonempty, and in particular wheneverQr,∗

i∗ > Lr
i∗ > 0.)

It then follows from an oscillation inequality for solutions of a perturbed Skorokhod problem (cf. the
proof of Theorem 5.1 in [38]) that

zr
k∗ Ī

r,∗
k∗ (t) ≤ − inf

0≤s≤t

(
ζ̄r,∗(s)

)
+ yr

i∗L
r
i∗r

−2, for all t ≥ 0. (8.31)

Hence, it follows by (8.30), the continuous mapping theorem, Lemma 8.1, and the facts thatLr
i∗ = O(log r)

andzk∗ > 0, that

Īr,∗
k∗ ⇒ 0 asr → ∞. (8.32)

By (8.29) and (8.30), we then have that

Q̄r,∗
i∗ ⇒ 0 asr → ∞, (8.33)

sincey∗i∗ > 0. To obtain the conclusion of the lemma, we appeal to Lemma 8.3 and assume that(Q̄(·),
Ā(·), S̄(·), T̄ (·), Ī(·)) is obtained as a weak limit point of{(Q̄r,∗(·), Ār(·), S̄r(·), T̄ r,∗(·), Īr,∗(·))} along a
subsequence. Since(Q̄(·), Ī(·)) ≡ 0 (by Theorem 6.1, (8.32), and (8.33)), and(Ā(·), S̄(·)) = (λ(·), µ(·))
(by (8.16)) we have by passing to the limit in (8.17)–(8.18) thatT̄ satisfies

0 = λt − RT̄ (t), (8.34)

0 = 1t − AT̄ (t), (8.35)

for all t ≥ 0, whereT̄ inherits the properties (3.8) from̄T r,∗. Thus, the fluid system is balanced and incurs
no idleness (cf. Section 3) under̄T . Hence, by Definition 3.4, Assumption 3.3, and Lemma 3.5, we have
that T̄ = T̄ ∗. Thus, the weak limit point is the same along all convergent subsequences. It follows that
(Q̄r,∗(·), Ār(·), S̄r(·), T̄ r,∗(·), Īr,∗(·)) ⇒ (0, λ(·), µ(·), T̄ ∗(·),0), asr → ∞. The conclusion of the lemma
then follows. 2

8.2 Convergence of Diffusion Scaled Performance Measures under the
Threshold Policy–Proof of Theorem 5.1

We now prove that the diffusion scaled performance measures for our sequence of parallel server systems
operating under the allocation processes{T r,∗} converge in distribution to the processes given in (4.17)–
(4.18). We indicate the fact that this threshold policy is being used by appending a superscript of∗ r to the
associated processes.

Proof of Theorem 5.1.For eacht ≥ 0, we have by multiplying (8.26) through byr that

Ŵ r,∗(t) ≡ yr · Q̂r,∗(t) = yr · X̂r,∗(t) + zr · Îr,∗(t) (8.36)

whereX̂r,∗ is defined by (4.7) (with̄T r replaced bȳT r,∗ there). By the functional central limit result (3.21),
Lemma 8.5, and a random time change theorem (cf. [4],§17), we have that asr → ∞,(

Âr(·), Ŝr(T̄ r,∗(·))
)
⇒
(
Ã(·), S̃(T̄ ∗(·))

)
. (8.37)
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It then follows from the definition of̂Xr,∗, (8.2), and (8.21) that

X̂r,∗ ⇒ X̃, asr → ∞, (8.38)

where

X̃(t) = Ã(t) −CS̃(T̄ ∗(t)) + θt, t ≥ 0, (8.39)

is anI -dimensional Brownian motion with driftθ and a diagonal covariance matrix whoseith diagonal entry
is λia

2
i +

∑J
j=1 Cijµjb

2
jx

∗
j .

Rearranging (8.36), we have that fort ≥ 0,

yr
i∗Q̂

r,∗
i∗ (t) = ζ̂r,∗(t) + z∗k∗ Î

r,∗
k∗ (t), (8.40)

where

ζ̂r,∗(·) ≡ yr · X̂r,∗(·) −
∑

i∈I\{i∗}
yr

i Q̂
r,∗
i (·) +

∑
k∈K\{k∗}

zr
k Î

r,∗
k (·) ⇒ y∗ · X̃(·), (8.41)

as r → ∞, by (8.38), Lemma 8.1, and Theorem 6.1. Hereyr > 0, zr > 0, Q̂r,∗
i∗ ≥ 0, ζ̂r,∗(0) = 0,

