Math 285A: Lecture #9

prepared by Herman Wong and Andrew Liu

May 2, 2007

Today's lecture:

- Finish sketch of ergodic theorem proof.
- Reversible Markov chains.
- Introduction to hidden Markov models.

1 Sketch of Proof of Ergodic Theorem

Recap of proof so far: Suppose the Markov chain X is reversible, positive recurrent, with X(0) = i. Fix a state k.

$$W_n^k = \sum_{l=0}^n T_l^k \qquad n = 0, 1, 2, \dots$$

= time of $(n+1)^{th}$ visit to state k
 $W_{-1}^k = 0$

where T_l^k is the interoccurrence time between l^{th} and $(l+1)^{th}$ visit to state k. Let

$$V_k(n) = \sum_{l=0}^{n-1} \mathbf{1}_{\{X_l=k\}}$$

= amount of time spent in k up to time $(n-1)$
= # of visits to k up to time $(n-1)$

then we have that

$$W_{V_k(n)-1}^k < n \leq W_{V_k(n)}^k$$

and dividing by $V_k(n)$ we get

$$\frac{W_{V_k(n)-1}^k}{V_k(n)} < \frac{n}{V_k(n)} \le \frac{W_{V_k(n)}^k}{V_k(n)}$$
(1)

Note that P_i -a.s., $V_k(n) \to \infty$ as $n \to \infty$, and

$$\frac{W_n^k}{n} \to m_k = \mathbf{E}\left[T_1^k\right] \quad \text{as } n \to \infty \text{ by the strong law of large numbers.}$$

Now eqn.(1) can rewritten as

$$\frac{V_k(n) - 1}{V_k(n) - 1} \frac{W_{V_k(n)-1}^k}{V_k(n)} < \frac{n}{V_k(n)} \le \frac{W_{V_k(n)}^k}{V_k(n)}$$

or equivalently

$$\frac{V_k(n) - 1}{V_k(n)} \frac{W_{V_k(n)-1}^k}{V_k(n) - 1} < \frac{n}{V_k(n)} \le \frac{W_{V_k(n)}^k}{V_k(n)}$$

Combining the above we conclude that the left side and the right side of the above inequality tend to $1/m_k$, P_i -a.s. as $n \to \infty$. Hence,

$$\frac{n}{V_k(n)} \to m_k \qquad P_i \text{ almost surely as } n \to \infty$$

 $\Rightarrow \frac{V_k(n)}{n} \to \frac{1}{m_k} = \pi_k \qquad P_i - a.s. \text{ as } n \to \infty, \text{where } \pi \text{ is the stationary distribution.}$ Now,

$$\frac{V_k(n)}{n} = \frac{1}{n} \sum_{l=0}^{n-1} \mathbf{1}_{\{X_l=k\}}$$

is the fraction of time that X spends in state k in the interval [0, n-1], and so $1/m_k$ is the "long run fraction of time X spends in k."

By the bounded convergence theorem we have that

$$\mathbf{E}_{i} \left[\frac{1}{n} \sum_{l=0}^{n-1} \mathbf{1}_{\{X_{l}=k\}} \right] \to \frac{1}{m_{k}} \quad \text{as } n \to \infty$$

i.e., $\frac{1}{n} \sum_{l=0}^{n-1} \mathbf{E}_{i} \left[\mathbf{1}_{\{X_{l}=k\}} \right] \to \frac{1}{m_{k}} \quad \text{as } n \to \infty$
$$\iff \frac{1}{n} \sum_{l=0}^{n-1} P_{i} \left(X_{l} = k \right) \to \frac{1}{m_{k}} \quad \text{as } n \to \infty$$

$$\iff \frac{1}{n} \sum_{l=0}^{n-1} \left(\mathbf{P}^{l} \right)_{ik} \to \frac{1}{m_{k}} \quad \text{as } n \to \infty, \qquad (2)$$

i.e., the Cesaro averages of the sequence $\{(\mathbf{P}^l)_{ik}\}_{l=0}^{\infty}$ converge to $1/m_k$ as $n \to \infty$. Note: eqn.(2) pertains whether the Markov chain is aperiodic or not. Also by a coupling argument one can show that if the Markov chain is aperiodic then $\lim_{n\to\infty} \mathbf{P}_{ik}^n$ exists and does not depend on *i*. Since the above Cesaro averages converge to $1/m_k$ then $\lim_{n\to\infty} \mathbf{P}_{ik}^n = 1/m_k$.

