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Today’s lecture:

• Finish sketch of ergodic theorem proof.

• Reversible Markov chains.

• Introduction to hidden Markov models.

1 Sketch of Proof of Ergodic Theorem

Recap of proof so far: Suppose the Markov chain X is reversible, positive re-
current, with X(0) = i. Fix a state k.

W k
n =

n
∑

l=0

T k
l n = 0, 1, 2, . . .

= time of (n + 1)th visit to state k

W k
−1 = 0

where T k
l is the interoccurrence time between lth and (l + 1)th visit to state k.

Let

Vk(n) =

n−1
∑

l=0

1{Xl=k}

= amount of time spent in k up to time (n− 1)

= # of visits to k up to time (n− 1)

then we have that
W k

Vk(n)−1 < n ≤ W k
Vk(n)

and dividing by Vk(n) we get

W k
Vk(n)−1

Vk(n)
<

n

Vk(n)
≤

W k
Vk(n)

Vk(n)
(1)
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Note that Pi-a.s., Vk(n)→∞ as n→∞, and

W k
n

n
→ mk = E

[

T k
1

]

as n→∞ by the strong law of large numbers.

Now eqn.(1) can rewritten as

Vk(n)− 1

Vk(n)− 1

W k
Vk(n)−1

Vk(n)
<

n

Vk(n)
≤

W k
Vk(n)

Vk(n)

or equivalently

Vk(n)− 1

Vk(n)

W k
Vk(n)−1

Vk(n)− 1
<

n

Vk(n)
≤

W k
Vk(n)

Vk(n)

Combining the above we conclude that the left side and the right side of the
above inequality tend to 1/mk, Pi-a.s. as n→∞. Hence,

n

Vk(n)
→ mk Pi almost surely as n→∞

⇒
Vk(n)

n
→

1

mk

= πk Pi−a.s. as n→∞, where π is the stationary distribution.

Now,

Vk(n)

n
=

1

n

n−1
∑

l=0

1{Xl=k}

is the fraction of time that X spends in state k in the interval [0, n− 1], and so
1/mk is the “long run fraction of time X spends in k.”

By the bounded convergence theorem we have that

Ei

[

1

n

n−1
∑

l=0

1{Xl=k}

]

→
1

mk

as n→∞

i.e.,
1

n

n−1
∑

l=0

Ei

[

1{Xl=k}

]

→
1

mk

as n→∞

⇐⇒
1

n

n−1
∑

l=0

Pi (Xl = k)→
1

mk

as n→∞

⇐⇒
1

n

n−1
∑

l=0

(

Pl
)

ik
→

1

mk

as n→∞, (2)

i.e., the Cesaro averages of the sequence
{(

Pl
)

ik

}∞

l=0
converge to 1/mk as n→

∞. Note: eqn.(2) pertains whether the Markov chain is aperiodic or not. Also
by a coupling argument one can show that if the Markov chain is aperiodic then
limn→∞ Pn

ik exists and does not depend on i. Since the above Cesaro averages
converge to 1/mk then limn→∞ Pn

ik = 1/mk.
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2 Reducible Markov Chains

For a reducible Markov chain the transition matrix P can be arranged in par-
titioned diagonal form

P =





















P1 0 · · · 0

0 P2 0
...

...
. . .

. . . 0
0 · · · 0 Pk

Θ

S Q





















where the block of diagonal Pi matrices, 1 ≤ i ≤ k, is the transition matrix from
recurrent to recurrent states (note that there could be infinitely many matrices
in the block, i.e., k could be ∞), S is the transition matrix from transient
to recurrent states, Θ is the zero matrix since recurrent states cannot enter
transient states, and Q is the transition matrix of transient to transient states.
Then

Pn =





















Pn
1 0 · · · 0

0 Pn
2 0

...
...

. . .
. . . 0

0 · · · 0 Pn
k

Θ

Sn Qn





















.

Note: Sn 6= Sn.

3 Reversible Markov Chains

If there is a probability distribution π such that

πiPij = πjPji for all i, j, (called “detailed balance”)

then the Markov chain is time reversible with transition matrix P. Here an
intuitive picture is to think of the transition probability, πiPij , as a “mass
flow” from i to j

�
i

πiPij

−→
�
j

to be in balance with the “mass flow” from j to i

�
i

πjPji

←−
�
j

as n→∞ (i.e., mass conservation in stationarity).
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The following properties hold if detailed balance is satisfied by a probability
distribution π.

