
Chapter 3

Finite Market Model

The binomial model considered in the previous chapter is an example of a finite
market model. In that example, we saw that the existence of both a risk neutral
probability and a replicating strategy played a key role in justifying the unique
arbitrage free price for any European contingent claim. In this chapter, we
extend that idea to the pricing of European contingent claims in a general finite
market model. We first characterize those finite market models in which there
is a risk neutral probability and in which all European contingent claims can be
replicated. Indeed, we will prove the fundamental theorem of asset pricing which
shows the equivalence of the absence of arbitrage in a finite market model to the
existence of a risk neutral probability. It will then be shown that all European
contingent claims in a finite market model without arbitrage can be replicated if
and only if there is a unique risk neutral probability. Finally, assuming there is
such a unique risk neutral probability, we show that there is a unique arbitrage
free price for every European contingent claim. In the binomial model, there is
a unique risk neutral probability and hence, as shown concretely in the previous
chapter, there is a unique arbitrage free price for every European contingent
claim.

3.1 Definition of the Finite Market Model

Throughout this chapter we will be working within the framework of the follow-
ing discrete time, finite state, market model. For short we will call this a finite
market model.

Let (Ω,F , P ) be a probability space where Ω is a finite set of possible outcomes,
F is the σ-algebra consisting of all subsets of Ω and P is a probability measure
on (Ω,F) such that P ({ω}) > 0 for all ω ∈ Ω. Expectations under P will be
written simply as E. Whenever another probability is to be used, this will be
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26 CHAPTER 3. FINITE MARKET MODEL

explicitly indicated in the notation.

We assume that there are finitely many times t = 0, 1, . . . , T − 1 (T < ∞) at
which trading can occur, and d+ 1 assets, a riskless security called a bond and
d risky securities called stocks.

A σ-algebra Ft ⊂ F describes the information available to an investor at time
t. It is assumed that F0 = {∅,Ω}, F0 ⊂ F1 ⊂ . . . ⊂ FT and FT = F . The
collection {Ft, t = 0, 1, . . . , T} is called a filtration.

The bond (asset labelled 0) is assumed to have price process S0 = {S0
t , t =

0, 1, . . . , T}, where S0
t denotes the price of the bond at time t. We assume that

for each t, S0
t > 0 and S0

t is deterministic, i.e., S0
t ∈ F0. For example, if the

bond has an interest rate of r ≥ 0 per unit of time, then S0
t = (1 + r)t for all

t. The bond is considered to be a “numeraire”, i.e., it tells us what a dollar at
time 0 is worth (due, amongst other things, to the effects of inflation) at time t.

The d stocks are assumed to have price processes S1, . . . , Sd, where Sit is the
price of the ith stock at time t. It is assumed that Sit ∈ Ft for i = 1, . . . , d
and t = 0, 1, . . . , T . Note that since Ω is finite, St = (S0

t , S
1
t , . . . , S

d
t ), t =

0, 1, . . . , T , can take on at most finitely many values. It follows that in the
development below, all of the expectations we write will be automatically finite.

A trading strategy (in the finite market model) is a collection of (d+1)-dimensional
vectors indexed by t = 1, . . . , T :

H = {Ht, t = 1, . . . , T}, (3.1)

where for each t ∈ {1, . . . , T}, Ht = (H0
t , H

1
t , . . . , H

d
t ) is such that Hi

t is a
real-valued Ft−1-measurable random variable for i = 0, 1, . . . , d. We regard
Hi
t as representing the number of “shares” of asset i to be held over the time

interval (t − 1, t]. In particular, H0
t denotes the number of bonds to be held

over this interval and Hi
t denotes the number of shares of stock i to be held over

the interval, i = 1, . . . , d. A positive value for Hi
t indicates that one buys that

number of shares of asset i, at a price of Sit−1 per share, and holds them over
the interval (t−1, t]. A negative value for Hi

t indicates that asset i will be “sold
short”. For example, if Hi

t = −1, one is effectively borrowing the value Sit−1

of asset i at time t− 1 with the understanding that the cost to repay this loan
at time t is the value of one share of asset i at time t, i.e., Sit . We will restrict
attention to self-financing trading strategies, namely, those trading strategies
H such that the investor’s initial wealth W0 is given by

W0 = H1 · S0, (3.2)

and

Ht · St = Ht+1 · St, t = 1, . . . , T − 1, (3.3)

where · denotes the dot product in Rd+1. In this chapter, the term trading
strategy will always mean self-financing trading strategy.
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The initial value of a trading strategy H is V0(H) = H1 · S0 and its value at
time t ∈ {1, . . . , T} is

Vt(H) ≡ Ht · St =
d∑
i=0

Hi
tS
i
t . (3.4)

Using the self-financing property we also have that

Vt(H) = Ht+1 · St, t = 0, 1, . . . , T − 1. (3.5)

The gains process associated with a trading strategy H is defined by

Gt(H) = Vt(H)− V0(H), t = 0, 1, . . . , T. (3.6)

Using the equivalent forms for Vs(H) that come from the self-financing property
of H, we can rewrite this process as follows for t = 1, . . . , T :

Gt(H) =
t∑
s=1

(Vs(H)− Vs−1(H))

=
t∑
s=1

(Hs · Ss −Hs · Ss−1)

=
t∑
s=1

Hs · (Ss − Ss−1) (3.7)

=
t∑
s=1

Hs ·∆Ss,

where ∆Ss ≡ Ss−Ss−1. In fact, the last expression is a discrete time stochastic
integral (recall that Hs is Fs−1 measurable).

