
Chapter 2

Binomial Model

In this chapter we consider a simple discrete financial market model called the
binomial or Cox-Ross-Rubinstein (CRR) [1] model. We derive the unique ar-
bitrage free price for any European contingent claim based on this model. (A
European contingent claim is a contingent claim that can only be exercised at
the terminal time.) Existence of a no arbitrage price depends on the existence
of a so-called risk neutral probability and uniqueness depends on there being a
replicating strategy for the contingent claim.

2.1 Binomial or CRR Model

The CRR model is a simple discrete time model for a financial market. There
are finitely many trading times t = 0, 1, . . . , T (T <∞), and two assets, a risky
security called a stock, and a riskless security called a bond.

The bond is assumed to yield a constant rate of return r ≥ 0 over each time
period (t−1, t] and so assuming the bond is valued at $1 at time zero, the value
of the bond at time t is given by

Bt = (1 + r)t, t = 0, 1, . . . , T. (2.1)

The stock price process is modeled as an exponential random walk such that S0

is a strictly positive constant and

St = St−1ξt, t = 1, 2, . . . , T, (2.2)

where {ξt, t = 1, 2, . . . , T} is a sequence of independent and identically dis-
tributed random variables with

P (ξt = u) = p = 1− P (ξt = d), (2.3)
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Figure 2.1: Binary tree for T = 2

where p ∈ (0, 1) and 0 < d < 1 + r < u. The latter are assumed to avoid
arbitrage opportunities in the primary market model and to ensure stock prices
are strictly positive. Note that

St = S0

t∏
i=1

ξi, t = 0, 1, . . . , T, (2.4)

and one may represent the possible paths that St follows using a binary tree
(see Figure 2.1). Note that there are only three distinct values for S2, i.e., the
two middle dots have the same value for S2. The points have been drawn as
two distinct points to emphasize the fact that they may be reached by different
paths, that is, through different values for the sequence S0, S1, S2.

For concreteness, and without loss of generality, we assume that the probability
space (Ω,F , P ) on which our random variables are defined is such that Ω is
the finite set of 2T possible outcomes for the values of the stock price (T + 1)-
tuple, (S0, S1, S2, . . . , ST ); F is the σ-algebra consisting of all possible subsets
of Ω, and P is the probability measure on (Ω,F) associated with the binomial
probability p. Then, for example,

P ((S0, S1, . . . , ST ) = (S0, S0u, S0u
2, . . . , S0u

T )) = pT (2.5)
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To describe the information available to the investor at time t, we introduce the
σ-algebra generated by the stock prices up to and including time t, i.e, let

Ft = σ{S0, S1, . . . , St}, t = 0, 1, . . . , T. (2.6)

In particular, with our concrete probability space, FT = F .

A trading strategy (in the primary market) is a collection of pairs of random
variables

H = {(αt, βt) : t = 1, 2, . . . , T} (2.7)

where the random variable αt represents the number of shares of stock to be
held over the time interval (t − 1, t] and the random variable βt represents the
number of bonds to be held over the time interval (t−1, t]. We think of trading
occuring at time t−1 to determine the portfolio holdings (αt, βt) until the next
trading time t. To avoid strategies that anticipate the future, it is assumed
that αt, βt are Ft−1-measurable random variables for t = 1, 2, . . . , T . Thus, the
holdings in stock and bond over the time period (t−1, t] can only depend on the
stock prices observed up to and including time t− 1. We will restrict attention
here to self-financing trading strategies, namely, those trading strategies H such
that

αtSt + βtBt = αt+1St + βt+1Bt, t = 1, 2, . . . , T − 1, (2.8)

and the investor’s initial wealth is equal to

W0 = α1S0 + β1B0. (2.9)

We will simply refer to these as trading strategies, rather than using the longer
term self-financing trading strategies. We say that a trading strategy H repre-
sents a portfolio whose value at time t is given by Vt(H), where

V0(H) = α1S0 + β1B0, (2.10)
Vt(H) = αtSt + βtBt, t = 1, 2, . . . , T. (2.11)

An arbitrage opportunity (in the primary market) is a trading strategy H such
that V0(H) = 0, VT (H) ≥ 0 and E[VT (H)] > 0. Note that, in the presence of
the preceding conditions, the last condition is equivalent to P (VT (H) > 0) > 0.