Îr,∗
k∗ (0) = 0, Îr,∗

k∗ (·) is continuous and non-decreasing. Furthermore, for sufficiently larger, Îr,∗
k∗ can increase

only if Q̂r,∗
i∗ is at or below levelLr

i∗/r (sinceLr
i∗ > |J i∗ |, for sufficiently larger). Then, by Corollary 4.3

in [38], sinceLr
i∗/r → 0 asr → ∞, it follows that(

Q̂r,∗
i∗ , Îr,∗

k∗
)
⇒
(
Q̃∗

i∗ , Ĩ
∗
k∗
)
, asr → ∞, (8.42)

whereQ̃∗
i∗ , Ĩ

∗
k∗ are given by (4.17)-(4.18). Combining this with Theorem 6.1 and Lemma 8.1 yields,

(
Q̂r,∗, Îr,∗, Ŵ r,∗) ⇒ (Q̃∗, Ĩ∗, W̃ ∗), asr → ∞, (8.43)

whereW̃ ∗ is defined in (4.15)–(4.16), and̃Q∗, Ĩ∗ are defined by (4.17)-(4.18).

9 Asymptotic Optimality of the Threshold Policy

In this section we prove Theorem 5.2. We follow a similar development to that in Section 9 of [3]. Before
proceeding with the proof, we first establish some preliminary results concerning fluid scaled processes
under a sequence of scheduling controls,T = {T r} (one for each member of the sequence of parallel server
systems). The associated queue length and idletime processes will be denoted byQr, Ir, and the fluid and
diffusion scaled versions of these processes will be denoted byQ̄r, Īr andQ̂r, Îr, respectively. We also let

J(T ) = lim inf
r→∞

Ĵr(T r), (9.1)

whereĴr(T r) is defined by (3.13). When our sequence of threshold controls{T r,∗} is used, we append a
superscript∗ to the queue length, idletime etc. processes, i.e., we useQr,∗, Ir,∗, etc.

The next lemma implies that, when searching for an asymptotically optimal policy, we may restrict to
those policies whose associated fluid scaled allocation processes converge (along a subsequence) to those
given byT̄ ∗.
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Lemma 9.1 Let T = {T r} be a sequence of scheduling controls such thatJ(T ) < ∞. Consider a subse-
quence{T r′} of {T r} along which thelim inf in the definition ofJ(T ) is achieved, i.e.,

lim
r′→∞

Ĵr′(T r′) = J(T ). (9.2)

Then, (
Q̄r′(·), Ār′(·), S̄r′(·), T̄ r′(·), Īr′(·)

)
⇒
(
0, λ(·), µ(·), T̄ ∗(·),0

)
asr′ → ∞, (9.3)

whereT̄ r(t) = T r(r2t)/r2 and T̄ ∗(t) = x∗t, for all r ≥ 1 and t ≥ 0, x∗ is given by the heavy traffic
Assumption 3.3,0 denotes the constant process that stays at the origin (in the appropriate dimension) for
all time, andλ(t) = λt, µ(t) = µt for all t ≥ 0.

Proof. It follows from Lemma 8.3 that{(
Q̄r′(·), Ār′(·), S̄r′(·), T̄ r′(·), Īr′(·)

)}
(9.4)

is C-tight. Thus, it suffices to show that all weak limit points of this sequence are given by the right member
of (9.3). For this, suppose that (

Q̄(·), Ā(·), S̄(·), T̄ (·), Ī(·)
)
, (9.5)

is obtained as a weak limit of (9.4) along a subsequence indexed byr′′. Without loss of generality, by
appealing to the Skorokhod representation theorem (cf. [9], Theorem 3.1.8), we may choose an equivalent
distributional representation (for which we use the same symbols) such that all of the random processes in
(9.4) indexed byr′′ in place ofr′, as well as the limit (9.5), are defined on the same probability space and
the convergence in distribution is replaced by almost sure convergence uniformly on compact time intervals,
so that a.s., asr′′ → ∞,(

Q̄r′′(·), Ār′′(·), S̄r′′(·), T̄ r′′(·), Īr′′(·)
)
→
(
Q̄(·), Ā(·), S̄(·), T̄ (·), Ī(·)

)
u.o.c. (9.6)

From (8.16) we have that a.s.,̄A(·) = λ(·) andS̄(·) = µ(·). We next show that a.s.,̄Q(·) ≡ 0. Combining
the fact thatlimr′′→∞ Ĵr′′(T r′′) = J(T ) < ∞ with (9.6) and Fatou’s lemma, we have

0 = lim
r′′→∞

1
r′′

Ĵr′′(T r′′) ≥ E
(∫ ∞

0
e−γt lim inf

r′′→∞

(
h · Q̄r′′(t)

)
dt

)
(9.7)

= E
(∫ ∞

0
e−γt h · Q̄(t) dt

)
.

