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Discrete-time Markov chains

This chapter is the foundation for all that follows. Discrete-time Markov
chains are defined and their behaviour is investigated. For better orien-
tation we now list the key theorems: these are Theerems 1.3.2 and 1.3.b
on hitting times, Theorem r.4.2 on the strong Markov property Theorem
1.5.3 characterizing recurrence and transience, Theorem 1.7.T on invariant
distributions and positive recurrence. Theorem 1.8.3 on convergence to
equilibrium, Theorem 1.9.3 on reversibility, and rheorem 1.10.2 on long-
run averages. Once you understand these you will understand the basic
theory. Part of that understanding will come from familiarity with exam-
ples, so a large number are worked out in the text. Exercises at the end of
each section are an important part of the exposition.

L.1 Definition and basic properties

Let 1be a countable set. Each z € 1is called a state and r is called the
state-space. We say that A : (,\a : i € I) is a measureon 1 if 0 ( .\1 < oo
for all i € I. If in addition the total mass Lor, \o equals 1, then we call
), a di,stribut'ion. We work'throughout with a probability space (CI,f,p).
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Then .\ defines a distribution, the di,stribution of X. We think of X as

modelling a random state which takes the value i with probability .\1. Theie

is a brief review of some basic facts about countable sets and probability

spaces in Chapter 6.

We say that a matrix P : (pui : i, j €. I) is stochastic if every row

(p4 : i € 1) is a distribution. There is a one-to-one correspondence between

stochastic matrices P and the sort of diagrams described in the Introduc-

tion. Here are two exampies:
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We shall now formalize the rules for a Markov chain by a definition in

terms of the corresponding matrix P. We say that fX.)^2o is a Markou

chain with i,ni,tial di,stributi,on ) and transiti'on matrr,r P tf

(i) Xo has distribution );
(ii) for n ) 0, conditional on Xn : i, Xn+t has distribution (p;i : i e I)

and is independent of Xo, . . .  ,Xn-7.

More explicitly, these conditions state that. for n ) 0 and io,... ,i"' ly e I,

( i )  P(Xo :  zo) :  )ro;
( i i )  P ( X ' + t - - ' i n + t  l X o :  i 0 ' ' . .  ,  X n : ' i n ) : P i l t ^ * ' .

We say that (X')'2o is Markou(),,P) for short. If (X')o<"<ry is a finite

sequence of random variables sat isf  ing ( i )  and ( i i )  for n:0,. . .  ,N -  1,

then we again say (Xr,)o<",<,.r \s Markou( , P).

It is in terms of properties (i) and (ii) that most real-world examples are

seen to be Markov chains. But mathematicaily the following result appears

to give a more comprehensive description. and it is the key to some later

calculations.

Theorem 1.1.1. A discrete-time random process (X')o<'<.nr js

Markov(\,P) if and only if for al| io, ... ,iy € I

l P ( X o  : ' i o , X t  : ' i r , . . . , X w  :  i , n r )  :  \ i o P , i . t . r P i t i z . . . P i N - r i N '  ( 1 . 1 )
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Proof. Suppose (&)o<,<.^r is Markov(), P), then

P(Xo : 'io, Xt -- it, " ' , Xx : z,nr)

: F(Xo : eo)tr(Xr : i,t I Xo : io)

. .  . P ( X t  :  z l r  I  X o  :  i o , . . . , X x - t  :  i l r - t )

:  A i o P i o i r '  .  .  P i x - � r i t ' r .

On the other hand, if (1.1) holds for l[, then by summing both sides over

ix € I and using LterPti: 1 we see that (1'1) holds for -l/ - 1 and, by

induction

i P ( X o  :  i o , X t  -  j 1 . .  . .  , X r :  i n ) :  \ t o p , i ' t r . . . P i n - t i n

f o r  a i l  n : 0 , 1 , . . . , N .  I n  p a r t i c u l a r ,  I F ( X o  :  z o )  :  ) i o  a n d ,  f o r  n :

0 , 1 , " ' , N - 1 ,

F ( X , " + r  : ' i n + L  l X o :  i o , " '  , X n : i n )
:  P ( X o  -  i o , . . .  , X n : ' i n , X n + t :  i . + t ) l P ( X o : i o , . . .  , X n :  i , . )

:  
P ' i n i n + t '

So (X,")6a.<f is Markov(^,P).  n

The next result reinforces the idea that Markov chains have no memory.