2 Reducible Markov Chains

For a reducible Markov chain the transition matrix ${\bf P}$ can be arranged in partitioned diagonal form

	=	S				Q
Р		: 0	••. •••	· 0	$\begin{array}{c} 0 \\ \mathbf{P}_k \end{array}$	
		0	\mathbf{P}_2	0	:	Θ
		\mathbf{P}_1	0		0	-

where the block of diagonal \mathbf{P}_i matrices, $1 \leq i \leq k$, is the transition matrix from recurrent to recurrent states (note that there could be infinitely many matrices in the block, i.e., k could be ∞), \mathbf{S} is the transition matrix from transient to recurrent states, $\boldsymbol{\Theta}$ is the zero matrix since recurrent states cannot enter transient states, and \mathbf{Q} is the transition matrix of transient to transient states. Then

	\mathbf{S}_n				\mathbf{Q}^n	
• –	0		0.	\mathbf{P}_k^n		
\mathbf{P}^n =	:	·	·	0	0	
	0	\mathbf{P}_2^n	0	÷		
	\mathbf{P}_1^n	0	•••	0		

Note: $\mathbf{S}_n \neq \mathbf{S}^n$.

3 Reversible Markov Chains

If there is a probability distribution π such that

 $\pi_i P_{ij} = \pi_j P_{ji}$ for all i, j, (called "detailed balance")

then the Markov chain is time reversible with transition matrix **P**. Here an intuitive picture is to think of the transition probability, $\pi_i P_{ij}$, as a "mass flow" from *i* to *j*

$$i \xrightarrow{\circ} \pi_i P_{ij} \xrightarrow{\circ} j$$

to be in balance with the "mass flow" from j to i

 $\stackrel{\odot}{i} \stackrel{\pi_j P_{ji}}{\longleftarrow} \stackrel{\odot}{j}$

as $n \to \infty$ (i.e., mass conservation in stationarity).

The following properties hold if detailed balance is satisfied by a probability distribution $\pi.$

(i) π is a stationary distribution, i.e., $\pi' = \pi' \mathbf{P}$.

Proof: Fix i, then by detailed balance above we have that

$$\pi_i P_{ij} = \pi_j P_{ji} \quad \forall j$$

then summing over all j we get

$$\sum_{j} \pi_{i} P_{ij} = \sum_{j} \pi_{j} P_{ji} \Longrightarrow \pi_{i} \sum_{j} P_{ij} = \sum_{j} \pi_{j} P_{ji} \Longrightarrow \pi_{i} = \sum_{j} \pi_{j} P_{ji}$$

since $\sum_{j} P_{ij} = 1$. Noticing the above is just matrix-vector multiplication, hence $\pi' = \pi' \mathbf{P}$.

(ii) If the Markov chain is initialized with the stationary distribution π then the Markov chain is time reversible, i.e., for any fixed time N, let

$$\tilde{X}_n = X_{N-n}, \qquad n = 0, 1, 2, \dots, N,$$

then \tilde{X} is Markov (π, \mathbf{P}) .

Proof: First prove \tilde{X} is Markov. Fix n < N, and let $i_0, i_1, i_2, \ldots, i_n, i_{n+1} \in \mathcal{S}$, where \mathcal{S} is the state space of the process. Then

$$P\left(\tilde{X}_{n+1} = i_{n+1} \mid \tilde{X}_n = i_n, \tilde{X}_{n-1} = i_{n-1}, \dots, \tilde{X}_0 = i_0\right)$$

$$= \frac{P\left(X_{N-n-1} = i_{n+1}, X_{N-n} = i_n, X_{N-n+1} = i_{n-1}, \dots, X_N = i_0\right)}{P\left(X_{N-n} = i_n, X_{N-n+1} = i_{n-1}, \dots, X_N = i_0\right)}$$