Sincehi > 0 for all i ∈ I, and a.s.,Q̄ has continuous paths inIRI
+, it follows from the above that a.s.,

Q̄(·) ≡ 0. Then, by lettingr = r′′ → ∞ in (8.17)–(8.18) and using (8.16), (9.6), and the definition ofR,
we have a.s., for eacht ≥ 0,

0 = λt − RT̄ (t), (9.8)

Ī(t) = 1t − AT̄ (t). (9.9)

Multiplying (9.8) by(y∗)′ while recalling thaty∗ · λ = 1 = z∗ · 1 and(y∗)′R = (z∗)′A− [0′ (u∗)′], where
u∗ > 0 (cf. Lemma 4.5), we obtain

0 = z∗ · Ī(t) + [0′ (u∗)′]T̄ (t). (9.10)

Since a.s., the components ofĪ(·) and T̄ (·) inherit the property from̄Ir′′(·), T̄ r′′(·) that they are all non-
negative for all time, it follows from (9.10), and the fact thatz∗k > 0 for all k ∈ K, u∗

j > 0 for all
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j = 1, 2, . . . ,J − B, that a.s.,̄I(·) = 0, andT̄j(·) = 0 for all j = B + 1, . . . ,J. We then observe that̄T is
a fluid control under which the fluid system in (3.6)-(3.7) is balanced and incurs no idleness (cf. Section 3).
Hence, by Definition 3.4, Assumption 3.3, and Lemma 3.5 we have thatT̄ (·) = T̄ ∗(·). 2

Proof of Theorem 5.2. We first concentrate on proving the inequality on the left side of (5.2). For this, let
T ≡ {T r} be a sequence of scheduling controls. IfJ(T ) = ∞, then the inequality holds trivially and so we
assume thatJ(T ) < ∞. Recall the definitions of(yr, zr) from (8.3)–(8.5). For eachj = B + 1, . . . ,J, let
ur

j−B = ((zr)′A− (yr)′Rr)j . Then by (8.7), we have that

(yr)′Rr = (zr)′A − [0′ (ur)′], (9.11)

where for sufficiently larger, ur > 0 by Lemma 4.5, (8.2), and Lemma 8.1.
For eachi ∈ I, let

hr
i =

hiy
r
i

y∗i
, (9.12)

whereh is the holding cost vector appearing in (3.13). Sincei∗ is the “cheapest” buffer (cf. Section 4.2),
we have that

hi∗

y∗i∗
≤ hi

y∗i
, for all i ∈ I. (9.13)

Then, using (9.11), (3.17)–(3.18) and (9.12)–(9.13), we have for allt ≥ 0,

hr · Q̂r(t) =
I∑

i=1

hr
i Q̂

r
i (t)

≥ hi∗

y∗i∗

I∑
i=1

yr
i Q̂

r
i (t)

=
hi∗

y∗i∗
yr · Q̂r(t)

=
hi∗

y∗i∗

(
yr · X̂r(t) + V̂ r(t)

)
, (9.14)

whereX̂r is given in (4.7),

V̂ r(t) =
(
(zr)′A − [0′ (ur)′]

)
Ŷ r(t) = zr · Îr(t) − ur · Ŷ r

N (t), t ≥ 0, (9.15)

Ŷ r is defined by (3.15) and̂Y r
N is the(J − B)-dimensional process whose components areŶ r

j , j = B +
1, . . . ,J.

Now, sincehr · Q̂r(t) ≥ 0 for all t ≥ 0, yr · X̂r starts from zero, and̂V r is non-decreasing (for
sufficiently larger) and starts from zero, it follows from the well known minimality of the solution of the
Skorokhod problem (cf. Appendix B in [3]) that for allr sufficiently large,

V̂ r(t) ≥ sup
0≤s≤t

(
−yr · X̂r(s)

)
for all t ≥ 0, (9.16)

and hence

hr · Q̂r(t) ≥ hi∗

y∗i∗
ϕ
(
yr · X̂r

)
(t) for all t ≥ 0, (9.17)

whereϕ(x)(t) ≡ x(t) + sup0≤s≤t(−x(s)) for all t ≥ 0 andx ∈ D satisfyingx(0) = 0.
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Now, let{T r′} be a subsequence of{T r} such thatlimr′→∞ Ĵr′(T r′) = J(T ). By Lemma 9.1, the fact
that the limit in (9.3) is deterministic, and (3.21), we have that asr′ → ∞,(

