Math 285A: Lecture \#9

prepared by
Herman Wong and Andrew Liu
May 2, 2007

Today's lecture:

- Finish sketch of ergodic theorem proof.
- Reversible Markov chains.
- Introduction to hidden Markov models.

1 Sketch of Proof of Ergodic Theorem

Recap of proof so far: Suppose the Markov chain X is reversible, positive recurrent, with $X(0)=i$. Fix a state k.

$$
\begin{aligned}
W_{n}^{k} & =\sum_{l=0}^{n} T_{l}^{k} \quad n=0,1,2, \ldots \\
& =\text { time of }(n+1)^{t h} \text { visit to state } k \\
W_{-1}^{k} & =0
\end{aligned}
$$

where T_{l}^{k} is the interoccurrence time between $l^{t h}$ and $(l+1)^{t h}$ visit to state k. Let

$$
\begin{aligned}
V_{k}(n) & =\sum_{l=0}^{n-1} \mathbf{1}_{\left\{X_{l}=k\right\}} \\
& =\text { amount of time spent in } k \text { up to time }(n-1) \\
& =\# \text { of visits to } k \text { up to time }(n-1)
\end{aligned}
$$

then we have that

$$
W_{V_{k}(n)-1}^{k}<n \leq W_{V_{k}(n)}^{k}
$$

and dividing by $V_{k}(n)$ we get

$$
\begin{equation*}
\frac{W_{V_{k}(n)-1}^{k}}{V_{k}(n)}<\frac{n}{V_{k}(n)} \leq \frac{W_{V_{k}(n)}^{k}}{V_{k}(n)} \tag{1}
\end{equation*}
$$

Note that P_{i}-a.s., $V_{k}(n) \rightarrow \infty$ as $n \rightarrow \infty$, and

$$
\frac{W_{n}^{k}}{n} \rightarrow m_{k}=\mathbf{E}\left[T_{1}^{k}\right] \quad \text { as } n \rightarrow \infty \text { by the strong law of large numbers. }
$$

Now eqn.(1) can rewritten as

$$
\frac{V_{k}(n)-1}{V_{k}(n)-1} \frac{W_{V_{k}(n)-1}^{k}}{V_{k}(n)}<\frac{n}{V_{k}(n)} \leq \frac{W_{V_{k}(n)}^{k}}{V_{k}(n)}
$$

or equivalently

$$
\frac{V_{k}(n)-1}{V_{k}(n)} \frac{W_{V_{k}(n)-1}^{k}}{V_{k}(n)-1}<\frac{n}{V_{k}(n)} \leq \frac{W_{V_{k}(n)}^{k}}{V_{k}(n)}
$$

Combining the above we conclude that the left side and the right side of the above inequality tend to $1 / m_{k}, P_{i}$-a.s. as $n \rightarrow \infty$. Hence,

$$
\begin{gathered}
\frac{n}{V_{k}(n)} \rightarrow m_{k} \quad P_{i} \text { almost surely as } n \rightarrow \infty \\
\Rightarrow \frac{V_{k}(n)}{n} \rightarrow \frac{1}{m_{k}}=\pi_{k} \quad P_{i}-\text { a.s. as } n \rightarrow \infty, \text { where } \pi \text { is the stationary distribution. }
\end{gathered}
$$

Now,

$$
\frac{V_{k}(n)}{n}=\frac{1}{n} \sum_{l=0}^{n-1} \mathbf{1}_{\left\{X_{l}=k\right\}}
$$

is the fraction of time that X spends in state k in the interval $[0, n-1]$, and so $1 / m_{k}$ is the "long run fraction of time X spends in k."

By the bounded convergence theorem we have that

$$
\begin{align*}
& \mathbf{E}_{i}\left[\frac{1}{n} \sum_{l=0}^{n-1} \mathbf{1}_{\left\{X_{l}=k\right\}}\right] \rightarrow \frac{1}{m_{k}} \text { as } n \rightarrow \infty \\
& \text { i.e., } \quad \frac{1}{n} \sum_{l=0}^{n-1} \mathbf{E}_{i}\left[\mathbf{1}_{\left\{X_{l}=k\right\}}\right] \rightarrow \frac{1}{m_{k}} \quad \text { as } n \rightarrow \infty \\
& \Longleftrightarrow \frac{1}{n} \sum_{l=0}^{n-1} P_{i}\left(X_{l}=k\right) \rightarrow \frac{1}{m_{k}} \quad \text { as } n \rightarrow \infty \\
& \Longleftrightarrow \frac{1}{n} \sum_{l=0}^{n-1}\left(\mathbf{P}^{l}\right)_{i k} \rightarrow \frac{1}{m_{k}} \quad \text { as } n \rightarrow \infty \tag{2}
\end{align*}
$$