An arbitrage opportunity (in the finite market model) is a trading strategy H
such that

V0(H) = 0, VT (H) ≥ 0, E[VT (H)] > 0.

The finite market model is said to be viable if it has no arbitrage opportunities.

It will simplify computations to use discounted asset price processes, obtained
by normalizing so that the value of a dollar at any time t is the same as it is at
time 0. This is often called a change of numeraire. For i = 0, 1, . . . , d, we define

S∗,it =
Sit
S0
t

, for t = 0, 1, . . ., T.

Note that S∗,0t ≡ 1 for all t. Then S∗t = (S∗,0t , S∗,1t , . . . , S∗,dt ) is the value of
the vector of discounted asset prices at time t. We will refer to S∗ = {S∗t , t =
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0, 1, . . . , T} as the (vector) discounted asset price process. The associated dis-
counted value process for a trading strategy H is defined by

V ∗t (H) ≡ Vt(H)
S0
t

, t = 0, 1, . . . , T, (3.8)

and using (3.4) and (3.5) we see that

V ∗t (H) = Ht · S∗t , t = 1, . . . , T, (3.9)

and

V ∗t (H) = Ht+1 · S∗t , t = 0, 1, . . . , T − 1. (3.10)

The discounted gains process for H is defined by

G∗t (H) = V ∗t (H)− V ∗0 (H), t = 0, 1, . . . , T, (3.11)

and by very similar manipulations to those used in deriving (3.7), this can be
reexpressed as G∗0 = 0 and

G∗t (H) =
t∑
s=1

Hs ·∆S∗s , t = 1, . . . , T, (3.12)

where ∆S∗s = S∗s − S∗s−1. An advantage of this last expression is that it only
involves the risky assets, since ∆S∗,0s = 0 for s = 1, . . . , T .

3.2 Fundamental Theorem of Asset Pricing

The following definitions will be needed to state the fundamental theorem of
asset pricing, which characterizes viable finite market models.

Definition 3.2.1 Two probability measures Q and Q′ on (Ω,F) are equivalent
(or mutually absolutely continuous) if

Q(A) = 0 is equivalent to Q′(A) = 0 for all A ∈ F . (3.13)

In the finite market model, P gives positive probability to every ω ∈ Ω, and so
for a probability measure P ∗ on (Ω,F), P is equivalent to P ∗ if and only if
P ∗({ω}) > 0 for all ω ∈ Ω.

Definition 3.2.2 An equivalent martingale measure (abbreviated as EMM) is
a probability measure P ∗ defined on (Ω,F) such that P ∗ is equivalent to P and
S∗ is a martingale under P ∗ (relative to the filtration {Ft, t = 0, 1, . . . , T}),
i.e., for each t ∈ {1, . . . , T},

EP
∗
[S∗t | Ft−1] = S∗t−1, (3.14)

where EP
∗

denotes expectation under P ∗ and the above equality is to be inter-
preted componentwise.
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We note for future use that (3.14) is equivalent to

EP
∗
[∆S∗t | Ft−1] = 0. (3.15)

Remark. An equivalent martingale measure is sometimes also called a risk
neutral probability. We will use the terms interchangeably.

Theorem 3.2.3 (Fundamental Theorem of Asset Pricing) The finite market
model is viable if and only if there exists an equivalent martingale measure P ∗.

Proof. We first prove the “if” part of the theorem. Suppose there exists an
equivalent martingale measure P ∗. For a proof by contradiction, suppose that
H is an arbitrage opportunity, that is, H is a trading strategy with initial value
V0(H) = 0, final value VT (H) ≥ 0, and E[VT (H)] > 0. It follows that the
discounted values satisfy V ∗0 (H) = 0, V ∗T (H) ≥ 0, and since P ∗ is equivalent to
P , EP

∗
[V ∗T (H)] > 0. Then, by (3.11) and (3.12) we have

V ∗T (H) = V ∗0 (H) +G∗T (H) = 0 +
T∑
t=1

Ht ·∆S∗t . (3.16)

On taking expectations we obtain

EP
∗
[V ∗T (H)] = EP

∗

[
T∑
t=1

Ht ·∆S∗t

]

=
T∑
t=1

EP
∗
[
EP

∗
[Ht ·∆S∗t | Ft−1]

]
=

T∑
t=1

EP
∗
[
Ht · EP

∗
[∆S∗t | Ft−1]

]
= 0,

since Ht ∈ Ft−1 and by the martingale property (3.15). But this contradicts
EP

∗
[V ∗T (H)] > 0, and so there cannot be an arbitrage opportunity in the finite

market model, and hence the model is viable.

