10 1. Lhscrete-time Markov Cnaans

Someone suggests that the record of successive choices (a sequence of As
and Bs) might arise from a two-state Markov chain with constant transition
probabilities. Discuss, with reference to the valub of P,+1(A) that you have

found, whether this is possible.

1.1.7 Let (Xn)n>0 be & Markov chain on {1,2,3} with transition matrix

0 1 0
P=1{0 2/3 1/3].
p 1l-p O

Caleulate P(X, = 1|Xo = 1) in each of the following cases: (a) p =1 /16,
(b) p=1/6, (c) p=1/12.

1.2 Class structure

It is sometimes possible to break a Markov chain into smaller pieces, each
of which is relatively easy to understand, and which together give an un-
derstanding of the whole. This is done by identifying the communicating

classes of the chain.
We say that i leads to j and write 1 — j if

P;(X,, = j for some n > 0) > 0.

We say ¢ communicates with j and write ¢ & j if both i — j and j — 4.
Theorem 1.2.1. For distinct states i and j the following are equivalent:
(@) i—74;
(11) PigisPiyia -+ - Pinyin > O for some states ig, 4y, .. ,in with ip = ¢ and
in=J;
(ii) “&wv > 0 for some n = 0.
Proof. Observe that

o
,am._v <Pi(X, =j forsomen > 0) < MU@MMV

n=0
which proves the equivalence of (i) and (iii). Also

em.an MU PityPirig -« + Pin—1j

i1y yin-1

so that (i) and (jii) are equivalent. [J
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It is clear from (i) that 4 — j and j — & 1
any state i. So «» satisfies the conditions for a:
and thus partitions I into communicating claas.
closed if

1€Ci—j implyje
Thus a closed class is one from which there
absorbing if {1} is a closed class. The smaller ]
these communicating classes. A chain or transi
single class is called irreducible.

As the following example makes clear, when
the class structure of a chain is very easy to fin

Example 1.2.2

Find the communicating classes associated to t]

11000

M 0100

_ 0 0 & &

P=10o00 ]l

0 00 00O

0 0001

The solution is obvious from the diagram
1 4
3
2 5

the classes being {1,2,3}, {4} and {5,6}, with ¢
Exercises

1.2.1 Identify the communicating classes of the f

"u

I
W= O O O
ORI OV O

0
0
1
1
1
0

O bl Ok O
Wl O O ok

Which classes are closed?
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It is clear from (ii) that ¢ — j and j — k imply ¢ — k. Also i — i for
any state i. So « satisfies the conditions for an eqyivalence relation on I,
and thus partitions I into communicating classes. 'We say that a class C is
closed if

ieCii—j implyjeC.
Thus a closed class is one from which there is no escape. A state 7 is
absorbing if {i} is a closed class. The smaller pieces referred to above are
these communicating classes. A chain or transition matrix P where I is &
single class is called irreducible.

As the following example makes clear, when one can draw the diagram,
the class structure of a chain is very easy to find.

Example 1.2.2

Find the communicating classes associated to the stochastic matrix

140000
0 01 0 00O
3003 20
=3 .
P 0 00 W .w. 0
0 0 00 01
000010
The solution is obvious from the diagram
1 4
3
2 5 6

the classes being {1,2,3}, {4} and {5, 6}, with only {5,6} being closed.

Exercises

1.2.1 Identify the communicating classes of the following transition matrix:

"o
It
Nk O O ON-
O e ON- O
O &t ONI— O
Bi-hie O O i

Ot = O

Which classes are closed?
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1.2.2 Show that every transition matrix on & finite state-space has at least
one closed communicating class, Find an example of a transition matrix

with no closed communicating class. A

1.3 Hitting times and absorption probabilities

Let (Xn)nzo be a Markov chain with transition matrix P. The hitting time
of a subset A of I is the random variable HA: Q — {0,1,2,...} U {0}

given by
HAw) =inf{n 2 0: Xn(w) € A}

where we agree that the infimum of the empty set @ is co. The probability
starting from ¢ that (Xn)nzo ever hits A is then
he = P;(H* < ).