i.e., the Cesaro averages of the sequence $\left\{\left(\mathbf{P}^{l}\right)_{i k}\right\}_{l=0}^{\infty}$ converge to $1 / m_{k}$ as $n \rightarrow$ ∞. Note: eqn.(2) pertains whether the Markov chain is aperiodic or not. Also by a coupling argument one can show that if the Markov chain is aperiodic then $\lim _{n \rightarrow \infty} \mathbf{P}_{i k}^{n}$ exists and does not depend on i. Since the above Cesaro averages converge to $1 / m_{k}$ then $\lim _{n \rightarrow \infty} \mathbf{P}_{i k}^{n}=1 / m_{k}$.

2 Reducible Markov Chains

For a reducible Markov chain the transition matrix \mathbf{P} can be arranged in partitioned diagonal form

$$
\mathbf{P}=\left[\right]
$$

where the block of diagonal \mathbf{P}_{i} matrices, $1 \leq i \leq k$, is the transition matrix from recurrent to recurrent states (note that there could be infinitely many matrices in the block, i.e., k could be ∞), \mathbf{S} is the transition matrix from transient to recurrent states, $\boldsymbol{\Theta}$ is the zero matrix since recurrent states cannot enter transient states, and \mathbf{Q} is the transition matrix of transient to transient states. Then

$$
\mathbf{P}^{n}=\left[\right] .
$$

Note: $\mathbf{S}_{n} \neq \mathbf{S}^{n}$.

3 Reversible Markov Chains

If there is a probability distribution π such that

$$
\pi_{i} P_{i j}=\pi_{j} P_{j i} \quad \text { for all } i, j, \quad \text { (called "detailed balance") }
$$

then the Markov chain is time reversible with transition matrix \mathbf{P}. Here an intuitive picture is to think of the transition probability, $\pi_{i} P_{i j}$, as a "mass flow" from i to j

$$
\stackrel{\odot}{i} \xrightarrow{\pi_{i} P_{i j}} \odot
$$

to be in balance with the "mass flow" from j to i

$$
\stackrel{\odot}{i} \stackrel{\pi_{j} P_{j i}}{\rightleftarrows} \stackrel{\odot}{j}
$$

as $n \rightarrow \infty$ (i.e., mass conservation in stationarity).

The following properties hold if detailed balance is satisfied by a probability distribution π.
(i) π is a stationary distribution, i.e., $\pi^{\prime}=\pi^{\prime} \mathbf{P}$.

Proof: Fix i, then by detailed balance above we have that

$$
\pi_{i} P_{i j}=\pi_{j} P_{j i} \quad \forall j
$$

then summing over all j we get

$$
\sum_{j} \pi_{i} P_{i j}=\sum_{j} \pi_{j} P_{j i} \Longrightarrow \pi_{i} \sum_{j} P_{i j}=\sum_{j} \pi_{j} P_{j i} \Longrightarrow \pi_{i}=\sum_{j} \pi_{j} P_{j i}
$$

since $\sum_{j} P_{i j}=1$. Noticing the above is just matrix-vector multiplication, hence $\pi^{\prime}=\pi^{\prime} \mathbf{P}$.
(ii) If the Markov chain is initialized with the stationary distribution π then the Markov chain is time reversible, i.e., for any fixed time N, let

$$
\tilde{X}_{n}=X_{N-n}, \quad n=0,1,2, \ldots, N
$$

then \tilde{X} is $\operatorname{Markov}(\pi, \mathbf{P})$.
Proof: First prove \tilde{X} is Markov. Fix $n<N$, and let $i_{0}, i_{1}, i_{2}, \ldots, i_{n}, i_{n+1} \in$ \mathcal{S}, where \mathcal{S} is the state space of the process. Then