We write 6i: (66i : j e I) for the un'it mass at i, where

^  ( l  i f i : i
ot ' : to  

o therw ise .

Theorem 1.L.2 (Markov property). Let (X*).2s be Ma,rkov()'P).

Then, conditional on X,n : i, (X*+n)n2s is Markov(6i, P) and is indepen-

dent of the random variables Xo, . . . , X*.

Proof . We have to show that for any event A determined by Xo; . . . , X*

we have

P({X-  :  i rn , . "  ,  X^+n: ' i rn+n}  n  A l  X , .  :  i )

: 64';*pi*i*+'- ' ' 'Pi^+n-rt^**P(A I Xr" : i) (1'2)
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1. Discrete-ti,me Markou cha,ins

In that case we have to show

tr(Xo : ' io, . . . ,Xrn+n :  i "n+n and i  :  i r -) lP(Xr.  : ' i )

:  6 i i^Pi* i*+, .  .  .  .  Pi*nn-t im+n

x P(& : ' i0, . . .  ,  X- :  i ,n and i  :  i*) lP(Xr- :  i )

which is true by Theorem 1.1.1. In general, any event A determined by
X0,... ,X- may be written as a countable disjoint union of elementarv
events

A :  |  |  , q r .
-Y

Then the desired identity (1.2) for A follows by summing up the corre-
sponding identities for Ap. tr

The remainder of this section addresses the foilowing problem: what i,s
the probabi,lity that after n steps our Marlcou chazn i,s ,in a g,iuen state? F\rst
we shall see how the problem reduces to calculating entries in the nth power
of the transition matrix. Then we shall look at some examples where this
may be done explicitly.

we regard distributions and measures ) as row vectors whose compo-
nents are indexed by 1, just as P is a matrix whose entries are indexed by
I x L When 1 is finite we will ofben label the states I,2,... ,ly'; then )
will be an N-vector and P an l/ x ly'-matrix. For these objects, matrix
multiplication is a familiar operation. We extend matrix multiplication to
the general case in the obvious way, defining a new measure )P and a new
matrix P2 bv

(^P):  :L\npo,,  (P')on :Dpo,pir .
; C I

we define P' similariy for any n. we agree that Po is the identity matrix
-[, where (I)ti :62i. The context will make it clear when I refers to the
state-space and when to the identity matrix. We write Ol? : (P )ii for
the (i,j) entry in Pn.

In the case where )r > 0 we shall write IP1(A) for the conditional prob-
abi l i ty P(A lX0: z).  By the Markov property at t ime m:0, under IP1,
(X").>o is Markov(6t,P). So the behaviour of (X,),>o under IF; does not
depend on ,\.

Theorem 1.L.3. Let (X.)*2s be Maxkov(.\, P). Then, for all n,m ) e,

( i )  P(x" :  j ) :  ( \P*) i ;
(i i) IPd(X" : j) :f(X"+- : j I X* : i) : pli).
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1.1 Defi,ni,ti,on and basr,c properties 5

Proof. (i) BV Theorem 1.1.1

P(xn  : i )  :  t  f  F (Xo :  io , . . . ,Xn- . t  :  in -y ,xn  :  j )
i o e l  i n _ t € I

: t  "  t  \ h p ' ' o r ' , " ' P t ^ - , j : Q , P - ) i .
i o € I  i n _ t € I

(ii) By the Markov property, conditional on X^: i, (X*+n)n2o is Markov
(6t, P), so we just take ) : 6,; in (i). I

In light of this theorem we call n$) tnu n-step transi,ti,on probabi,li,ty from i,
to j ' The following examples give some methods for calculat i"e p[?) .

Example 1.1.4

The most general two-state chain has transition matrix of the form

p : ( r - ^ o  - " ^ )
\  p  r - p l

and is represented by the following diagram:

1 + 2
lr

We exploit the relation pn+t - p'p to write

p\T*') :  p\\) p+pl?)(1 - o).

We also know that p\?) + p\Z) : p{{ry: 1 or 2) : L, so by eliminating
pg) *" get a recurren"e ,"i.tion fo, pll),

pg*') : (1 _ " _ ryp\T) + p, pl?) : 1.