We now turn to proving the “only if” part of the theorem. For this, suppose that
the finite market model is viable. Since Ω is a finite set, for any random variable
U defined on (Ω,F), by enumerating Ω as {ω1, . . . , ωn}, we may view U as
(U(ω1), . . . , U(ωn)) ∈ Rn. Thus, there is a one-to-one correspondence between
points in Rn and (real-valued) random variables defined on Ω. Adopting this
point of view for the terminal discounted gain random variables G∗T (H), we
define

L = {G∗T (H) : H is a (self-financing) trading strategy such that V0(H) = 0}.
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Figure 3.1: An example of the situation for n = 2

Note that L is a linear space, since G∗T (H) is linear in H and any linear combi-
nation of (self-financing) trading strategies with initial values of zero is again a
trading strategy with the same initial value. Also, L is non-empty because the
origin is contained in L. Let

D = {U ∈ Rn : Ui ≥ 0 for i = 1, . . . , n and Uj > 0 for some j}. (3.17)

Thus, D is the positive orthant in Rn with the origin removed.

Since the market is assumed to be viable, L ∩ D = ∅. For otherwise there
would be a trading strategy H with V0(H) = 0, V ∗T (H) = G∗T (H) ≥ 0 and
V ∗T (H)(ωi) > 0 for at least one i, which would represent an arbitrage opportu-
nity. Let

F =

{
U ∈ D :

n∑
i=1

Ui = 1

}
. (3.18)

Then F is a convex, compact, non-empty subset of Rn and L ∩ F = ∅.

By applying the separating Hyperplane Theorem 3.5.1, we see that there is a
vector W ∈ Rn \ {0} such that the hyperplane N = {U ∈ Rn : U ·W = 0}
contains L and W · U > 0 for all U ∈ F . By setting Ui = 1 if i = j and Ui = 0
if i 6= j, we see that Wj > 0 for each j ∈ {1, . . . , n}. Define

P ∗({ωi}) =
Wi∑n
j=1Wj

, i = 1, . . . , n. (3.19)

Then P ∗ is a probability measure on (Ω,F) and it is equivalent to P . Moreover,
for any trading strategy H such that V0(H) = 0, we have

EP
∗

[G∗T (H)] =
n∑
i=1

G∗T (H)(ωi)
Wi∑n
j=1Wj

(3.20)

=
G∗T (H) ·W∑n

j=1Wj
(3.21)

= 0, (3.22)
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where the last line follows from the fact that W is perpendicular to N which
contains L.

Note thatG∗T (H) only involves (H1, . . . , Hd). From Lemma 3.2.4, proved below,
given Ĥ1, . . . , Ĥd, where for i = 1, . . . , d, Ĥi = {Ĥi

t , t = 1, . . . , T} and Ĥi
t is

a real-valued, Ft−1-measurable random variable for each t, there is a unique
ordered set of T real-valued random variables H0 = {H0

t , t = 1, . . . , T} such
that H ≡ {(H0

t , Ĥ
1
t , . . . , Ĥ

d
t ), t = 1, . . . , T} is a (self-financing) trading strategy

with an initial value of zero. Upon substituting this in (3.20) and writing out
the expression (cf. (3.12)) for G∗T (H), we see that

0 = EP
∗

[G∗T (H)] = EP
∗

[
T∑
t=1

Ht ·∆S∗t

]
(3.23)

= EP
∗

[
T∑
t=1

d∑
i=1

Ĥi
t∆S

∗,i
t

]
. (3.24)

For each fixed i ∈ {1, . . . , d}, if we set Ĥj
t = 0 for all t and j 6= i, we obtain

0 = EP
∗

[
T∑
t=1

Hi
t∆S

∗,i
t

]
, (3.25)

for each Ĥi = {Ĥi
t , t = 1, . . . , T} such that Ĥi

t is a real-valued Ft−1-measurable
random variable for each t. It then follows from Lemma 3.2.5, proved below,
that for i = 1, . . . , d, S∗,i is a martingale under P ∗. Hence, P ∗ is an equivalent
martingale measure. �

The next two lemmas were used in the above proof of the Fundamental Theorem
of Asset Pricing. The first lemma shows that given (non-anticipating) holdings
in the risky assets and an initial wealth, there is a unique sequence of holdings
in the riskless asset that makes the associated trading strategy self-financing.

Lemma 3.2.4 For i = 1, . . . , d, let Ĥi = {Ĥi
t, t = 1, . . . , T} where Ĥi

t is
a real-valued, Ft−1-measurable random variable for t = 1, . . . , T . For each
real-valued F0-measurable random variable V0, there exists a unique ordered set
of T real-valued random variables H0 = {H0

t , t = 1, . . . , T} such that H ≡
{(H0

t , Ĥ
1
t , . . . , Ĥ

d
t ), t = 1, . . . , T} is a (self-financing) trading strategy with an

initial value of V0.