$$
\begin{aligned}
P\left(\tilde{X}_{n+1}\right. & \left.=i_{n+1} \mid \tilde{X}_{n}=i_{n}, \tilde{X}_{n-1}=i_{n-1}, \ldots, \tilde{X}_{0}=i_{0}\right) \\
& =\frac{P\left(X_{N-n-1}=i_{n+1}, X_{N-n}=i_{n}, X_{N-n+1}=i_{n-1}, \ldots, X_{N}=i_{0}\right)}{P\left(X_{N-n}=i_{n}, X_{N-n+1}=i_{n-1}, \ldots, X_{N}=i_{0}\right)} \\
& =\frac{\pi_{i_{n+1}} P_{i_{n+1}, i_{n}} P_{i_{n}, i_{n-1}} \cdots P_{i_{1}, i_{0}}}{\pi_{i_{n}} P_{i_{n}, i_{n-1}} P_{i_{n-1}, i_{n-2}} \cdots P_{i_{1}, i_{0}}} \\
& =\frac{\pi_{i_{n+1}} P_{i_{n+1}, i_{n}}}{\pi_{i_{n}}} \\
& =\frac{P\left(X_{N-n-1}=i_{n+1}, X_{N-n}=i_{n}\right)}{P\left(X_{N-n}=i_{n}\right)} \\
& =P\left(\tilde{X}_{n+1}=i_{n+1} \mid \tilde{X}_{n}=i_{n}\right) \\
& =\tilde{P}_{i_{n}, i_{n+1}} \\
& \Longrightarrow \tilde{X}_{n} \text { is Markov. }
\end{aligned}
$$

Now prove \tilde{X} is $\operatorname{Markov}(\pi, \mathbf{P})$. From above we have

$$
\tilde{P}_{i_{n}, i_{n+1}}=\frac{\pi_{i_{n+1}}}{\pi_{i_{n}}} P_{i_{n+1}, i_{n}}=\frac{\pi_{i_{n}}}{\pi_{i_{n}}} P_{i_{n}, i_{n+1}}
$$

where the last equality is from using detailed balance. Therefore,

$$
\Longrightarrow \tilde{P}=P .
$$

Also, \tilde{X} has initial distribution given by distribution of X_{N}, i.e., π.
Theorem: If a Markov chain is irreducible, positive recurrent, and its transition graph is a tree, then the Markov chain is reversible.

Proof: see Frank Kelly's book on Reversibility and Stochastic Networks.

Example: Let X be the reflecting random walk, with reflecting state at $i=0$, on the state space of non-negative integers, with transition probabilities

$$
\begin{gathered}
P_{i, i-1}=q, \quad \text { for } i \geq 1 \\
P_{i, i+1}=p, \quad \text { for } i \geq 1 \\
P_{0,0}=q, \quad P_{0,1}=p \quad \text { for } i=0
\end{gathered}
$$

and $0<p<q, p+q=1$. X has only one communicating class, and positive recurrent since $p<q$, and we can check to see that there is a probability distribution π satisfying detailed balance:

$$
\begin{gathered}
\pi_{i} P_{i, i+1}=\pi_{i+1} P_{i+1, i} \quad i=0,1,2,3, \ldots \\
\Longrightarrow \pi_{i+1}=\frac{p}{q} \pi_{i} \quad \Longrightarrow \pi_{i}=\left(\frac{p}{q}\right)^{i} \pi_{0}
\end{gathered}
$$

and with the constraint $\sum_{i} \pi_{i}=\sum_{i}\left(\frac{p}{q}\right)^{i} \pi_{0}=1 \quad \Longrightarrow \pi_{0}=1-p / q$.

4 Hidden Markov Models

Hidden Markov models have an observed output process Y, where $Y_{n}=f\left(X_{n}, \xi_{n}\right)$ is a function of a discrete time Markov chain X, and some additional random process ξ. It is best explained first through an example.

Example: Unfair Casino

Suppose a gambler is gambling against the house by a simple betting process involving rolling a die. Here the observable outputs are the outcomes of the die throws $Y_{n} \in\{1,2,3,4,5,6\}$. But suppose the gambler does not know whether the die being used is fair or unfair, that is suppose a fair die has an output probability distribution with probability $p_{i}=1 / 6$, for $i=1,2,3,4,5,6$, and an unfair die has output distribution: $p=(1 / 6,1 / 6,1 / 6,1 / 6,1 / 4,1 / 12)$. Let the process that registers whether the house is using a fair or unfair die be X, i.e.

$$
X_{n}=1 \text { if fair die, } \quad X_{n}=2 \text { if unfair die }
$$

and suppose the transition matrix for X is

$$
\mathbf{P}=\left[\begin{array}{ll}
5 / 6 & 1 / 6 \\
2 / 3 & 1 / 3
\end{array}\right]
$$

In particular, this situation corresponds to where there is a probability of $5 / 6$ that the house keeps using a fair die in the next round, and probability $1 / 6$ of switching to an unfair die. Using a fair or unfair die is registered by the hidden process, X, and the additional random process, $\xi=\left(\xi_{n}\right)$, has distribution at time n given by $p_{i}=1 / 6$ for all i if the fair die is in use, and given by $p=(1 / 6,1 / 6,1 / 6,1 / 6,1 / 4,1 / 12)$ if the unfair die is in use at time n. The observable output, Y, records the outcome of the roll of the die at each time step.

