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Introduction

1.1 Definition

One can think of a stochastic process as a dynamic model for a random phenomenon. A key feature

is that the random state of the system can vary with a parameter that is typically thought of as

time.

More precisely, a stochastic process is a collection of random variables X ≡ {Xt : t ∈ T}. We

sometimes write Xt as X(t).

Here T is the index set and usually this is a set of times at which the stochastic process is

observed. Accordingly we shall refer to T as the time index set. Examples of common index sets

are T = {0, 1, 2, . . . , T} for some finite positive integer T , T = {0, 1, 2, . . .} ≡ N,

T = {. . . ,−2,−1, 0, 1, 2, . . .} ≡ Z, T = [0, T ] for some finite positive real number T , T = [0,∞) ≡

R+ and T = (−∞,∞) ≡ R. The first three examples are where the index set is discrete (i.e., finite

or countably infinite) and the last two are examples where the index set is continuous (in general,

we will abuse terminology somewhat and use continuous to mean not discrete). The index can be

even more general, e.g., it can be d-dimensional Euclidean space Rd, or a subset thereof, and then

X is called a random field.

The random variables Xt, t ∈ T, take values in a set S called the state space. In specifying the

set S one needs to also give a measurable structure described by a σ-algebra S of subsets of S.

Examples of common state spaces are S = N, S = Z, S = R, and their multidimensional analogues

S = Nd, S = Zd and S = Rd. The state spaces N, Z, Nd, Zd are discrete, being countable, and usually

are endowed with the power set (the collection of all possible subsets of S) as the σ-algebra S. The

state spaces R, Rd are continuous and are usually endowed with their Borel σ-algebras, which are

the smallest σ-algebras containing all of the open sets (or even open balls). The state space can
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2 1. INTRODUCTION

be even more general, e.g., it could be a Polish space (a complete separable metric space) endowed

with the σ-algebra generated by the open sets. An example of such a space is the set of probability

measures on the real line endowed with the topology of weak convergence.

The random variables {Xt, t ∈ T} are all defined on the same probability space (Ω,F , P ), where

Ω is the sample space, F is the collection of events (subsets of Ω to which we can assign probabilities)

and P is the probability measure on (Ω,F). The collection F is a σ-algebra, i.e., it contains the

empty set and the whole space Ω, it is closed under taking complements and countable unions. The

condition that Xt is a random variable means that the mapping Xt : Ω → S is measurable, i.e., for

each set A ∈ S, X−1

t (A) ≡ {ω ∈ Ω : Xt(ω) ∈ A} is in F .

Frequently, in accord with common practice, we shall use the term process rather than the longer

term stochastic process and we shall often suppress explicit indication of the dependence of Xt(ω)

on ω ∈ Ω.

1.2 Classification

It is convenient to classify stochastic processes according to whether their time index sets are discrete

or continuous (i.e., not discrete) and as to whether their state spaces are discrete or continuous (i.e.,

not discrete). Here we mention some examples in each category to provide a guide to the reader.

Some terms used here have not yet been defined, but they will be defined when the processes are

introduced later in the course.

Markov chains are an important class of discrete state stochastic processes. The term chain

signals that the state space is discrete. There are discrete time and continuous time Markov chains.

Simple random walk is an example of the former, whereas Poisson processes provide examples of

the latter. Renewal processes are more general continuous time, discrete state stochastic processes

than Poisson processes and are generally not Markov chains (except in the case when they coincide

with Poisson processes).

Time series, frequently used in economics, provide examples of discrete time stochastic processes

that may have either discrete or continuous state, depending on the variables being modeled. Ex-

amples of discrete time stochastic processes that have continuous state are processes that record

successive lifetimes of a component or that record successive arrival times.

Sometimes even though the state space for a stochastic process is discrete, the distance between

values in the state space may be so small that it is more convenient to embed the discrete states in

a continuous state space and use that instead.

Stochastic processes that are continuous in time and state are often used to model dynamic
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phenomena that change in a continuous manner and yet are subject to infinitesimal stochastic dis-

turbances. Dynamical systems subject to noise are the most common examples of this. Frequently

the driving noise in such equations is modeled by Brownian motion — an important continuous time,

continuous state stochastic process. Usually the associated solution of the equation is a Markov

process.

Some processes move by jumping at random times (taking a continuum of values) where the

jump sizes can also take values in a continuum. Such processes are naturally modeled using a

stochastic process with continuous time index and a continuous state space, although the dynamics

will typically be governed by an integral equation rather than a differential equation. Lévy processes

are examples of continuous time, continuous state processes that typically have some jumps (except

when they reduce to Brownian motion) and which can be the source of noise in an integro-differential

equation governing the state of a system. Often the solution of such an equation is a Markov process

(with jumps).