Proof. Fix V0 ∈ F0. For H to be self-financing at time zero, we must have
(cf. (3.2)):

H1 · S0 = V0 (3.26)
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and since Ĥ1
1 , . . . , Ĥ

d
1 are given, this will be satisfied if and only if

H0
1 = (S0

0 )−1

(
V0 −

d∑
i=1

Ĥi
1S

i
0

)
. (3.27)

Note that this H0
1 ∈ F0. Thus, H0

1 is uniquely determined. For an induction,
suppose that for some 1 ≤ s ≤ T − 1, H0

t , t = 1, . . . , s, have been determined
uniquely such that H0

t ∈ Ft−1 for each t = 1, . . . , s, (3.26) holds, and

Ht · St = Ht+1 · St, t = 1, . . . , s− 1. (3.28)

Then, the self-financing property (3.28) holds for t = s if and only if we have

H0
s+1 = (S0

s )−1

(
Hs · Ss −

d∑
i=1

Ĥi
s+1S

i
s

)
. (3.29)

Note that this expression for H0
s+1 is Fs-measurable. This establishes the induc-

tion step and it follows that there is a unique H0 that makes H a (self-financing)
trading strategy with initial value V0. �

Lemma 3.2.5 Let M = {Mt, t = 0, 1, . . . , T} be a real-valued process such that
Mt ∈ Ft for each t. Then, M is a martingale if and only if

E

[
T∑
t=1

ηt∆Mt

]
= 0 (3.30)

for all η = {ηt, t = 1, . . . , T} such that ηt is a real-valued Ft−1-measurable
random variable for t = 1, . . . , T . Here, ∆Mt = Mt −Mt−1 for t = 1, . . . , T .

Remark. The sum
T∑
t=1

ηt∆Mt is actually a discrete stochastic integral. If one

extends η to a continuous time process by making it constant on (t− 1, t] with
a value of ηt there, and one extends M to be constant on [t− 1, t) with a value
of Mt−1 there, then the sum is the same as the stochastic integral

∫
[0,T ] ηtdMt.

0 1 2 3 t− 1 t

� �
∆Mt

Proof. Suppose M is a martingale. Let η = {ηt, t = 1, . . . , T} where ηt is a
real-valued Ft−1-measurable random variable for each t. Then, since ηt ∈ Ft−1,
we have

E

[
T∑
t=1

ηt∆Mt

]
=

T∑
t=1

E [ηtE [∆Mt | Ft−1]] . (3.31)
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Now, because M is a martingale we have E [∆Mt | Ft−1] = 0, for t = 1, . . . , T ,
and it follows that (3.30) holds.

Conversely, suppose that (3.30) holds for all η = {ηt, t = 1, . . . , T} where ηt is a
real-valuedFt−1-measurable random variable for each t. For fixed s ∈ {1, . . . , T}
and A ∈ Fs−1, let

ηt =

{
0 for t 6= s,

1A for t = s.

Then ηt ∈ Ft−1 for each t. Upon substituting this into (3.30), we obtain

E [1A∆Ms] = 0. (3.32)

Since A ∈ Fs−1 was arbitrary, it follows that

E [Ms | Fs−1] = Ms−1, (3.33)

and then since s was arbitrary, it follows that M is a martingale. �

3.3 European Contingent Claims

A European contingent claim is represented by a FT -measurable random vari-
able X. The value (or payoff) of the contingent claim at the exercise time T
is X. For example, a European call option with strike price K and expiration
date T that is based on the risky asset with price process S1 is represented by
X = (S1

T −K)+. On the other hand, a look-back option usually depends on the
recent history of a risky asset (see the Exercises for an example of such).

We will frequently refer to the random variable X, that represents a European
contingent claim, as the European contingent claim (or ECC for short). For a
European contingent claim X, we let X∗ = X/S0

T , the discounted value of X.

A replicating (or hedging) strategy for a European contingent claim X is a trad-
ing strategy H such that VT (H) = X. If there exists such a replicating strategy,
the European contingent claim is said to be attainable.

The finite market model is said to be complete if all European contingent claims
are attainable.

Theorem 3.3.1 Suppose that the finite market model is viable and X is a repli-
cable European contingent claim. Then the value process {Vt(H), t = 0, 1, . . . , T}
is the same for all replicating strategies H for X. Indeed, for any replicating
strategy H,

V ∗t (H) = EP
∗
[X∗ | Ft], t = 0, 1, . . . , T, (3.34)

for any equivalent martingale measure P ∗, and the right member of (3.34) has
the same value for all such P ∗.
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Proof. By the Fundamental Theorem of Asset Pricing, there is at least one
equivalent martingale measure. Let P ∗ be such a measure. Let H be a repli-
cating strategy for X. Then, for t = 0, 1, . . . , T , by the martingale property of
S∗ under P ∗,

EP
∗

[
T∑

s=t+1

Hs ·∆S∗s
∣∣∣Ft] =

T∑
s=t+1

EP
∗
[
Hs · EP

∗
[∆S∗s | Fs−1]

∣∣∣Ft] = 0,

(3.35)

and it follows that (cf. (3.11)–(3.12)):

V ∗t (H) = V0(H) +
t∑

s=1

Hs ·∆S∗s (3.36)