Âr′(·), Ŝr′(·), T̄ r′(·)
)
⇒
(
Ã(·), S̃(·), T̄ ∗(·)

)
. (9.18)

By invoking the Skorokhod representation theorem, we may assume without loss of generality that the
convergence above is almost surely uniform on compact time intervals and then forX̂r given by (4.7), using
Assumption 3.6, we have that a.s. asr′ → ∞,(

Âr′(·), Ŝr′(·), T̄ r′(·), X̂r′(·)
)
→
(
Ã(·), S̃(·), T̄ ∗(·), X̃(·)

)
u.o.c., (9.19)

whereX̃(t) = Ã(t)−CS̃(T̄ ∗(t))+ θt, for t ≥ 0, defines a Brownian motion as described in Definition 4.1.
By Fatou’s lemma, we have

J(T ) = lim
r′→∞

Ĵr′(T r′) ≥ E
(∫ ∞

0
e−γt lim inf

r′→∞

(
h · Q̂r′(t)

)
dt

)
. (9.20)

Now we claim that a.s., for eacht ≥ 0,

lim inf
r′→∞

(
h · Q̂r′(t)

)
≥ h · Q̃∗(t), (9.21)

whereQ̃∗ is given by (4.15)–(4.18). To see this, fixω ∈ Ω such thatω is in the set of probability one where
the convergence in (9.19) holds u.o.c., and the limits have continuous paths. Fixt ≥ 0. If the left member of
the inequality (9.21) is infinite atω, then the inequality clearly holds. On the other hand, if the left member
is finite atω, then there is a further subsequence indexed byr′′ (possibly depending onω andt) such that

lim
r′′→∞

(
h · Q̂r′′(t, ω)

)
= lim inf

r′→∞

(
h · Q̂r′(t, ω)

)
< ∞. (9.22)

Sincehi > 0 andQ̂r′′
i (t, ω) ≥ 0, for all i ∈ I, it follows that Q̂r′′

i (t, ω) is bounded asr′′ → ∞, for all
i ∈ I, and then using the fact thathr

i → hi, for all i ∈ I (cf. Lemma 8.1), we have

lim
r′′→∞

(h − hr′′) · Q̂r′′(t, ω) = 0. (9.23)

Then, using (9.17), (9.19), the continuity ofϕ onD, the fact thatϕ(y∗ · X̃)( · , ω) is continuous, and (4.16)–
(4.17), we have

lim
r′′→∞

h · Q̂r′′(t, ω) = lim
r′′→∞

(
hr′′ · Q̂r′′(t, ω) + (h − hr′′) · Q̂r′′(t, ω)

)
≥ lim inf

r′′→∞

hi∗

y∗i∗
ϕ
(
yr′′ · X̂r′′

)
(t, ω)

=
hi∗

y∗i∗
ϕ
(
y∗ · X̃

)
(t, ω) =

hi∗

y∗i∗
W̃ ∗(t, ω) = h · Q̃∗(t, ω).

Thus, (9.21) holds. Now, substituting this in (9.20), we conclude that

J(T ) ≥ E
(∫ ∞

0
e−γt h · Q̃∗(t) dt

)
≡ J∗. (9.24)

This completes the proof of the inequality in the left side of (5.2).
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Suppose now that the threshold controlT r,∗ is used in therth parallel server system. For the purpose of
establishing the finiteness ofJ∗ and the equality in the right side of (5.2), by appealing to Theorem 5.1 and
the Skorokhod representation theorem, we may assume that a.s.,

Q̂r,∗ → Q̃∗ u.o.c. asr → ∞, (9.25)

whereQ̃∗ is given by (4.15)–(4.17). Then for

Ĥr,∗ ≡ h · Q̂r,∗ and H̃∗ ≡ h · Q̃∗ (9.26)

we have
Ĥr,∗ → H̃∗ (m ×P)-a.e. onIR+ × Ω, (9.27)

wheredm = γe−γtdt on (IR+,B+) andB+ denotes the Borelσ-algebra onIR+. Then, since(IR+ ×
Ω,B+ ×F ,m × P) is a probability space, to establish

