MATH 285, SPRING 2007

HOMEWORK 7, due Tuesday, June 12, 2007

This assignment is optional. If you hand it in, the score you receive will replace your lowest score on other assignments.

1. Consider a biased simple random walk on the integers with probability $p<1 / 2$ of moving to the right by one and probability $q=1-p$ of moving to the left by one, at each step. Let S_{n} denote the position of the random walk at time n, for $n=0,1,2, \ldots$.. Then we may represent S_{n} by

$$
S_{n}=x+\sum_{i=1}^{n} \xi_{i}, \quad n=0,1, \ldots
$$

where x is the initial state, $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ are i.i.d. random variables with $P\left(\xi_{i}=+1\right)=p$ and $P\left(\xi_{i}=-1\right)=q$ for each i. Suppose that $0<x<b$ where x and b are positive integers.
(a) Show that $M_{n}=S_{n}+(q-p) n, n=0,1,2, \ldots$ is a martingale with respect to the filtration generated by $S_{n}, n=0,1,2, \ldots$.
(b) Show that $M_{n}=(q / p)^{S_{n}}, n=0,1,2, \ldots$, is a martingale with respect to its own filtration.
(c) Let $T=\inf \left\{n \geq 0: S_{n}=0\right.$ or $\left.b\right\}$. Show that T is a stopping time relative to the filtration generated by $\left\{S_{n}, n=0,1,2, \ldots\right\}$.
(d) Assume that T is finite with probability one. Use the optional stopping theorem and your answer to part (b) to find the probability that the random walk reaches 0 before b.
2. Suppose that $X=\left\{X_{t}, t \geq 0\right\}$ is standard one-dimensional Brownian motion. Fix $a>0$. Prove (using the definition) that $\{X(a t) / \sqrt{a}, t \geq 0\}$ is also a standard onedimensional Brownian motion.
3. Let $X=\left\{X_{t}, t \geq 0\right\}$ be a standard one-dimensional Brownian motion. Compute the conditional probability,

$$
P\left(X_{2}>0 \mid X_{1}>0\right)
$$