= V0(H) +
t∑

s=1

Hs ·∆S∗s + EP
∗

[
T∑

s=t+1

Hs ·∆S∗s
∣∣∣Ft] (3.37)

= EP
∗

[V ∗T (H) | Ft] (3.38)
= EP

∗
[X∗ | Ft] , (3.39)

where X∗ = X/S0
T . Since the last line above does not depend upon H, it follows

that V ∗t (H) and hence Vt(H) does not depend upon the particular choice of
replicating strategy H. Furthermore, since the right member of (3.36) does not
depend upon the particular choice of an EMM P ∗, it follows that the quantity
in (3.39) also has this property. �

Theorem 3.3.2 A viable finite market model is complete if and only if it admits
a unique equivalent martingale measure.

Proof. Suppose the market is viable and complete. Let Q and Q̃ be equivalent
martingale measures. Fix A ∈ FT and let X = 1A. Suppose that H is a
replicating strategy for X. Then, by Theorem 3.3.1

EQ[X∗] = EQ̃[X∗]. (3.40)

Multiplying both sides by the deterministic quantity S0
T yields

EQ[X] = EQ̃[X] (3.41)

and so

Q(A) = Q̃(A). (3.42)

Hence, Q = Q̃, since A ∈ FT = F was arbitrary.

Conversely, suppose the market is viable but not complete. Then we will show
that there is more than one equivalent martingale measure. Since the market is
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not complete, there exists a European contingent claimX that is not attainable.
Let P denote the set of Ĥ = (Ĥ1, . . . , Ĥd) satisfying Ĥi = {Ĥi

t , t = 1, . . . , T}
where Ĥi

t is a real-valued Ft−1-measurable random variable for i = 1, . . . , d, t =
1, . . . , T . We claim that there is no pair (Ĥ, c) such that Ĥ ∈ P, c ∈ R and

c+
T∑
t=1

Ĥt ·∆Ŝ∗t = X∗, (3.43)

where Ŝ∗ = (S∗,1, . . . , S∗,d). For, if there were such a pair (c, Ĥ), then by
Lemma 3.2.4, Ĥ could be extended to a trading strategy H = (H0, Ĥ1, . . . , Ĥd)
with initial value c, and then H would be a replicating strategy for X.

Now, adopting the same device as in the proof of Theorem 3.2.3 of viewing
random variables as vectors in Rn, let

L =

{
c+

T∑
t=1

Ĥt ·∆Ŝ∗t : Ĥ ∈ P, c ∈ R
}
. (3.44)

Then, L is a linear subspace of Rn and X∗ /∈ L. It follows that L is a strict
subspace of Rn and there is a non-zero vector U ∈ Rn such that U ∈ L⊥. Then,∑

ω∈Ω

U(ω)W (ω) = 0 for all W ∈ L. (3.45)

Since the finite market model is viable, there is at least one equivalent martingale
measure P ∗. Then P ∗({ω}) > 0 for all ω ∈ Ω, and on setting

Ũ(ω) =
U(ω)
P ∗(ω)

for all ω ∈ Ω, (3.46)

we may rewrite (3.45) as

EP
∗
[ŨW ] = 0 for all W ∈ L. (3.47)

Now, define

P ∗∗({ω}) =

(
1 +

Ũ(ω)
2‖Ũ‖∞

)
P ∗({ω}) for each ω ∈ Ω, (3.48)

where ‖Ũ‖∞ = max
ω∈Ω
|Ũ(ω)|. Since Ũ 6= 0, P ∗∗ 6= P ∗. Moreover, P ∗∗({ω}) > 0

for each ω ∈ Ω. To check that P ∗∗ is a probability measure, note that

P ∗∗(Ω) = P ∗(Ω) +
∑
ω∈Ω

Ũ(ω)
2 ‖Ũ‖∞

P ∗({ω}) (3.49)

= 1 +
1

2 ‖Ũ‖∞
EP

∗
[
Ũ
]

(3.50)

= 1, (3.51)
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where we used (3.47) with W = 1 ∈ L to obtain the last line. Thus, P ∗∗ is a
probability measure that is equivalent to P ∗. We finally need to check that S∗

is a martingale under P ∗∗. For any Ĥ ∈ P,

EP
∗∗

[
T∑
t=1

Ĥt ·∆Ŝ∗t

]
= EP

∗

[
T∑
t=1

Ĥt ·∆Ŝ∗t

]
+

1
2 ‖Ũ‖∞

EP
∗

[
Ũ

T∑
t=1

Ĥt ·∆Ŝ∗t

]
.

(3.52)

The first term in the right member above is zero, by Lemma 3.2.5, since S∗ is
a martingale under P ∗. The second term there is zero by (3.47), since W =∑T
t=1 Ĥt · ∆Ŝ∗t ∈ L. On applying Lemma 3.2.5 again, it follows that S∗,i is a

P ∗∗-martingale for i = 1, . . . , d and since this is trivially so for i = 0, it follows
that S∗ is a P ∗∗ martingale and hence P ∗∗ is an equivalent martingale measure
that is different from P ∗. �

The following is a form of the martingale representation theorem in a finite
market model context.