Ĵr(T r,∗) ≡ E
(∫ ∞

0
e−γtĤr,∗(t) dt

)
→ J∗ < ∞ asr → ∞, (9.28)

it suffices to show that

lim sup
r→∞

E
(∫ ∞

0
e−γt

(
Ĥr,∗(t)

)2
dt

)
< ∞ (9.29)

which implies the required uniform integrability. From (8.36) we have

Ĥr,∗ = h · Q̂r,∗ ≤
(∑

i∈I

hi

yr
i

)
Ŵ r,∗. (9.30)

For eachr ≥ 1 andt > 0, let

Gr,t =
{
Qr,∗

i (s) ≤ 2Lr
i for all s ∈ [0, r2t], i ∈ I \ Ik∗

}
. (9.31)

By the definition ofT r,∗, onGr,t we have that (forr large enough thatLr
i ≥ |J i| for all i ∈ Ik∗), Îr,∗

k∗ can
have a point of increase ats ∈ [0, t] only if Q̂r

i (s) is at or below the levelLr
i /r for all i ∈ Ik∗ , which occurs

only if

Ŵ r,∗(s) ≤
( ∑

i∈I\Ik∗

2yr
i L

r
i +

∑
i∈Ik∗

yr
i L

r
i

)/
r. (9.32)

Thus, onGr,t, it follows from (8.36) and an oscillation inequality for solutions of a perturbed Skorokhod
problem (cf. the proof of Theorem 5.1 in [38]) that

zr
k∗ Î

r,∗
k∗ (t) ≤ sup

0≤s≤t

(
− yr · X̂r,∗(s) −

∑
k 6=k∗

zr
k Î

r,∗
k (s)

)

+

( ∑
i∈I\Ik∗

2yr
i L

r
i +

∑
i∈Ik∗

yr
i L

r
i

)
r−1

≤ sup
0≤s≤t

∣∣yr · X̂r,∗(s)
∣∣+ ∑

k 6=k∗
zr
kÎ

r,∗
k (t)

+

( ∑
i∈I\Ik∗

2yr
i L

r
i +

∑
i∈Ik∗

yr
i L

r
i

)
r−1, (9.33)
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where we have used the fact thatÎr,∗
k , k ∈ K\{k∗}, is non-decreasing, to obtain the last inequality.

SinceIr
k(r2t) ≤ r2t for all k ∈ K, we have fort satisfyingr2t < M r,

E
((

Îr,∗
k (t)

)2) ≤
(

M r

r

)2

for all k ∈ K. (9.34)

On the other hand, forr ≥ r∗, for eacht > 0 satisfyingr2t ≥ M r,

E
((

Îr,∗
k∗ (t)

)2 ; Ω \ Gr,t
)

≤ r2t2P
(
Ω \ Gr,t

)
≤ r2t2

∑
i∈I\Ik∗

P
(
Qr,∗

i (s) > 2Lr
i for some s ∈ [0, r2t]

)

≤ r2t2
∑

i∈I\Ik∗

P
(

sup
τr
i,0≤s≤r2t

|Rr
i (s)| ≥ Lr

i − |J i|
)

≤ r2t2
∑

i∈I\Ik∗

p1,i(r2t)
(
C

(1)
1,i exp(−C

(2)
1,i Lr

0) + C
(3)
1,i exp(−C

(4)
3,i r2t)

)

≤ t p(r2t)
(
C(1) exp(−C(2)Lr

0) + C(3) exp(−C(4)r2t)
)
, (9.35)

by Theorem 7.7, where thep1,i, C
(m)
1,i , m = 1, 2, 3, 4, are as in (I.1),p(s) = s

∑
i∈I\Ik∗

p1,i(s), for all s ≥
0, C(1) = max{C(1)

1,i : i ∈ I\Ik∗}, C(3) = max{C(3)
1,i : i ∈ I\Ik∗}, C(2) = min{C(2)

1,i : i ∈ I\Ik∗},

C(4) = min{C(4)
1,i : i ∈ I\Ik∗}. Herep is a polynomial (of degree at mostI + 1) with non-negative

coefficients andC(m) > 0, m = 1, 2, 3, 4; the polynomial and constants do not depend ont or r.
By (8.21) and the fact thatLr

i is of orderlog r for all i ∈ I, there isr′ ≥ r∗, such that for allr ≥ r′,

yr · (λr −Rrx∗)r ≤ y∗ · |θ|+1 and
(∑

i∈I\Ik∗
2yr

i L
r
i +
∑

i∈Ik∗
yr

i L
r
i

)
r−1 ≤ 1. Then we have forr ≥ r′,

andt > 0 satisfyingr2t ≥ M r, using the inequality
(∑n

i=1 |xi|
)2

≤ n
∑n

i=1 x2
i repeatedly, that

E
((

Îr,∗
k∗ (t)