A European contingent claim is represented by a FT -measurable random vari-
able X. The value of this contingent claim at the exercise time T is X. For
example, a European call option with strike price K and expiration date T is
represented by X = (ST − K)+ ≡ max{0, ST − K}. Similarly, a European
put option with the same strike price and expiration date is represented by
X = (K − ST )+.

A replicating (or hedging) strategy for a European contingent claim X is a trad-
ing strategy H such that VT (H) = X. If there exists such a replicating strategy,
the contingent claim is said to be attainable (or redundant).
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2.2 Single Period Case

We first examine the single period case where T = 1.

We first show that there is a replicating strategy for any European contingent
claim X. Given X, we seek a trading strategy H = (α1, β1), where α1 and β1

are constants, such that

V1(H) ≡ α1S1 + β1B1 = X. (2.12)

Now S1 has two possible values, S0u, S0d, and X is a measurable function of
S1, since it is F1 = σ{S0, S1}-measurable. Let Xu denote the value of X when
S1 = S0u and Xd denote the value of X when S1 = S0d. Then considering these
two possible outcomes, (2.12) yields two equations for the two deterministic
unknowns α1, β1:

α1S0u+ β1(1 + r) = Xu (2.13)
α1S0d+ β1(1 + r) = Xd. (2.14)

Solving for α1, β1 yields

α1 =
Xu −Xd

(u− d)S0
“ = ”

δX

δS
, (2.15)

β1 =
1

1 + r

(
uXd − dXu

u− d

)
. (2.16)

The initial wealth needed to finance this strategy (sometimes called the manu-
facturing cost of the contingent claim) is

V0 = α1S0 + β1B0 (2.17)

=
1

(1 + r)(u − d)
(
(1 + r − d)Xu + (u− (1 + r))Xd

)
(2.18)

=
1

1 + r

(
p∗Xu + (1− p∗)Xd

)
(2.19)

= Ep
∗
[X∗], (2.20)

where p∗ = 1+r−d
u−d , Ep

∗
[ · ] denotes expectation with p = p∗, and X∗ = X/(1+r).

Note that Ep
∗
[S1] = (1 + r)S0 and so the discounted stock price process{

S0,
1

1 + r
S1

}
is a martingale under p = p∗ (relative to the filtration {Ft}). Thus, under p =
p∗, the average rate of return of the risky asset is the same as that of the riskless
asset. For this reason p∗ is called the risk neutral probability. It is important
to realize that computing expectations under p = p∗ is a mathematical device.
We are not assuming that the stock price actually moves according to this
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probability. That is, p∗ may be unrelated to the subjective probability p that
we associate with the binomial model for movements in the stock price.

For the next theorem, we need the notion of an arbitrage opportunity in the
market consisting of the stock, bond and contingent claim. For this, we suppose
that the price of the contingent claim at time zero is C0. A trading strategy
in stock, bond and the contingent claim is a triple J = (α1, β1, γ1) of F0-
measurable random variables (these will actually be constants), where α1 rep-
resents the number of shares of stock held over (0, 1], β1 represents the number
of bonds held over (0, 1] and γ1 represents the number of units of the contin-
gent claim held over (0, 1]. The initial value of the portfolio associated with
J is V0(J) = α1S0 + β1B0 + γ1C0. The value of this portfolio at time one is
V1(J) = α1S1 + β1B1 + γ1X. An arbitrage opportunity in the stock, bond, con-
tingent claim market is a trading strategy J = (α1, β1, γ1) such that V0(J) = 0,
V1(J) ≥ 0 and E[V1(J)] > 0.

Theorem 2.2.1 V0 = Ep
∗
[X∗] is the arbitrage free price for the European con-

tingent claim X.

Proof. Let H∗ = (α∗1, β
∗
1) denote the replicating strategy (in stock and bond)

for the contingent claim X.