When A is & closed class, k7 is called the absorption probability. The mean
time taken for (Xn)nxo to reach A is given by

Kt =E(HA) = Y nP(HA=n)+ ocP(HA = o).

n<oo
We shall often write less formally
h# = Pi(hit A), k* = Eq(time to hit A).

T

Remarkably, these quantities can be calculated explicitly by means of cer-
tain linear equations associated with the transition matrix P. Before we

give the general theory, here is & simple example.

Example 1.3.1
Consider the chain with the following diagram:

—
[N
(= L

e

Starting from 2, what is the probability of absorption in 47 How long does
it take until the chain is absorbed in 1 or 4?

Introduce

h; = P;(hit 4), ki= E;(time to hit ﬁ;#wv.

do0 LIBLLEILY LUTILED UTLW WUSUT LLUT

Clearly, hy =0, hy = 1 and k3 = k4 = 0. Supr
and consider the situation after making one ste
jump to 1 and with probability 1/2 we jump tc

ho = }hy+ 4hs, ka=1+;

The 1 appears in the second formula because w
step. Similarly,

}m“wtm.._.w}? ks=1+;:

Hence

hy = 3he = §(3h2 + 3),
ky=1+}ks=1+3(14

So, starting from 2, the probability of hitting 4
absorption is 2. Note that in writing down the
we made implicit use of the Markov property,
begins afresh from its new position after the f
result for hitting probabilities.

Theorem 1.8.2. The vector of hitting proba
the minimal non-negative solution to the syste

A Rt =1 for
hi =Y e pihy for
(Minimality means that if ¢ = (z; : 1 € I) is ¢
for all i, then z; > hy for all i.)
Proof. First we show that h4 satisfies (1.3). I
so hff = 1. If Xo =1 & A, then H4 > 1, s0 by
Pi(H* < o0 | X1 = j) =P;(H’
and
hi = Pi(HA < 00) = Y Py(HA <o
jel

=Y Pi(H* <00 | Xy = j)Pi(X
JjerI
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Clearly, hy =0, hy = 1 and k; = k4 = 0. Suppose now that we start at 2,
and consider the situation after making one step. With probability 1/2 we
jump to 1 and with probability 1/2 we jump to 3." So

he = WS + w#? ke =1+ wwu + wwu.

The 1 appears in the second formula because we count the time for the first
step. Similarly,

ha = w.}w -+ W#f ks =1+ w»ﬁ + Wwa.
Hence

hg
ka

W&m = .WA.W.}N + Wv,
1+ Wku =1+ Wﬁ. -+ w.\nuv

I

So, starting from 2, the probability of hitting 4 is 1/3 and the mean time to
absorption is 2. Note that in writing down the first equations for h2 and ks
we made implicit use of the Markov property, in assuming that the chain
begins afresh from its new position after the first jump. Here is a general
result for hitting probabilities.

Theorem 1.3.2. The vector of hitting probabilities h4 = (hf 1 i € I) is
the minimal non-negative solution to the system of linear equations

A:wnw forie A (1.3)

\Nmb = Mum~ﬁ€\~mﬁ fori m A.

.

(Minimality means that if z = (z; : i € I) is another solution with z; > 0
for all i, then «; > hy for all 1.)

Proof. First we show that h* satisfies (1.3). If Xo =i € A, then HA =0,
s0 hf = 1. If Xo =i & A, then H# > 1, so by the Markov property
Pi(HA < 00| X1 = j) = P;(HA < 0) = hf
and
i =Py(HA < 00) = ) Pi(H* < 00, X1 = j)
jel

= Y Pi(HA <oo| Xy = j)PlX1 =5) = D _pishi-
Jer i€l
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Suppose now that & = (z: 1 € I) is any solution to (1.3). Thenhf! =z, =1
for i € A. Suppose ¢ € A, then

i
: A
z; = Mu?.n& = MJ\?. + M Dij %5
jel JEA J€A
Substitute for z; to obtain

zy = Mw: + Mv&. AM Djk + M,\Eaaav

jeA J€A kEA kgA

SPi(Xi € A)+Pi(Xi g A X2 € A)+ DD DisPiksk.
JEAKEA

By repeated substitution for z in the final term we obtain after n steps
g=PiX1 e A)+.. +P(X1 €A Xn1 €A X E A)

