MATH 285A: Lecture 13

Ruth J.Williams

May 16, 2007

Prepared by Mathew Krems and Danying Shao

Recall from last time:
Q-matrix

$$
\left(\begin{array}{ccc}
\ddots & & \\
& Q_{i i} & Q_{i j} \\
& & \ddots
\end{array}\right) \leftarrow \text { row sum }=0 ; \quad Q_{i i}=-q(i)
$$

$\underline{(P, q)}$
$q(i)=-Q_{i i}$, for all $i \in \mathbb{S}$.

$$
P_{i j}= \begin{cases}\frac{Q_{i j}}{q_{(i)}}, & i \neq j, q(i) \neq 0 \\ 0, & i=j, q(i) \neq 0 \\ 0, & i \neq j, q(i)=0 \\ 1, & i=j, q(i)=0\end{cases}
$$

EXAMPLES

1. POISSON PROCESS - Start from 0;

- Radioactive decay, telephone calls, \# hits on website...
- $\mathrm{N}(\mathrm{t})=\#$ events that have occurred up to time t ;
- Interevent times are given by an sequence of i.i.d. exponential random variables.

Typical sample path:

$\left\{T_{i}\right\}_{i=1}^{\infty}$ are i.i.d. exponential with parameter $\lambda>0$.

$$
P(T>t)=e^{-\lambda t}, t \geq 0
$$

Continuous time M.C.
$\mathbb{S}=\mathbb{N}=\{0,1,2, \ldots\}$

$$
Q=\left(\begin{array}{ccccc}
-\lambda & \lambda & 0 & \cdots & 0 \\
0 & -\lambda & \lambda & 0 & \\
0 & 0 & -\lambda & \lambda & \\
\vdots & & & \ddots & \ddots \\
0 & & & & \ddots
\end{array}\right)
$$

$q(i)=\lambda, \forall i$.
Non-explosion since $\sup _{i} q(i)<\infty$.
Theorem. If N_{1}, N_{2} are independent Poisson processes with parameters λ_{1} and λ_{2}, then $N=N_{1}+N_{2}=\left\{N_{1}(t)+N_{2}(t), t \geq 0\right\}$ is a Poisson process with parameter $\lambda_{1}+\lambda_{2}$.

Sketch of part of the proof:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~N}(\mathrm{t}+\mathrm{h})-\mathrm{N}(\mathrm{t})=1 \mid \mathrm{N}(\mathrm{~s}): \mathrm{s}<\mathrm{t}) \quad h \text { small } \\
& =\mathrm{P}\left(\mathrm{~N}_{1}(\mathrm{t}+\mathrm{h})-\mathrm{N}_{1}(\mathrm{t})=1, \mathrm{~N}_{2}(\mathrm{t}+\mathrm{h})-\mathrm{N}_{2}(\mathrm{t})=0 ; \text { or } \mathrm{N}_{1}(\mathrm{t}+\mathrm{h})-\mathrm{N}_{1}(\mathrm{t})=0, \mathrm{~N}_{2}(\mathrm{t}+\mathrm{h})-\mathrm{N}_{2}(\mathrm{t})=1 \mid \mathrm{N}(\mathrm{~s}): \mathrm{s} \leq \mathrm{t}\right) \\
& =\mathrm{P}\left(\mathrm{~N}_{1}(\mathrm{t}+\mathrm{h})-\mathrm{N}_{1}(\mathrm{t})=1, \mathrm{~N}_{2}(\mathrm{t}+\mathrm{h})-\mathrm{N}_{2}(\mathrm{t})=0\right)+\mathrm{P}\left(\mathrm{~N}_{1}(\mathrm{t}+\mathrm{h})-\mathrm{N}_{1}(\mathrm{t})=0, \mathrm{~N}_{2}(\mathrm{t}+\mathrm{h})-\mathrm{N}_{2}(\mathrm{t})=1\right) \\
& =\mathrm{P}\left(\mathrm{~N}_{1}(\mathrm{t}+\mathrm{h})-\mathrm{N}_{1}(\mathrm{t})=1\right) \mathrm{P}\left(\mathrm{~N}_{2}(\mathrm{t}+\mathrm{h})-\mathrm{N}_{2}(\mathrm{t})=0\right)+\mathrm{P}\left(\mathrm{~N}_{1}(\mathrm{t}+\mathrm{h})-\mathrm{N}_{1}(\mathrm{t})=0\right) \mathrm{P}\left(\mathrm{~N}_{2}(\mathrm{t}+\mathrm{h})-\mathrm{N}_{2}(\mathrm{t})=1\right)
\end{aligned}
$$