First we show that if the initial price C0 of the contingent claim is anything other
than V0, then there is an arbitrage opportunity in the stock, bond, contingent
claim market. Suppose C0 > V0. Then an investor starting with zero initial
wealth could sell one option (γ1 = −1), invest V0 in the replicating strategy
H∗ = (α∗1, β

∗
1 ) and invest the remainder, C0 − V0, in bond. Thus, his trading

strategy in stock, bond and contingent claim is (α∗1, β∗1 +C0−V0,−1). This has
an initial value of zero and its value at time one is

α∗1S1 + β∗1B1 + (C0 − V0)B1 −X. (2.21)

But the strategy (α∗1, β
∗
1) was chosen so that

α∗1S1 + β∗1B1 = X, (2.22)

and so it follows that the value at time one of the stock-bond-contingent claim
portfolio is

(C0 − V0)B1 > 0. (2.23)

Thus, this represents an arbitrage opportunity. Similarly, if C0 < V0, then the
investor can use the strategy (−α∗1,−β∗1 + V0 − C0, 1) to create an arbitrage
opportunity.

Now we show that if C0 = V0, then there is no arbitrage opportunity in the
stock, bond, contingent claim market. Suppose that J = (α1, β1, γ1) is a trading
strategy in stock, bond and the contingent claim, with an initial value V0(J) =
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α1S0 + β1 + γ1C0 of zero and non-negative value V1(J) at time one. The value
of the portfolio at time one is

V1(J) = α1S1 + β1B1 + γ1X (2.24)

and so

Ep
∗
[V1(J)] = α1E

p∗ [S1] + β1(1 + r) + γ1E
p∗ [X]

= α1(1 + r)S0 + β1(1 + r) + γ1(1 + r)C0

= (1 + r)V0(J)
= 0,

where we have used the martingale property of the discounted stock price process
under p∗ and the definition of C0 = V0 = Ep

∗
[X]/(1 + r). Now, since the

probability measure P ∗ on FT associated with using p∗ ∈ (0, 1) in place of
p gives positive probability to both of the possible values of the non-negative
random variable V1(J), it follows that P ∗(V1(J) = 0) = 1 and since P ∗ is
equivalent to P on FT , P (V1(J) = 0) = 1. Thus, there cannot be an arbitrage
opportunity. �

2.3 Multi-Period Case

We now consider the general binomial model where T is any fixed positive
integer. In this section p∗ has the same value as in the single period case,
namely, p∗ = 1+r−d

u−d .

We first show that there is a replicating strategy for a European contingent
claim X. For this, given X, we seek a (self-financing) trading strategy H =
{(αt, βt), t = 1, . . . , T} such that

VT (H) ≡ αTST + βTBT = X. (2.25)

This is developed by working backwards through the binary tree.

Let VT = X. SinceX is anFT -measurable random variable, VT = f(S0, S1, . . . , ST )
for some measurable function f : RT+1 → R. Firstly, suppose we condition on
knowing S0, S1, . . . , ST−1. Then the cost and associated trading strategy for
manufacturing the contingent claim over the time period (T −1, T ] can be com-
puted in a very similar manner to that for the single period model. Given
S0, S1, . . . , ST−1, there are two possible values for VT at time T , depending on
whether ST = ST−1u or ST = ST−1d. Denote these two values by V uT and V dT . In
fact, V uT = f(S0, S1, . . . , ST−1, ST−1u) and V dT = f(S0, S1, . . . , ST−1, ST−1d).
Note that these are FT−1 measurable random variables (the notation hides this
fact, but has the advantage that it makes the formulas for the replicating strat-
egy appear simpler). If the contingent claim is a European call option with strike
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price K and expiration date T , then X = (ST −K)+ and V uT = (ST−1u−K)+,
V dT = (ST−1d−K)+.