(i) π is a stationary distribution, i.e., π′ = π′P.

Proof: Fix i, then by detailed balance above we have that

πiPij = πjPji ∀j

then summing over all j we get
∑

j

πiPij =
∑

j

πjPji =⇒ πi

∑

j

Pij =
∑

j

πjPji =⇒ πi =
∑

j

πjPji

since
∑

j Pij = 1. Noticing the above is just matrix-vector multiplication,
hence π′ = π′P.

(ii) If the Markov chain is initialized with the stationary distribution π then
the Markov chain is time reversible, i.e., for any fixed time N , let

X̃n = XN−n, n = 0, 1, 2, . . . , N,

then X̃ is Markov(π,P).

Proof: First prove X̃ is Markov. Fix n < N , and let i0, i1, i2, . . . , in, in+1 ∈
S, where S is the state space of the process. Then

P
(

X̃n+1 = in+1 | X̃n = in, X̃n−1 = in−1, . . . , X̃0 = i0

)

=
P (XN−n−1 = in+1, XN−n = in, XN−n+1 = in−1, . . . , XN = i0)

P (XN−n = in, XN−n+1 = in−1, . . . , XN = i0)

=
πin+1

Pin+1,in
Pin,in−1

· · ·Pi1,i0

πin
Pin,in−1

Pin−1,in−2
· · ·Pi1,i0

=
πin+1

πin

Pin+1,in

=
P (XN−n−1 = in+1, XN−n = in)

P (XN−n = in)

= P
(

X̃n+1 = in+1 | X̃n = in

)

= P̃in,in+1

=⇒ X̃n is Markov.

Now prove X̃ is Markov(π,P). From above we have

P̃in,in+1
=

πin+1

πin

Pin+1,in
=

πin

πin

Pin,in+1
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where the last equality is from using detailed balance. Therefore,

=⇒ P̃ = P.

Also, X̃ has initial distribution given by distribution of XN , i.e., π.

Theorem: If a Markov chain is irreducible, positive recurrent, and its transi-
tion graph is a tree, then the Markov chain is reversible.

Proof: see Frank Kelly’s book on Reversibility and Stochastic Networks.

Example: Let X be the reflecting random walk, with reflecting state at i = 0,
on the state space of non-negative integers, with transition probabilities

Pi,i−1 = q, for i ≥ 1

Pi,i+1 = p, for i ≥ 1

P0,0 = q, P0,1 = p for i = 0,

and 0 < p < q, p + q = 1. X has only one communicating class, and positive
recurrent since p < q, and we can check to see that there is a probability
distribution π satisfying detailed balance:

πiPi,i+1 = πi+1Pi+1,i i = 0, 1, 2, 3, . . .

=⇒ πi+1 =
p

q
πi =⇒ πi =

(

p

q

)i

π0

and with the constraint
∑

i πi =
∑

i

(

p

q

)i

π0 = 1 =⇒ π0 = 1− p/q.

4 Hidden Markov Models

Hidden Markov models have an observed output process Y , where Yn = f(Xn, ξn)
is a function of a discrete time Markov chain X , and some additional random
process ξ. It is best explained first through an example.

Example: Unfair Casino

Suppose a gambler is gambling against the house by a simple betting process
involving rolling a die. Here the observable outputs are the outcomes of the die
throws Yn ∈ {1, 2, 3, 4, 5, 6}. But suppose the gambler does not know whether
the die being used is fair or unfair, that is suppose a fair die has an output
probability distribution with probability pi = 1/6, for i = 1, 2, 3, 4, 5, 6, and an
unfair die has output distribution: p = (1/6, 1/6, 1/6, 1/6, 1/4, 1/12). Let the
process that registers whether the house is using a fair or unfair die be X , i.e.

Xn = 1 if fair die, Xn = 2 if unfair die
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and suppose the transition matrix for X is

P =

[

5/6 1/6
2/3 1/3

]

In particular, this situation corresponds to where there is a probability of 5/6
that the house keeps using a fair die in the next round, and probability 1/6
of switching to an unfair die. Using a fair or unfair die is registered by the
hidden process, X, and the additional random process, ξ = (ξn), has distribution
at time n given by pi = 1/6 for all i if the fair die is in use, and given by
p = (1/6, 1/6, 1/6, 1/6, 1/4, 1/12) if the unfair die is in use at time n. The
observable output, Y , records the outcome of the roll of the die at each time
step.
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