Theorem 3.3.3 Suppose the finite market model is viable and P ∗ is an equiv-
alent martingale measure. Then, the model is complete if and only if each real-
valued martingale M = {Mt, t = 0, 1, . . . , T} under P ∗ has a representation of
the form

Mt = M0 +
t∑
s=1

Ĥs ·∆Ŝ∗s , t = 0, 1, . . . , T, (3.53)

for some Ĥ = (Ĥ1, . . . , Ĥd) where for each i = 1, . . . , d, Ĥi = {Ĥi
t, t =

1, . . . , T} and Ĥi
t is a real-valued Ft−1-measurable random variable for each

t. (Here Ŝ∗ = (S∗,1, S∗,2, . . . , S∗,d).)

Proof. Suppose the model is complete and let M = {Mt, t = 0, 1, . . . , T} be
a martingale under P ∗. Then, X = MTS

0
T is a European contingent claim.

Since the model is complete, there exists a replicating strategy H for X. Then,
V ∗T (H) = X∗ = MT and by Theorem 3.3.1 we have for t = 0, 1, . . . , T − 1,

V ∗t (H) = EP
∗
[X∗ | Ft] = EP

∗
[MT | Ft]. (3.54)

Since M is a P ∗-martingale, the last member above is equal to Mt P
∗-a.s. and

so it follows upon using (3.11)–(3.12) that for t = 0, 1, . . . , T ,

Mt = V ∗t (H) = V0 +G∗t (H) (3.55)

= V0 +
t∑

s=1

Hs ·∆S∗s (3.56)

= M0 +
t∑

s=1

Ĥs ·∆Ŝ∗s (3.57)
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where Ĥ = {(H1
t , . . . , H

d
t ), t = 1, . . . , T} and Hi

t ∈ Ft−1 for t = 1, . . . , T ,
i = 1, . . . , d. Here we have used the fact that G∗t (H) only involves the holdings
in the risky assets.

Conversely, suppose the representation property holds. To show that the model
is complete, consider a European contingent claim X. Define

Mt = EP
∗
[X∗ | Ft], t = 0, 1, . . . , T. (3.58)

Then M is a martingale under P ∗. Let Ĥ be as in the representation (3.53).
By Lemma 3.2.4, Ĥ can be extended to a (self-financing) trading strategy H =
(H0, Ĥ1, . . . Ĥd) with initial value M0. Then, for t = 0, 1, . . . , T ,

V ∗t (H) = V0(H) +G∗t (H) (3.59)

= M0 +
t∑

s=1

Ĥs ·∆Ŝ∗s (3.60)

= Mt. (3.61)

Hence, V ∗T (H) = MT = X∗ and it follows that VT (H) = X. Thus, H is
a replicating strategy for X. Since X was an arbitrary European contingent
claim, it follows that the market is complete. �

3.4 Arbitrage-Free Price Process

In this section, we assume that the finite market model is viable and complete.
Let P ∗ be the unique equivalent martingale measure. Consider a European
contingent claim with value X at time T . To determine the arbitrage free
price process for the European contingent claim, we consider a market that
allows trading in the stock, bond and European contingent claim at each time
t = 0, 1, . . ., T − 1 (this is in contrast to section 2.3 where we only allowed
trading in the European contingent claim at time zero).

Let {Ct, t = 0, 1, . . . , T} be an adapted process, where Ct represents the price
of the European contingent claim at time t = 0, 1, . . . , T − 1 and CT = X. A
trading strategy in stocks, bond and the European contingent claim is a collection
J = {(Ht, γt), t = 1, . . . , T} where for each t, Ht = (H0

t , H
1
t , . . . , H

d
t ) is a

(d+1)-dimensional Ft−1-measurable random vector such that for i = 0, 1, . . . , d,
Hi
t represents the number of “shares” of asset i held over the time interval

(t− 1, t], and γt is a real-valued Ft−1-measurable random variable representing
the number of European contingent claims held over the time interval (t− 1, t].
This trading strategy must be self-financing, i.e., its initial value is

V0(J) = H1 · S0 + γ1C0,
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and at each time t = 1, . . . , T − 1,

Ht · St + γtCt = Ht+1 · St + γt+1Ct.

The value of the stocks-bond-contingent claim portfolio at time T is

VT (J) = HT · ST + γTX.

An arbitrage opportunity in the stocks-bond-contingent claim market is a (self-
financing) trading strategy J such that V0(J) = 0, VT (J) ≥ 0 and E[VT (J)] > 0.

Theorem 3.4.1 Suppose the finite market model is viable and complete and P ∗

is the unique equivalent martingale measure. Then for any European contingent
claim X,

{S0
tE

P∗ [X∗ | Ft], t = 0, 1, . . . , T}

is the (unique) arbitrage free price process for the European contingent claim,
where X∗ = X/S0

T is the discounted value of X at time T .

Proof. Let H be a replicating strategy for X. Then by Theorem 3.3.1,

Vt(H) = S0
t E

P∗ [X∗ | Ft], t = 0, 1, . . . , T.