+ MU cas M.J\ Pij1Pirda + + * Pin-13n%dn

hEA  jn€A

Now if z is non-negative, so is the last term on the right, and the remaining
terms sum to P;(H# < n). So =z 2 Pi(H A < p) for all n and then

z; > lim Py(HA < n) =Pi(HA < o0) = hs. m]

n=—od

Example 1.3.1 (continued)
The system of linear equations (1.3) for h = h{4} are given here by

\.f = H,
he = wv; + W.}.u, hg = w}m + wr&

so that

il

ha W‘S.TW@.\S.TWV

and

aunw+w§r hs = % + 3h.

The value of h, is not determined by the system (1.3), but the minimality
condition now makes us take hy = 0, so we recover hy = 1/3 as before. Of
course, the extra boundary condition hy = 0 was obvious from the beginning

so we built it into our system of equations and did no
minimal non-negative solutions.

In cases where the state-space is infinite it may nc
down a corresponding extra boundary condition. Tt
the next examples, the minimality condition is essent
Example 1.8.3 (Gamblers’ ruin)

Consider the Markov chain with diagram

q9 P 9 b g Pp
L s smmen e o o ]

0 1 i i+l

where 0 < p = 1 — ¢ < 1. The transition probabilities

Poo = .._._

Pii-1=¢, Piytr=p fori=12,
Imagine that you enter a casino with a fortune of £i
time, with probability p of doubling your stake and |

it. The resources of the casino are regarded as infinite
limit to your fortune. But what is the probability th:

Set h; = P;(hit 0), then A is the minimal non-nega

ho =1,
hi = phiy1 + qhi—1, fori=1,2,.

If p # ¢ this recurrence relation has a genera] solutio:

3u>+mA$.
P

(See Section 1.11.) If p < g, which is the case in m¢
then the restriction 0 < h; < 1 forces B=0,80 h; =
then since hg = 1 we get a family of solutions

we ()4 -6))

for a non-negative solution we must have 4 > 0,
negative solution is h; = (¢/p)*. Finally, if p = g tt
has a general solution

h; = A+ Bi
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80 we built it into our system of equations and did not have to worry about
minimal non-negative solutions.

In cases where the state-space is ipfinite it may got be possible to write
down a corresponding extra boundary condition. Then, as we shall see in
the next examples, the minimality condition is essential.

Example 1.3.3 (Gamblers’ ruin)
Consider the Markov chain with diagram

g P 7 pg P
0 1 i i+l

where 0 < p =1 - ¢ < 1. The transition probabilities are

Poo = H.

Dij-1=¢ Pig+1=p fori=12,....
Imagine that you enter a casino with a fortune of £¢ and gamble, £1 at a
time, with probebility p of doubling your stake and probability ¢ of losing

it. The resources of the casino are regarded as infinite, so there is no upper
limit to your fortune. But what is the probability that you leave broke?

Set h; = P;(hit 0), then A is the minimal non-negative solution to

ho=1,
hi = phiy1 + qhi—y, fori=1,2,....

If p # g this recurrence relation has a general solution

i
hi=A+B A mv :
4
(See Section 1.11.) If p < g, which is the case in most successful casinos,
then the restriction 0 £ h; < 1 forces B=0,80 hy =1 forall i. If p > g,
then since hp = 1 we get a family of solutions

i i
p p

for a non-negative solution we must have A > 0, so the minimal non-
negative solution is h; = (g/p)t. Finally, if p = ¢ the recurrence relation
has a general solution

h;=A+ Bi




[b

and again the restriction 0 < hi < 1 forces B = 0, so h; = 1 for all 4.
Thus, even if you find a fair casino, you are certain to end up broke. This
apparent paradox is called gamblers’ ruin, o+

Example 1.3.4 (Birth-and-death chain)

Consider the Markov chain with diagram

q1 m Gi Pi nwi ?.HH

-3 Pw - -

-
- - e -

0 1 i i+l

where, for i = 1,2,..., we have 0 < p; = 1-¢; < 1. Asin the preceding
example, 0 is an absorbing state and we wish to calculate the absorption
probability starting from 7. But here we allow p; and g; to depend on i.