\ (independenceof N_{1} and N_{2})
$=\left(\lambda_{1} \mathrm{~h}\right)\left(1-\lambda_{2} \mathrm{~h}\right)+\left(1-\lambda_{1} \mathrm{~h}\right) \lambda_{2} \mathrm{~h}+o(\mathrm{~h})$
$=\lambda_{1} \mathrm{~h}+\lambda_{2} \mathrm{~h}+o(\mathrm{~h})$
$=\left(\lambda_{1}+\lambda_{2}\right) \mathrm{h}+o(\mathrm{~h})$
$\Rightarrow Q_{i, i+1}=\lambda_{1}+\lambda_{2}$
$P(N(t+h)-N(t) \geq 2 \mid N(u): u \leq t)=o(\mathrm{~h})$
$\Rightarrow \mathrm{Q}_{\mathrm{ij}}=0, \forall j>i+1$;
clearly, $Q_{i j}=0, \forall j<i$;
$Q_{i i}=-\left(\lambda_{1}+\lambda_{2}\right)$.

Q matrix for $N_{1}+N_{2}$

$$
Q=\left(\begin{array}{cccc}
-\left(\lambda_{1}+\lambda_{2}\right) & \left(\lambda_{1}+\lambda_{2}\right) & 0 & \cdots \\
0 & -\left(\lambda_{1}+\lambda_{2}\right) & \left(\lambda_{1}+\lambda_{2}\right) & 0 \\
\vdots & & \ddots & \ddots \\
& & & \\
& & &
\end{array}\right)
$$

2. BIRTH-DEATH PROCESS

$\mathbb{S}=\mathbb{N}=\{0,1,2, \ldots\}$
-epidemic models ($X_{t}=\#$ infectives);
-queueing models;
-biochemical reactions...

$$
\begin{aligned}
& Q=\left(\begin{array}{cc}
\ddots & \\
0 \cdots \mu_{i}-\left(\lambda_{i}+\mu_{i}\right) & \lambda_{i} \cdots \\
& \cdots
\end{array}\right) \\
& Q_{i j}= \begin{cases}\lambda_{i}, & \text { if } j=i+1 \\
\mu_{i}, & \text { if } j=i-1, i \geq 1 \\
-\left(\lambda_{i}+\mu_{i}\right), & \text { if } j=i \\
0, & \text { else. }\end{cases}
\end{aligned}
$$

Assume that $\mu_{0}=0$ here (for convenience of notation).
Given Markov Chain is in state i, exponential alarm clock goes off at rate $\lambda_{i}+\mu_{i}$. When about to jump, go to $\mathrm{i}+1$ with probability $\frac{\lambda_{i}}{\lambda_{i}+\mu_{i}}$ and to $\mathrm{i}-1$ with probability $\frac{\mu_{i}}{\lambda_{i}+\mu_{i}}$.
(i) Pure Birth $\mu_{i}=0, \forall i$.

Poisson process: $\lambda_{i}=\lambda, \forall i$
(ii) Pure Death $\lambda_{i}=0, \forall i$
(iii) Yule Process (pure birth)
$\lambda_{i}=i \lambda, \forall i$
$X_{t}=\#$ individuals at time t .
Note: $\sup _{i}(i \lambda)=+\infty$. However, does not explode in finite time as $\sum_{i} \frac{1}{i \lambda}=+\infty$.
(Use theorem that shows that for pure birth processes, explosion occurs almost surely, if and only if $\sum_{i} \frac{1}{\lambda_{i}}<+\infty$.)

(iv) Simple Biochemical Reaction

One type of molecule A
$\emptyset \xrightarrow{\lambda} A$
$A \xrightarrow{\mu} \emptyset$ (degradation)
$X_{t}=\#$ molecules of A present at time t.

$$
\begin{aligned}
\lambda_{i} & =\lambda, \forall i \\
\mu_{i} & =i \mu, \forall i
\end{aligned}
$$