Let {Ct, t = 0, 1, . . . , T} be the price process for the European contingent claim,
where CT = X.

We first show that if P (Cs 6= Vs(H)) > 0 for some s, then there is an arbitrage
opportunity. Note CT = VT (H) = X. Suppose there is s ∈ {0, 1, . . ., T − 1}
such that P (Cs > Vs(H)) > 0. Let A = {ω : Cs(ω) > Vs(H)(ω)}. Then
A ∈ Fs. An investor could act as follows to achieve an arbitrage. The investor
invests nothing in stocks, bond or contingent claim up to time s. If Cs ≤ Vs(H),
the investor continues to invest nothing from time s to T . If Cs > Vs(H), at
time s, the investor sells (short) one European contingent claim, invests Vs(H)
of the proceeds in the market from time s onwards according to the strategy
(Hs+1, . . . , HT ), and puts the remainder, Cs − Vs(H), in the bond from time s
to T . This strategy may be formally written as

Jt =

{
0 for t ≤ s(
H0
t + Cs−Vs(H)

S0
s

, H1
t , . . . , H

d
t ,−1

)
1A for t > s.

It is readily verified to be self-financing. In particular, Vt(J) = 0 for t ≤ s, and

1A(Hs+1 · Ss +Cs − Vs(H)−Cs) = 0.

Now,

VT (J) = 1A
(
HT · ST + (Cs − Vs(H))

S0
T

S0
s

−X
)

= 1A

(
(Cs − Vs(H))

S0
T

S0
s

)
,
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since VT (H) = X, by the replicating property of H. Thus, VT (J) ≥ 0 and
P (VT (J) > 0) = P (A) > 0, and J is an arbitrage.

Similarly, if s ∈ {0, 1, . . . , T − 1} such that P (Cs < Vs(H)) > 0 and B = {Cs <
Vs(H)}, and we let

Jt =

{
0 for t ≤ s(
−H0

t + Vs(H)−Cs
S0
s

,−H1
t , . . . ,−Hd

t , 1
)

1B for t > s,

for t = 1, . . . , T , then J represents an arbitrage. Thus we have shown that if
P (Cs 6= Vs(H) for some s) > 0, there is an arbitrage opportunity.

It remains to show that if Cs = Vs(H) for all s, there is no arbitrage opportunity
in the stocks-bond-contingent claim market. For a contradiction, suppose Cs =
Vs(H) for all s and that J = {(H̃t, γ̃t), t = 1, . . . , T} is an arbitrage opportunity.
Then V0(J) = 0, VT (J) ≥ 0 and E[VT (J)] > 0. Let V ∗t (J) = Vt(J)/S0

t , t =
0, 1, . . . , T . Then

EP
∗
[V ∗T (J)] = EP

∗
[H̃T · S∗T + γ̃TV

∗
T (H)]

= EP
∗
[H̃T ·EP

∗
[S∗T | FT−1] + γ̃TE

P∗ [V ∗T (H) | FT−1]]
= EP

∗
[H̃T · S∗T−1 + γ̃T V

∗
T−1(H)]

where we have used the fact that S∗ and V ∗(H) are martingales under P ∗

(cf. (3.32)). Using the self-financing property of J , we recognize the above as
EP

∗
[V ∗T−1(J)]. One can repeat a similar argument T − 1 more times to obtain,

EP
∗
[V ∗T (J)] = EP

∗
[V ∗0 (J)].

Now, V ∗0 (J) = V0(J) = 0 and V ∗T (J) ≥ 0, so it follows that P ∗(V ∗T (J) = 0) = 1
and since P ∗ is equivalent to P , P (V ∗T (J) = 0) = 1 and hence P (VT (J) = 0) = 1,
which contradicts the assumption that J is an arbitrage.

Thus, Ct = Vt(H) = S0
t E

P∗ [X∗ | Ft], t = 0, 1, . . . , T , defines the arbitrage free
price process. �

Remark: Examination of the above proof shows that the conclusion of the
theorem still holds if the finite market model is viable and X is simply replicable,
i.e., one does not need to assume completeness of the market model.

3.5 Separating Hyperplane Theorem

Theorem 3.5.1 (Separating Hyperplane Theorem) Let F be a compact, convex,
non-empty subset of Rn. Let L be a non-empty linear subspace of Rn. Suppose
F ∩ L = ∅. Then there exists a hyperplane

N = {u ∈ Rn : w · u = 0} for some w ∈ Rn \ {0}

such that L ⊂ N and w · u > 0 for all u ∈ F .
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Proof. Define G = F −L = {u ∈ Rn : u = f − ` for some f ∈ F, ` ∈ L}. Then
G is convex, closed and non-empty. The convexity follows easily from that for
F and L. To see that G is closed, consider a sequence {um = fm − `m}∞m=1

in G where fm ∈ F , `m ∈ L for all m. Suppose um → u ∈ Rn as m → ∞.
Since F is compact, there is a subsequence {fmr}∞r=1 converging to some f ∈ F .
Then `mr = −umr + fmr converges to −u+ f . Since L is closed we must have
−u + f ∈ L. Hence u = f − (−u + f) ∈ G. Clearly G is non-empty, since F
and L are both non-empty. Note that G does not contain the origin (otherwise
F would intersect L non-trivially).