Gaussian processes have special distributional characteristics. They have continuous state, but

can have either discrete or continuous time index. Brownian motion is an example of a continuous

time, continuous state Gaussian process, and it is also a Markov process.

Study of processes that have discrete state often involves algebraic or combinatorial manipula-

tions. Processes that are continuous in state and time often involve (continuous) analysis, especially

partial differential equations.

1.3 Examples

To illustrate the flexibility in modeling provided by stochastic processes, we give some examples here

of stochastic processes arising in applications. Our aim is simply to briefly describe the motivating

application and to identify a useful stochastic process for the problem of interest.

Example 1: Molecular Biology.

A segment of DNA consists of a finite sequence of letters, where each entry in the sequence

is taken from a finite alphabet {A, C, G, T}. We are interested in modeling the evolution of a

particular segment of DNA with each generation. Describe a stochastic process that will model this

time evolution.

Suppose that the segment of DNA is of length m, i.e., it is a finite sequence of length m. Let

A = {A, C, G, T} and S = Am, the m-fold product of A’s. Endow Am with the power set as its

σ-algebra. A given segment of DNA is regarded as an element of Am. Let T = {0, 1, 2, . . .}. For

each n ∈ T, let Xn denote the DNA segment realized in the nth generation, where n = 0 corresponds
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to the original ancestor.

The manner in which the state Xn evolves with time will depend on what modeling assumptions

one makes about the forces governing evolution, such as mutation. An example of a question that

one might ask is: given an observation of XN at generation N , what is the most likely ancestor X0

to have produced this observation?

Example 2: Earth Science.

The temperature is recorded at 20 locations in the Pacific Ocean on a daily basis. Describe a

stochastic process that keeps track of these measurements.

Let T = {0, 1, 2, . . .} and S = R20
+ endowed with the Borel σ-algebra. Let Xn denote the 20-

dimensional vector recording the temperatures at each of the 20 locations on day n, where day 0 is

the initial day.

Example 3: Discrete Event Systems.

Stochastic processes that count the number of discrete events that have happened by a given

time t ∈ T = R+ arise naturally in various scientific and engineering applications. Here S = N. For

example, in computer science, Xt can be the number of hits on a web site by time t, or in operations

research it can be the number of phone calls waiting to be answered by a call center at time t, or

in epidemiology it can be the number of people infected by a disease at time t.

Example 4: Simplified Model of Neuron Firing (stochastic Bonhoeffer-Van der Pol

oscillator).

A simplified stochastic version of the four-dimensional Hodgkin-Huxley model of neuron firing

has state descriptor X(t) = (X1(t), X2(t)), where X1(t) denotes the negative of the membrane

voltage at time t and X2(t) is the membrane permeability, and

dX1(t) = c

(

X1(t) + X2(t) −
1

3
(X1(t))

3 + z

)

dt + σdW (t), (1.1)

dX2(t) = −
1

c
(X1(t) + bX2(t) − a) dt, (1.2)

and W is a one-dimensional Brownian motion. Here z, a, b, c, σ > 0 are constants and T = R+ and

S = R2. (See the web page for examples of the behavior of solutions to these equations. The plots

shown illustrate for a given realization ω, the movement of the position (X1(t, ω), X2(t, ω)) as time

t evolves.)
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1.4 Ways of Viewing and Describing Stochastic Processes

There are several different ways of thinking about a stochastic process {Xt, t ∈ T} as described

below.

(i) For each fixed t, Xt : Ω → S is a random variable.

(ii) For each fixed ω ∈ Ω, t → Xt(ω) is a function from T into S. Such a function is called a sample

path of X. For a continuous time process, often the sample paths have some regularity, e.g.,

continuity or at least right continuity.

(iii) X : T × Ω → S is a function given by X(t, ω) = Xt(ω).

The relationship between the random variables Xt, t ∈ T is usually an important aspect of a

stochastic process. Statistically, one often cares about the finite-dimensional distributions associated

with X, i.e., the distributions of the random vectors (Xt1
, . . . , Xtn) for each finite set {t1, . . . , tn} ⊂

T. These finite dimensional distributions determine the probability law of the process. (This law can

be regarded as a probability measure on ST.) Usually one does not write down the finite dimensional

distributions, but rather specifies some rule for determining the law of the process or constructs a

new process by transformation of some process whose law is already known. Sometimes, sufficient

information for useful analysis of a process is provided by the mean function mt = E[Xt], t ∈ T,

and covariance function R(s, t) = E[XsXt] − E[Xs]E[Xt], s, t ∈ T, for a process (assuming the

expectations involved exist and are finite).

1.5 What to get out of this course

This course aims to provide you with (a) concrete knowledge of some common stochastic processes

used in modeling, (b) examples of applications involving stochastic processes, (c) ways of visualizing

stochastic processes, and (d) methods for the analysis of stochastic processes.


