MATH 285 Lecture Notes

Notetaker: Anastasiya Vershenya
Assistant Notetaker: Brandon Wiedemeier

June 6, 2007

Optional Stopping

Given a filtration, $\left\{F_{n}, n=0,1,2, \ldots\right\}$, a stopping time (optional time) (relative to the filtration) is a random variable.
$\mathrm{T}: \Omega \longrightarrow\{0,1,2, \ldots\} \cup\{\infty\}$
such that for each $n=0,1,2, \ldots,\{T=n\}=\{\omega \in \Omega: T(\omega)=n\} \in F_{n}$.

Simple Stopping Theorem

Suppose $M=\left\{M_{n}, F_{n}, n=0,1,2, \ldots\right\}$ is a martingale and T is a stopping time relative to $\left\{F_{n}\right\}_{n=0}^{\infty}$.
Assume there is a constant K such that $T \leq K$ a.s. then $E\left[M_{T}\right]=E\left[M_{0}\right]$.
Here $\left(M_{T}\right)(\omega)=\left(M_{T(\omega)}\right)(\omega)$
Coin Flipping Example
If $\omega=$ TTTHT, then for $\tau=\inf \left\{n \geq 0: x_{n}=H\right\}, \tau(\omega)=4$

Example

$\left\{\xi_{i}\right\}_{i=1}^{\infty} \operatorname{iid} P\left(\xi_{i}=+1\right)=p, P\left(\xi_{i}=-1\right)=q$ where
$p+q=1,0<p<1, p \neq q$
$\mu=E\left[\xi_{i}\right]=p-q \neq 0$
$X_{n}=x+\sum_{i=1}^{n} \xi_{i}$ where x is an integer between 0 and $b(b>0$ integer $)$

$M_{n}=X_{n}-n \mu, n=0,1,2, \ldots$
$F_{n}=\sigma\left\{X_{1}, \ldots, X_{n}\right\}, n=1,2, \ldots$
$F_{0}=\{\emptyset, \Omega\}=\sigma\left\{X_{0}\right\}$
Claim
$\left\{M_{n}, F_{n}, n=0,1,2, \ldots\right\}$ is a martingale.
$T=\inf \left\{n \geq 0: X_{n}=0\right.$ or $\left.b\right\}$
T is a stopping time
Fix $n \in\{0,1,2, \ldots\}$
$\{T=n\}=\left\{X_{0} \notin\{0, b\},\left\{X_{1} \notin\{0, b\}, \ldots, X_{n-1} \notin\{0, b\}, X_{n} \in\{0, b\}\right\} \in F_{n}\right.$

Theorem

Suppose S and T are two stopping times. Then $S \wedge T$ is also a stopping time. Also any deterministic time is a stopping time. Thus $T \wedge N$ is a stopping time for each $N \in\{0,1,2, \ldots\}$.
So $T \wedge N \leq N$ and can apply stopping theorem to obtain $E\left[M_{T \wedge N}\right]=E\left[M_{0}\right]$
$M_{n}=X_{n}-n \mu$ and $M_{0}=X_{0}=x$
$\Longrightarrow E\left[X_{T \wedge N}-(T \wedge N) \mu\right]=x$
$\left|X_{T \wedge N}\right| \leq b$, then $E\left[X_{T \wedge N}\right]-E[(T \wedge N) \mu]=x$
$\mu E[T \wedge N]=E\left[X_{T \wedge N}\right]-x$
($)) E[T \wedge N]=\frac{E\left[X_{T \wedge \Lambda}\right]-x}{\mu}$
$\left|\frac{E\left[X_{T \wedge N}\right]-x}{\mu}\right| \leq \frac{b+x}{|\mu|}$
$E[T \wedge N] \leq \frac{b+x}{|\mu|}$
Let $N \rightarrow \infty$, by Monotone Convergence.
$E[T]=E\left[\lim _{N \rightarrow \infty} T \wedge N\right]$
By Monotone Convergence Theorem
$E[T]=\lim _{N \rightarrow \infty} E[T \wedge N] \leq \frac{b+x}{|\mu|}<\infty$
$\Longrightarrow T<\infty$ a.s. and in fact $E[T]<\infty$
Let $N \rightarrow \infty$ in (\star)
$E[T \wedge N]=\frac{E\left[X_{T \wedge N]-x}\right.}{\mu}$
As $N \rightarrow \infty$ by Monotone Convergence
$E[T \wedge N] \rightarrow E[T]$
$(T \wedge N)(\omega) \rightarrow T(\omega)$ as $N \rightarrow \infty$ for a.e. ω
$\left(X_{T \wedge N}\right)(\omega) \rightarrow X_{T}(\omega)$
As $N \rightarrow \infty$ by Bounded Convergence
$\frac{E\left[X_{T \wedge N}\right]-x}{\mu} \rightarrow \frac{E\left[X_{T}\right]-x}{\mu}$
$\Longrightarrow E[T]=\frac{E\left[X_{T}\right]-x}{\mu}$
so $E[T]=\frac{b P_{x}\left(x_{T}=b\right)-x}{\mu}$

[Martingale $Q_{n}=\left(\frac{q}{p}\right)^{x_{n}}$] when T is finite w.p. 1 gives $P\left(x_{T}=b\right)$
Brownian Motion - continuous time, continuous state (Wiener Process).
$S=\Re$ (one dimensional)
Stochastic Process $\left\{B_{t}, t \geq 0\right\}$

Definition

A standard one dimensional Brownian Motion is a stochastic process $\left\{B_{t}, t \geq 0\right\}$ taking values in \Re, such that
(i) $B_{0}=0$ a.s.
(ii) (independent incerements)

$\left\{B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, \ldots, B_{t_{n}}-B_{t_{n-1}}\right\}$ are independent for any $0=t_{0}<t_{1}<\ldots<t_{n}$ and any $n=1,2, \ldots$
(iii) For any s, $\mathrm{t}, 0 \leq s<t<\infty$
$B_{t}-B_{s}$ is a normal r.v. with mean 0 and variance $t-s$ (stationary increment)
(iv) a.s., $t \rightarrow B_{t}$ is continuous
(\star) a.s., $t \rightarrow B_{t}$ is not differentiable at any t.

Evidence for (\star)

Fix $t>0$
$\frac{B_{t+h}-B_{t}}{h} \stackrel{d}{=} \frac{B_{h}}{h} \stackrel{d}{=} \frac{\sqrt{h} B_{1}}{h} \stackrel{d}{=} \frac{B_{1}}{\sqrt{h}} \rightarrow \pm \infty$ as $h \rightarrow 0$
$" \frac{d B_{t}}{d t} "=$ white noise does not really exist.
$\int f(t) d B_{t}=\int f(t) " \frac{d B_{t}}{d t} " d t$.