Let B = B(0, r) denote the closed ball centered at the origin of radius r > 0.
Choose r > 0 such that B ∩G 6= ∅. Then B ∩G is closed, bounded, non-empty
and hence compact. So the continuous function g(u) = ‖u‖ attains its infimum
on B ∩G at some w ∈ B ∩G, where ‖u‖ = (u · u)

1
2 denotes the Euclidean norm

of u.

Now ‖u‖ > r for u ∈ G \ B and so combining this with the above we have
‖u‖ ≥ ‖w‖ for all u ∈ G. Then for any λ ∈ (0, 1) and u ∈ G, λu+ (1−λ)w ∈ G
by the convexity of G and so

‖λu+ (1− λ)w‖2 ≥ ‖w‖2 for all u ∈ G, λ ∈ (0, 1).

Expanding and dividing through by λ yields:

2(1− λ)u ·w − 2w · w + λ(u · u+ w · w) ≥ 0.

Letting λ→ 0, we obtain

u · w ≥ w · w for all u ∈ G.

Then, (f − `) ·w ≥ w ·w for all f ∈ F , ` ∈ L, which implies

f ·w ≥ ` · w + w ·w for all f ∈ F, ` ∈ L.

Fix f ∈ F . Then

` · w ≤ f · w −w · w for all ` ∈ L.

But L is a linear space, so the above holds with γ` in place of ` for all γ ∈ R.
The only way this can be true is if ` ·w = 0 for all ` ∈ L. Hence, f ·w ≥ w ·w > 0
for all f ∈ F .

Let N = {u ∈ Rn : u · w = 0}. Then from the above, L ⊂ N and f · w > 0 for
all f ∈ F . �

3.6 Exercises

1. Consider the multi-period CRR binomial model introduced in Chapter 2.
Assuming u > d > 0, verify that this model is viable if and only if d < 1+r < u.
In this case, verify that the model is complete.
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2. Let T = 2, Ω = {ω1, . . . , ω4}, P ({ωi}) > 0 for i = 1, . . . , 4, F0 = {∅,Ω},
F1 = {{ω1, ω2}, {ω3, ω4}, ∅,Ω}, and F2 be the collection of all subsets of Ω.
Consider a riskless asset with price process S0 = {S0

t , t = 0, 1, 2} where S0
t = 1

for all t, and a risky asset with price process S1 = {S1
t , t = 0, 1, 2} such that

S1
0(ω1) = 5, S1

1(ω1) = 8, S1
2 (ω1) = 9 (3.62)

S1
0(ω2) = 5, S1

1(ω2) = 8, S1
2 (ω2) = 6 (3.63)

S1
0(ω3) = 5, S1

1(ω3) = 4, S1
2 (ω3) = 6 (3.64)

S1
0(ω4) = 5, S1

1(ω4) = 4, S1
2 (ω4) = 3. (3.65)

Then

X = max(0, S1
0 − 7, S1

1 − 7, S1
2 − 7), (3.66)

is the value at time T of a so-called look-back option, where this value depends
on the prices of the underlying asset S1 in the past as well as at time T .

(a) Draw a tree to indicate the possible “paths” followed by the risky asset
price process S1.

(b) Find an equivalent martingale measure for the model.

(c) Find a replicating strategy for the option whose value at time T is given
by X.

(d) What is the arbitrage free price for the option at time zero?

3. Consider a finite market model with T = 2, Ω = {ω1, ω2, ω3, ω4, ω5}, and
P ({ωi}) > 0 for i = 1, . . . , 5. Suppose there are two assets, a riskless asset with
price process S0 = {S0

t , t = 0, 1, 2} where S0
t = (1 + r)t for t = 0, 1, 2, and some

r ≥ 0, and a risky asset with price process S1 = {S1
t , t = 0, 1, 2} where

S1
0(ω1) = 5, S1

1(ω1) = 8, S1
2 (ω1) = 9 (3.67)

S1
0(ω2) = 5, S1

1(ω2) = 8, S1
2 (ω2) = 7 (3.68)

S1
0(ω3) = 5, S1

1(ω3) = 8, S1
2 (ω3) = 6 (3.69)

S1
0(ω4) = 5, S1

1(ω4) = 4, S1
2 (ω4) = 6 (3.70)

S1
0(ω5) = 5, S1

1(ω5) = 4, S1
2 (ω5) = 3. (3.71)

Let F0 = {∅,Ω}, F1 = σ{S1
0 , S

1
1} and F2 = σ{S1

0 , S
1
1 , S

1
2}.

(a) Draw a tree to indicate the possible “paths” followed by the risky asset
price process S1.

(b) Suppose r = 0.1. Is there an equivalent martingale measure for this model?
If there is one, is it unique? What are the answers to the last two questions
if r = 1?


