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Today’s lecture:
e Finish sketch of ergodic theorem proof.
e Reversible Markov chains.

e Introduction to hidden Markov models.

1 Sketch of Proof of Ergodic Theorem

Recap of proof so far: Suppose the Markov chain X is reversible, positive re-
current, with X (0) = i. Fix a state k.
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where T} is the interoccurrence time between (" and (I + 1) visit to state k.
Let
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then we have that
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and dividing by Vi (n) we get
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Note that P;-a.s., Vi(n) — oo as n — oo, and
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Now eqn.(1) can rewritten as
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or equivalently
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Combining the above we conclude that the left side and the right side of the
above inequality tend to 1/my, Pi-a.s. as n — oco. Hence,

n
— = my P; almost surely as n — oo
Vie(n)
Vi(n 1
k() — =T P;—a.s. as n — oo, where 7 is the stationary distribution.
n mi
Now,

n—1
Vie(n) 1
= — 1 —
S s

is the fraction of time that X spends in state k in the interval [0,n — 1], and so
1/my is the “long run fraction of time X spends in k.”
By the bounded convergence theorem we have that
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i.e., the Cesaro averages of the sequence {(Pl)ik}io converge to 1/my as n —
0o. Note: eqn.(2) pertains whether the Markov chain is aperiodic or not. Also
by a coupling argument one can show that if the Markov chain is aperiodic then
lim,, .o P}} exists and does not depend on 4. Since the above Cesaro averages
converge to 1/my, then lim, .o P}, = 1/my.



2 Reducible Markov Chains

For a reducible Markov chain the transition matrix P can be arranged in par-
titioned diagonal form

P, o .- 0 7
0 Py 0 6
P = : 0
0 0 P,
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where the block of diagonal P; matrices, 1 < ¢ < k, is the transition matrix from
recurrent to recurrent states (note that there could be infinitely many matrices
in the block, i.e., k could be o), S is the transition matrix from transient
to recurrent states, ® is the zero matrix since recurrent states cannot enter
transient states, and Q is the transition matrix of transient to transient states.
Then

Py 0 0 T
0 P? 0 o
0 0 PP
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Note: S,, #S".

3 Reversible Markov Chains

If there is a probability distribution 7 such that
m; Py = mj Py for all 4, 7, (called “detailed balance”)

then the Markov chain is time reversible with transition matrix P. Here an
intuitive picture is to think of the transition probability, m;F;; , as a “mass
flow” from ¢ to j
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as n — oo (i.e., mass conservation in stationarity).



The following properties hold if detailed balance is satisfied by a probability
distribution 7.

(i) 7 is a stationary distribution, i.e., 7’ = 7'P.
Proof: Fix i, then by detailed balance above we have that
WiPij = 7Tij' V_]
then summing over all j we get
Z?TZ‘BJ‘ = Zﬂ-jpji — TQZPZ'J' = Z?ijji —— m; = Zﬂ-jpji
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since Y j P;; = 1. Noticing the above is just matrix-vector multiplication,
hence 7’ = 7'P.

(ii) If the Markov chain is initialized with the stationary distribution 7 then
the Markov chain is time reversible, i.e., for any fixed time N, let

X, =XnN_n, n=0,1,2,...,N,
then X is Markov(m, P).

Proof: First prove X is Markov. Fix n < N, and let ig, i1, %2, . . . , in, Int1 €
S, where S is the state space of the process. Then
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— X, is Markov.

Now prove X is Markov(r, P). From above we have
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where the last equality is from using detailed balance. Therefore,
— P=P.
Also, X has initial distribution given by distribution of Xy, i.e., 7.
Theorem: If a Markov chain is irreducible, positive recurrent, and its transi-
tion graph is a tree, then the Markov chain is reversible.

Proof: see Frank Kelly’s book on Reversibility and Stochastic Networks.

Example: Let X be the reflecting random walk, with reflecting state at ¢« = 0,
on the state space of non-negative integers, with transition probabilities

Pi,i—l =4q, for 4 Z 1

P; i1 =p, fori>1
Pyo =g, Py1=p for i =0,

and 0 < p < gq, p+ ¢ =1. X has only one communicating class, and positive
recurrent since p < ¢, and we can check to see that there is a probability
distribution 7 satisfying detailed balance:
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and with the constraint >, m =", (%) m=1 =m=1-p/q.

4 Hidden Markov Models

Hidden Markov models have an observed output process Y, where Y,, = f(X,,, &)
is a function of a discrete time Markov chain X, and some additional random
process £. It is best explained first through an example.

Example: Unfair Casino

Suppose a gambler is gambling against the house by a simple betting process
involving rolling a die. Here the observable outputs are the outcomes of the die
throws Y,, € {1,2,3,4,5,6}. But suppose the gambler does not know whether
the die being used is fair or unfair, that is suppose a fair die has an output
probability distribution with probability p; = 1/6, for i = 1,2,3,4,5,6, and an
unfair die has output distribution: p = (1/6,1/6,1/6,1/6,1/4,1/12). Let the
process that registers whether the house is using a fair or unfair die be X, i.e.

X, = 1if fair die, X,, =2 if unfair die



and suppose the transition matrix for X is

e [38 10]

In particular, this situation corresponds to where there is a probability of 5/6
that the house keeps using a fair die in the next round, and probability 1/6
of switching to an unfair die. Using a fair or unfair die is registered by the
hidden process, X, and the additional random process, & = (£,,), has distribution
at time n giwven by p; = 1/6 for all i if the fair die is in use, and given by
p = (1/6,1/6,1/6,1/6,1/4,1/12) if the unfair die is in use at time n. The
observable output, Y, records the outcome of the roll of the die at each time
step.