Now, for any European contingent claim X, by similar analysis to that for
the single period case, to ensure that VT (H) = X, we obtain the following
allocations for the time period (T − 1, T ]:

αT =
V uT − V dT

(u − d)ST−1
(2.26)

βT =
1

(1 + r)T

(
uV dT − dV uT
u− d

)
(2.27)

and the capital required at time T − 1 to finance these allocations in a self-
financing manner is

VT−1 =
1

1 + r

(
p∗V uT + (1− p∗)V dT

)
(2.28)

=
1

1 + r
Ep
∗
[VT | FT−1], (2.29)

where p∗ = 1+r−d
u−d and Ep∗[ · | FT−1] denotes the conditional expectation, given

FT−1, when the subjective probability p is replaced by p∗.

We can find a (self-financing) trading strategy H = {(αt, βt), t = 1, 2, . . . , T}
with associated value process {Vt(H), t = 0, 1, . . . , T} by proceeding inductively
back through the binary tree as follows: assuming values Vt+1, . . . , VT = X
associated with (self-financing) allocations {(αs, βs), s = t+2, . . . , T} have been
determined, given S0, S1, . . . , St, the holdings αt+1 and βt+1 for the time period
(t, t+1] are chosen so that the value associated with these holdings at time t+1
is the same as that of the random variable Vt+1, i.e., letting V ut+1 and V dt+1

denote the two possible values of Vt+1 given S0, S1, . . . , St, define

αt+1 =
V ut+1 − V dt+1

(u− d)St
, (2.30)

βt+1 =
1

(1 + r)t+1

(
uV dt+1 − dV ut+1

u− d

)
. (2.31)

One can readily check that the capital needed at time t to finance these holdings
in a self-financing manner is

Vt =
1

1 + r
Ep
∗

[Vt+1 | Ft]

=
1

(1 + r)2
Ep
∗
[
Ep
∗

[Vt+2 | Ft+1] | Ft
]

=
1

(1 + r)2
Ep
∗

[Vt+2 | Ft]

...

=
1

(1 + r)T−t
Ep
∗
[X | Ft].
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In particular,

V0 =
1

(1 + r)T
Ep
∗
[X]. (2.32)

Before giving the initial price of the contingent claim X, we note the following.
For this, let S∗t = St/Bt = St/(1 + r)t, t = 0, 1, . . . , T . The process S∗ =
{S∗t , t = 0, 1, . . . , T} is called the discounted stock price process.

Lemma 2.3.1 Under p = p∗, {S∗t , t = 0, 1, . . . , T} is a martingale (relative to
the filtration {Ft}).

Proof. Clearly S∗t ∈ Ft and S∗t has finite mean for each t. To verify the
conditional expectation property, fix t ∈ {0, 1, . . . , T − 1}. Then, using the fact
that Ft is generated by S0, S1, . . . , St and ξt+1 is independent of this sigma
algebra, we have

Ep
∗
[S∗t+1 | Ft] =

1
(1 + r)t+1

Ep
∗
[Stξt+1 | Ft] (2.33)

=
1

(1 + r)t+1
StE

p∗ [ξt+1] (2.34)

=
S∗t

1 + r
(p∗u+ (1− p∗)d) (2.35)

= S∗t , (2.36)

where we have used the definition of p∗ = 1+r−d
u−d to obtain the last line. �

The following theorem is the multi-period analogue of the single period Theo-
rem 2.2.1. First we specify the notion of arbitrage in stock, bond and contingent
claim to be used in the multi-period context. Let C0 be the price charged for
the contingent claim at time zero. Since we are only specifying a price for the
contingent claim at time zero, trading in the contingent claim will only be al-
lowed initially, whereas changes in the stock and bond holdings can occur at
each of the times t = 0, 1, . . . , T − 1. A trading strategy in stock, bond and
the contingent claim, is a collection J = {(αt, βt), t = 1, 2, . . . , T ; γ1} where
for t = 1, 2, . . . , T , αt, βt are Ft−1-measurable random variables representing
the holdings in stock and bond, respectively, to be held over the time interval
(t− 1, t], and γ1 is a F0-measurable random variable (actually a constant) rep-
resenting the number of units of the contingent claim to be held over the time
interval (0, T ]. The trading strategy must be self-financing, i.e., its initial value
is

V0(J) = α1S0 + β1B0 + γ1C0, (2.37)

and at each time t = 1, . . . , T − 1,

αtSt + βtBt = αt+1St + βt+1Bt. (2.38)
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The last equation does not involve the contingent claim since this is not traded
after time zero. The value of the portfolio at time T is

VT (J) = αTST + βTBT + γ1X. (2.39)

An arbitrage opportunity in the stock, bond and contingent claim market is a
trading strategy J such that V0(J) = 0, VT (J) ≥ 0 and E[VT (J)] > 0.