$$= \frac{\pi_{i_{n+1}} P_{i_{n+1}, i_n} P_{i_{n-1}, i_{n-2}} \cdots P_{i_{1}, i_0}}{\pi_{i_n} P_{i_{n+1}, i_n}}$$

$$= \frac{P\left(X_{N-n-1} = i_{n+1}, X_{N-n} = i_n\right)}{P\left(X_{N-n} = i_n\right)}$$

$$= P\left(\tilde{X}_{n+1} = i_{n+1} \mid \tilde{X}_n = i_n\right)$$

$$= \tilde{P}_{i_n, i_{n+1}}$$

 $\implies \tilde{X}_n$ is Markov.

Now prove \tilde{X} is Markov (π, \mathbf{P}) . From above we have

$$\tilde{P}_{i_n,i_{n+1}} = \frac{\pi_{i_{n+1}}}{\pi_{i_n}} P_{i_{n+1},i_n} = \frac{\pi_{i_n}}{\pi_{i_n}} P_{i_n,i_{n+1}}$$

where the last equality is from using detailed balance. Therefore,

$$\implies \tilde{P} = P.$$

Also, \hat{X} has initial distribution given by distribution of X_N , i.e., π .

Theorem: If a Markov chain is irreducible, positive recurrent, and its transition graph is a tree, then the Markov chain is reversible.

Proof: see Frank Kelly's book on Reversibility and Stochastic Networks.

Example: Let X be the reflecting random walk, with reflecting state at i = 0, on the state space of non-negative integers, with transition probabilities

$$P_{i,i-1} = q,$$
 for $i \ge 1$
 $P_{i,i+1} = p,$ for $i \ge 1$
 $P_{0,0} = q,$ $P_{0,1} = p$ for $i = 0,$

and 0 , <math>p + q = 1. X has only one communicating class, and positive recurrent since p < q, and we can check to see that there is a probability distribution π satisfying detailed balance:

$$\pi_i P_{i,i+1} = \pi_{i+1} P_{i+1,i} \qquad i = 0, 1, 2, 3, \dots$$
$$\implies \pi_{i+1} = \frac{p}{q} \pi_i \qquad \Longrightarrow \pi_i = \left(\frac{p}{q}\right)^i \pi_0$$

and with the constraint $\sum_{i} \pi_{i} = \sum_{i} \left(\frac{p}{q}\right)^{i} \pi_{0} = 1 \implies \pi_{0} = 1 - p/q.$

4 Hidden Markov Models

Hidden Markov models have an observed output process Y, where $Y_n = f(X_n, \xi_n)$ is a function of a discrete time Markov chain X, and some additional random process ξ . It is best explained first through an example.

Example: Unfair Casino

Suppose a gambler is gambling against the house by a simple betting process involving rolling a die. Here the observable outputs are the outcomes of the die throws $Y_n \in \{1, 2, 3, 4, 5, 6\}$. But suppose the gambler does not know whether the die being used is fair or unfair, that is suppose a fair die has an *output* probability distribution with probability $p_i = 1/6$, for i = 1, 2, 3, 4, 5, 6, and an unfair die has *output* distribution: p = (1/6, 1/6, 1/6, 1/4, 1/12). Let the process that registers whether the house is using a fair or unfair die be X, i.e.

$$X_n = 1$$
 if fair die, $X_n = 2$ if unfair die

and suppose the transition matrix for X is

$$\mathbf{P} = \left[\begin{array}{cc} 5/6 & 1/6\\ 2/3 & 1/3 \end{array} \right]$$

In particular, this situation corresponds to where there is a probability of 5/6 that the house keeps using a fair die in the next round, and probability 1/6 of switching to an unfair die. Using a fair or unfair die is registered by the hidden process, X, and the additional random process, $\xi = (\xi_n)$, has distribution at time n given by $p_i = 1/6$ for all i if the fair die is in use, and given by p = (1/6, 1/6, 1/6, 1/6, 1/4, 1/12) if the unfair die is in use at time n. The observable output, Y, records the outcome of the roll of the die at each time step.