Such a chain may serve as a model for the size of a population, recorded
each time it changes, p; being the probability that we get a birth before
a desth in a population of size i. Then h; = P;(hit 0) is the extinction
probability starting from 4.

We write down the usual system of equations

hi = pihizy + gihi—y, fori=1,2,....

This recurrence relation has variable coefficients so the usual technique fails.
But consider u; = hi—1 — hi, then piuit1 = it 80

qi ¢igi-1 .- 41
U = — Ug = Uy = YU
- APV ' A?.PL . .Ev 1=mth

where the final equality defines ;. Then

§H+...+§“Fo.|:._.

0
hi=1-A(v+...+7-1)

where A = u; and 4o = 1. At this point A remains to be determined. In
the case M.Uw.oho 44 = 00, the restriction 0 < h; <1 forces A=0and h; =1

for all 4. But if Y5057 < 00 then we can take A > 0 so long as

1- Ao+ +7%-1)20 foralli

Thus the minimal non-negative solution occurs when 4 = (372, ~

then - o
hi = MUQM,\MUS‘. A
J==i i=0

In this case, for i = 1,2,..., we have h; < 1, so the population
with positive probability.

Here is the general result on mean hitting times. Recall th
E,(H4), where H4 is the first time (Xn)n>0 hits A. We use the
1p for the indicator function of B, so, for example, 1x,=; 18 the
variable equal to 1 if X; = j and equal to 0 otherwise.

Theorem 1.3.5. The vector of mean hitting times k4 = (k4 :
the minimal non-negative solution to the system of linear equatio

Awmho forie A
kf =143 qapiski forig A

Proof. First we show that k* satisfies (1.4). If Xo = i € A, then
so kA =0. If Xo =i & A, then H4 > 1, s0, by the Markov propes

E(H* | X = j) = 1+ E;(H?)
and
k= EdHA) =) Ei(H1x,=;)
jel
= STE(HA | X1 = )Pi(X: = 5) = 1+ ) pigk]
jelI JgA
Suppose now that y = (y; : i € I) is any solution to (1.4), Then kf
forice A Ifi ¢ A, then
vi=1+ MU%@.S.
Jjg€A
=1+ py AH + MEE&QV
JgA kgA

=P(HAZ D) +P(HA22)+ > D pispikyk-
JEA kgA

By repeated substitution for y in the final term we obtain after n

= P, A
v =P (H WHV+...+_?..:.&>NBV+M...Mﬁ&.nﬁuini.ﬁu
‘u.um\» .u.:ﬂ.>
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Thus the minimal non-negative solution occurs when A = (32729 %) ! and

then o - F
hi=3_ % \ >
In this case, for i = 1,2,..., we have h; < 1, s0 the population survives

with positive probability.

Here is the general result on mean hitting times. Recall that kff =
E;(H4), where HA is the first time (Xn)n>o0 hits A. We use the notation
1p for the indicator function of B, so, for example, 1x,=; is the random
variable equal to 1 if X; = j and equal to 0 otherwise.

Theorem 1.3.5. The vector of mean hitting times kA= (kA :iel)is
the minimal non-negative solution to the system of linear equations

kf=0 forie A
(1.4)

\ﬂb =14 Muu.mb.ﬁ&\a% fori g A.

Proof. First we show that k4 satisfies (1.4). If Xo =i € A, then H A =0,
so kf =0. If Xo=1i¢ A, then H# > 1, so, by the Markov property,

E(HA | X1 =j) =1+ E;(H*)

and
k& = Ei(HA) =Y Ei(H*1x,~)
jel
= SOE(HA | Xi = )P(Xy = 5) = 1+ 3 pisky'
el JgA

