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1 Warning

Invariant Measure :

A= (Miies
A > 0, A£0

NPo= ).

Invariant Distribution: (Invariant probability distribution, stationary distribution)

T = (M)ies

o> 0, Vi, Y m=1
i€S

P = 7

2 Hw Problem-last question (hint)
Show that the Markov chain in Exercise 1.3.4 is transient and deduce that P;(X,, — co as n — oco) = 1 given

Xo =iforanyi > 1.
We want to prove that

P(X,—o0 as n—oo) = 1, VieS={0,1,2,..}

e Xp,—00 as n—oo P—a.s, Vi (1)

Fix i and focus on (1).

i.e.,, we want to prove that X,,(w) — co as n — oo for almost every w under P;(Vi).

f } t f t f } } time line

Want to show that for each k£ > 1, X,,(w) > k for all n sufficiently large for almost every w under F;, i.e., X,
should visit states in [ 0,k] only finitely many times P;-a.s.

Want to prove P;(X,, iseventually notin [0,k]) =1 for each k > 1, (Vi)



Read Ch 1.4, 1.5-1.10.

3 Strong Markov Property

X Markov process (A, P).

3.1 Stopping Times (Optional Times)
A stopping time (with respect to X) is a function T : Q@ — {0,1,2...} U {oo} such that for eachm =0, 1,2...

{T'=m} ={w e Q:T(w) =m} depends only on Xg, X1, ..., Xpn.
Example:
Fix statej: 77 =inf{n >1: X, = j} is a stopping time.

Check
Fixm € {0,1,2,...}

{TP=m} = 0, m = 0.
{Xl #j7X2§éj7"'7Xm—l #.77Xm:.7} le

The following is not in general a stopping time: T; = sup{n > 1: X, =i} = last time visit i.
To determine the event {T; = m}, you need to know that happens to X after m, and so this is not a stopping time
in general.

3.2 Strong Markov Property

Let T be a stopping time relative to the Markov chain X. Conditioned on T' < oo and Xv = 4, (X74n)22, is a
Markov chain with parameters (J;, P). ¢; = point mass at1i, i.e.,

P(XTJrn = Jns XTan—1 = Jn—1y - , X1 = Jo | Xo =10, X1 =101,m... S Xp=14,T < OO) (2)

some event in the future beyond T event in the past up to 7' < oo.

:H(Xn:jna Xn—l Zjn_l, ..... ,XO =j0)7 VnZO,jo,jl,...jn, io,il,...i.

Proof:
(T <o} = |J{T=m}
m=0

Want to prove (2). It is equivalent to :

P(XTJrn = Jns XThn—1 = Jn—1,---- s X1 = Jo, X0 =10, X1 = 11, ceeeen S Xp=14,T < OO)
:Pz(Xn :jn, Xn,1 :jnfl, ..... ,XQ :jo)*P(XOZiQ,Xlzil, ...... ,XT:i,T<OO).



Enough to show for eachm =0,1,2, ...

P(X7in = Jny XT4n—1=Jn-1, s X7 = jo; Xo = 10, X1 = i1, eoo., X7 = 4, T = m)
:R(Xn :jn, Xn,1 :jnfl, ..... ,XO :jo)*P(XOZio,Xlzil, ...... ,XT:i,T:m). (3)

In time subscripts, can replace T by m in the above on {T" = m} and then (3) follows by regular Markov
property. [

3.3 Stationary Distribution

Assume M.C. is irreducible and positive recurrent (not necessarily aperiodic). Let

Ty =inf{n>1:X, =k}

T} time to return to k.

Tr—1
N = Ek{ > 1{Xn_i}], keS,ieS

n=0

7k: amount of time you spend in i before come back to k.
By Theorem 1.7.5 we have the following: v¥ = 1 and for

7

P =~% (invariant).

Since X is positive recurrent,

Tr—1
Z’Yf = Z Ej, {Z 1{Xn—i}]
n=0

i€s ies

- Tp—1

= By | Zl{xn—i}] @)
- 1€S n=0
CTyp—1

= Ej Z Zl{Xn—i}]
- n=0 i€S
Tp—1

_ B 1] 5)
- n=0

= Ey [Tk] =mi < oo (because positive recurrent)

So,

k
T, = FY—Z, 1 €S.
mg
is a stationary distribution. (normalized for elements to sum to 1.)
Irreducibility gives that 7 is unique (needs an argument - see text). Then we must have 7, = mik foreachk €S,
is the unique stationary distribution.



3.4 ERGODIC Thm:

Assume M.C. is positive recurrent and irreducible.
Fix starting state 1.
Fix state k € S,

k k k
T3 T; T e
m m
+ + + + + + + + time line
WE WE WE e,

Ty =inf{n>0:X, =k}

first time, X is in k.
TF : amount of time between the first and 2nd visits to k. Ty : amount of time between the 2nd and 3rd visits
tok.... Let

waiting time till the (n 4 1)th visit to k. Let
Wk o= o

By the strong Markov property { T} }°°, are i.i.d with finite mean my, = E; [ T} ].

S.L.L.N (Strong Law of Large Nos)

P, —a.s.
n
1 k
—g T° —my as n— oo.
n
=1

So,

k
—2 —mg as n—oo, P;—a.s
n

What was the time of the last visit to k before n?

+ + + + time line
k . k
Wy, -1 " fized Wy, (n)

n—1
Vie(n) = Z lix,—k} — 00 asn— oo (byrecurrence)
1=0

Vi(n) : number of visits to k up to time n-1.



SO
W1 <1 < W
Divide by Vi (n),

k k
Wim-1 _ n_ Wiw
Vie(n) Vi(n) = Vi(n)

Both the extreme left and extreme right expressions tend to my P;-a.s., as n — oo, because Vj(n) tends to
infinity P;-a.s. as n — oo, and Wzk /¢ tends to my, P;-a.s. as ¢ tends to infinity, hence the composition tends to my,
P;-as. asn — oc.

Thus,
n
—— —mg as n—oo P,—a.s.
Vi(n)
1
Vi(n) —— as n—ooo P,—a.s.
n mi