This has a unique solution (see Section 1.1L):

- ( n ) -  l * + ; { ; f r  - o - g ) ^  f o r a *  p > o
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Example. 1.1.5 (Virus mutation)

suppose a virus can exist in ,A/ different strains and in each generation
either stays the same, or with probability a mutates to another strain,
which is chosen at random. what is the probability that the strain in the
nth generation is rhe same as that in the 0th?

we could model this process as an ry'-state chain, with ,n/ x,Ay' transition
matrix P given by

P i i : 1 -  a ,  P r i  :  a l l *  -  t ,  f o r  i  I  i .

Then the answer we want wouid be found by computi"g plT). In fact, in
this example there is a much simpler approach, which relies on exploiting
the symmetry present in the mutation rules.

At any time a transition is made from the initial state to another with
probability o, and a transition from another state to the initial state with
probability alQt{ - 1). Thus we have a two-state chain with diasram

initial+othe,
alQt  -  t )

and by putting 0: al(N - 1) in Example 1.1.4 we find that the desired
probabiiity is

1  /  t \ / _ o l / \ '
F - ( t -  N ) ( 1  

- , ^ r - r i

Beware that in examples having less symmetry, this sort of lumping together
of states may not produce a Markov chain.

Example 1.1.6

Consider the three-state chain with diagram
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1.1 Definiti,on and basi,c properties 7

and transition matrix

/ o  1  o \p :  I  o  +  +  I\ +  o  + /
The problem is to find a general formula to, pl\).

First we compute the eigenvalues of p by writing down its characteristic
equation

0 : det (, - P) : r(r - i l ' - i : i@ - \(ar2 + r).

The eigenvalues are 1,i,f2,-i12 and from this we d.educe tirat pfl) has the
form

{ n )  . / r \ "  /  i Vp ) i , :  " * o \ r )  * " 1 _ ; )
for some constants a, b and c. (The justification comes from linear algebra:
having distinct eigenvalues, P is diagonalizable, that is, for some invertible
matrix [/ we have

D - f lr - v

and hence

h
h

/ r  o  o  \
f o i l2 o f n-t
\ 0  0  - i l 2 /

which

and

p" :u ('o ofrr 3 ) "-,
\ o  o  ( - i l 1 " f

forces p\7' to have the form claimed.) The answer we want is real

( . ; ) " :  ( ; )  " t i nn /2 :  ( ; ) "  ( "o ,  T  *0 , , "T )

so it makes sense to rewrite pl?, i" the form

p\:. t  :" .  ( ;)"  {r"o, T n , ."  T}
for constants a, 0 and 7. The first few varues "t p\T) are easy to write
down, so we get equations to solve for a. 6 and ,v:
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so 0 :  l l5,  p :415,  ̂ /  :  -215 and

t ? 2 l
y 1 7

More generally, the following method may in principle be used to find a

formula for pli) for any M-state chain and any states i and j.

(i) Compute the eigenvalues )r,... ,)y of P by solving the character-

istic equation.
(ii) If the eigenvalues are distinct tinen pli) has the form

p l i )  : a l i * . . . + a ' M A T I

for some constants art. . . , a1a (depending on z and j). If an eigen-

value .\ is repeated (once, say) then the general form inciudes the

term (an + b),\".
(iii) As roots of a polynomial with real coefficients, complex eigenvalues

will come in conjugate pairs and these are best written using sine

and cosine, as in the example.

Exercises

1.L.1 Let Br, Bz,. . . be disjoint events with lJ[t Bn: Q. Show that if A

is another event and P(A|B') - p f.or all n then P(A) : p.

Deduce that if X and Y are discrete random variables then the following

are equivalent:

(a) X and Y are independent;

(b) the conditional distribution of X given Y : A is independent of gt.

1.1.2 Suppose that (X,),>o is Markov (^, P). If Yn - X6,,, show that

(Y"),>o is Markov (I, P").

1.1.3 Let Xo be a random variable with values in a countable set 1. Let

Yt,Y2,. .. be a sequence of independent random variables, uniformly dis-

tributed on [0,1]. Suppose we are given a function

G : I x [ o , t ]  - - l

and define inductivelv

X n + 7 :  G ( X n , Y n + t ) '

Show that (X.)">o is a Markov chain and express its transition matrix P

in terms of G. Can all Markov chains be realized in this wav? How would

you simulate a Markov chain using a computer?

l . (;)" {f "* T -?,. '"T}
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