Suppose now that y = (y; : i € I) is any solution to (1.4). Thenkf =¢; =0
forie A. If i & A, then

yi=1+ Pijyj
jgA
=1+ M@&. Ap + MUE?SQV
€A k€A

=P(HA2 1) +Pi(HA22) + 3 > pubsnte:
JEA k€A

By repeated substitution for y in the final term we obtain after n steps

Yi ”%&Am& NHV+...+HTS.A.~N> ..V|§V+ M MU Dij1Pirjz -+ + Pin-1inYin:
STLINEL
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So, if y is non-negative,

and, letting n — oo,

o0
w2 Y Pi(HA 2 1) =Ey(H*) = 2 =
n=1

Exercises

1.3.1 Prove the claims (a), (b) and (c) made in example (v) of the Intro-
duction.

1.3.2 A gambler has £2 and needs to increase it to £10 in a hurry. He
can play a game with the following rules: a fair coin is tossed; if a player
bets on the right side, he wins a sum equal to his stake, and his stake is
returned; otherwise he loses his stake. The gambler decides to use a bold
strategy in which he stakes all his money if he has £5 or less, and otherwise
stakes just enough to increase his capital, if he wins, to £10.

Let Xg = 2 and let X,, be his capital after n throws. Prove that the
gambler will achieve his aim with probability 1/5.

What is the expected number of tosses until the gambler either achieves
his aim or loses his capital?

1.3.3 A simple game of ‘snakes and ladders’ is played on a board of nine
squares.

1.4 Strong Markov ;

At each turn a player tosses a fair coin a:
according to whether the coin lands heads -
of a ladder you climb to the top, but if you
slide down to the tail. How many turns on ¢
the game?

What is the probability that a player whe
will complete the game without slipping ba

1.3.4 Let (X,)n>0 be a Markov chain on {!
bilities given by

por =1, Piiv1+Pii-1=1, DPij+1=
Show that if Xg = 0 then the probability th

1.4 Strong Markov

In Section 1.1 we proved the Markov proper
m, conditional on X, = ¢, the process af
i. Suppose, instead of conditioning on X,
process to hit state ¢, at some random time .
process after time H? What if we replaced
time, for example H — 17 In this section we
times at which a version of the Markov pro;
include H but not H — 1; after all, the p
straight to 4, so it does not simply begin aft

A random variable T : Q — {0,1,2,...}1
if the event {T = n} depends only on Xg,.
Intuitively, by watching the process, you kn
If asked to stop at T, you know when to stc

Examples 1.4.1
(a) The first passage time
T; =inf{n 21: X,
s a stopping time because
{Tj=n}={X1#74,..., Xn

qu The first hittine time HA Af Qortinn 1 2
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At each turn a player tosses a fair coin and advances one or two places
according to whether the coin lands heads or tails. If you land at the foot
of a ladder you climb to the top, but if you land at the wmma of a snake you
slide down to the tail. How many turns on average does it take to complete
the game?

What is the probability that a player who has reached the middle square
will complete the game without slipping back to square 17

1.3.4 Let (Xn)n>0 be a Markov chain on {0,1,...} with transition proba-
bilities given by
i+1)\2 :
por=1, Piit1+Pii-1=1, pig1= Alsllv Pii-1, 121,

Show that if Xy = 0 then the probability that X, > 1 for all n > 1 is 6/x2.

1.4 Strong Markov property

In Section 1.1 we proved the Markov property. This says that for each time
m, conditional on X, = i, the process after time m begins afresh from
i. Suppose, instead of conditioning on X,, = i, we simply waited for the
process to hit state ¢, at some random time H. What can one say about the
process after time H? What if we replaced H by a more general random
time, for example H —~ 17 In this section we shall identify a class of random
times at which a version of the Markov property does hold. This class will
include H but not H — 1; after all, the process after time H — 1 jumps
straight to 4, so it does not simply begin afresh.

A random variable T: Q — {0,1,2,... } U {oo} is called a stopping time
if the event {T' = n} depends only on Xg, X;,... ,X, for n =0,1,2,....
Intuitively, by watching the process, you know at the time when T occurs.
If asked to stop at T, you know when to stop.

Examples 1.4.1
(a) The first passage time
T;=inf{n21:X,=j}
is a stopping time because
{Ti=n}={X1#j,..., Xa1 # 4, Xa =j}.
(b) The first hitting time H4 of Section 1.3 is & stopping time because
{HA=n}={Xo g A,... ,Xn1 € A, X, € A}.




	1.PDF
	2.PDF
	3.PDF
	4.PDF
	5.PDF
	6.PDF
	7.PDF
	8.PDF
	9.PDF
	10.PDF