)2) = E
((

Îr,∗
k∗ (t)

)2 ; Gr,t
)

+ E
((

Îr,∗
k∗ (t)

)2 ; Ω \ Gr,t
)

≤ 5
(zr

k∗)2

{
I
∑
i∈I

(yr
i )

2 E
(

sup
0≤s≤t

(
Âr

i (s)
)2)

+J
∑
j∈J

(yr
i(j))

2 E
(

sup
0≤s≤t

(
Ŝr

j (T
r,∗
j (s))

)2)+
(
(y∗ · |θ| + 1)t

)2

+(K − 1)
∑
k 6=k∗

(zr
k)

2 E
((

Îr,∗
k (t)

)2)+ 1
}

+t p(r2t)
(
C(1) exp(−C(2)Lr

0) + C(3) exp(−C(4)r2t)
)
, (9.36)

where the first term to the right of the equality sign is controlled via (9.33), and the second term is controlled
via (9.35). Using the fact thatexp(−C(2)Lr

0) ≤ r−C(2)c (sinceLr
0 = dc log re), and the fact that for any

polynomial q andd > 0, q(x)e−dx is bounded forx ∈ IR+, we have that there is a constantc2 ≥ c1

(independent oft andr) andr′′ ≥ r′ such that for each fixedc ≥ c2 and allr ≥ r′′, the last term in (9.36) is
bounded by a polynomial int, independent ofr. (The constantc1 was used in the proof of Theorem 7.1.)

Then, using (9.30), (8.36), (4.7), (3.11), (9.34), (9.36), and the fact thatM r = o(r), for c sufficiently
large (chosen independently oft andr), we see that to prove (9.29) it suffices to show that, as functions of
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t, the following are all in a bounded subset ofL1(m) ≡ L1(IR+,B+,m) for r sufficiently large:

E
(

sup
0≤s≤t

(
Âr

i (s)
)2
)

, E
(

sup
0≤s≤t

(
Ŝr

j (T̄
r,∗
j (s))

)2
)

, E
((

Îr,∗
k (t)

)2
)

, (9.37)

for all i ∈ I, j ∈ J , k ∈ K\{k∗}. The bounds for the first two expectations can be obtained as in Section
9 in [3]. For the third bound, fixk ∈ K\{k∗}, and leti be the transition buffer that is immediately above
k. Let ε > 0 and chooser′′′ ≥ r′′ such that for alli ∈ I andr ≥ r′′′, rε ≥ tri (cf. (7.8)). Fixr ≥ r′′′. By
(9.34), we need only considert > 0 satisfyingr2t ≥ M r. SinceIr,∗

k (r2t) ≤ r2t,

E
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Îr,∗
k (t)

)2) =
∫ ∞

0
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i,0) > rε
)
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+r2t2 P
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)
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{
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(
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i,0) ≥ tri
)
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i + |J i|
)}

≤ ε2 + t
{
r2t p2,i(r2t)

(
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2,i exp

(
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(2)
2,i Lr

0

)
+ C

(3)
2,i exp

(
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(4)
2,i r2t

))
+r2t p1,i(r2t)

(
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1,i exp
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1,i Lr

0

)
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1,i exp

(
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(4)
1,i r2t

))}
, (9.38)

by (I.1)–(I.2), if i 6= i∗, or by (III.1)–(III.2), if k ∈ Ki∗ , which all hold by Theorem 7.7. In the first inequality
in (9.38), we have used that fact thatIr,∗

k (r2t) − Ir,∗
k (τ r

i,0) = 0 if infτr
i,0≤u≤r2t Rr

i (u) > −Lr
i + |J i|.

Sinceexp(−C
(2)
m,iL

r
0) ≤ r−C

(2)
m,ic, m = 1, 2, and for any polynomialq andd > 0, q(x)e−dx is bounded

for x ∈ IR+, it follows that that there is a constantc3 ≥ c2 (independent oft andr), r∗∗ ≥ r′′′, such that
for each fixedc ≥ c3, and allr ≥ r∗∗, the right member above can be bounded by a polynomial int (not
depending onr). Combining (9.34) with the above, we conclude that{E((Îr,∗

k (·))2) : r ≥ r∗∗} is a bounded
sequence of functions inL1(m), provided thatc is fixed and sufficiently large. 2
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