Theorem 2.3.2 Let X∗ = X/(1 + r)T . Then V0 = Ep
∗
[X∗] is the arbitrage

free initial price for the European contingent claim X.

Proof. The proof is very similar to that of Theorem 2.2.1. Let H∗ =
{(α∗t , β∗t ), t = 1, 2, . . . , T} denote the replicating strategy (in stock and bond)
for the contingent claim X.

We use the existence of the replicating strategy to show that if C0 6= V0, then
there is an arbitrage opportunity in the stock, bond, contingent claim market.
Suppose C0 > V0. Then an investor could sell one contingent claim initially, use
V0 of the proceeds to invest in the stock-bond replicating strategy H∗, and buy
C0−V0 additional bonds at time zero and hold them over the entire period (0, T ].
Thus, the trading strategy is J = {(α∗t , β∗t +C0−V0), t = 1, 2, . . . , T ; γ1 = −1}.
This has initial value V0(J) = α∗1S0 + β∗1 +C0 − V0 −C0 = 0, since B0 = 1 and
V0 = α∗1S0 + β∗1 . The value of this portfolio at time T is

VT (J) = α∗TST + β∗TBT + (C0 − V0)BT −X (2.40)
= X + (C0 − V0)BT −X = (C0 − V0)BT > 0, (2.41)

where we have used the fact that {(α∗t , β∗t ), t = 1, 2, . . . , T} is a replicating
strategy for the contingent claim X and so has value X at time T . Thus, J is
an arbitrage opportunity. Similarly, if C0 < V0, the strategy −J is an arbitrage
opportunity.

Now suppose C0 = V0. We show that there is no arbitrage opportunity in stock,
bond and contingent claim trading. Let J = {(αt, βt), t = 1, 2, . . . , T ; γ1} be
a trading strategy in stock, bond and contingent claim with an initial value of
zero and final value VT (J) that is a non-negative random variable. Thus,

0 = V0(J) = α1S0 + β1B0 + γ1C0, (2.42)
0 ≤ VT (J) = αTST + βTBT + γ1X. (2.43)
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Now, using the martingale property of S∗ under p∗, we have

1
(1 + r)T

Ep
∗
[VT (J) | FT−1]

= αTE
p∗ [S∗T | FT−1] + βT + γ1E

p∗ [X∗ | FT−1]
= αTS

∗
T−1 + βT + γ1E

p∗ [X∗ | FT−1]

=
1

(1 + r)T−1
(αTST−1 + βTBT−1) + γ1E

p∗ [X∗ | FT−1]

=
1

(1 + r)T−1
(αT−1ST−1 + βT−1BT−1) + γ1E

p∗ [X∗ | FT−1],

= αT−1S
∗
T−1 + βT−1 + γ1E

p∗ [X∗ | FT−1],

where we used the fact that J is self-financing to obtain the second last equal-
ity. Taking conditional expectations with respect to FT−2 in the above and
performing similar manipulations to those just executed using the martingale
property of S∗ and the self-financing property of J , we obtain

1
(1 + r)T

Ep
∗
[VT (J) | FT−2]

= αT−1S
∗
T−2 + βT−1 + γ1E

p∗ [X∗ | FT−2]

= αT−2S
∗
T−2 + βT−2 + γ1E

p∗ [X∗ | FT−2].

Applying this same procedure iteratively we finally obtain

1
(1 + r)T

Ep
∗
[VT (J)] =

1
(1 + r)T

Ep
∗
[VT (J) | F0]

= α1S
∗
0 + β1 + γ1E

p∗ [X∗].

However, since S∗0 = S0, B0 = 1, and C0 = V0 = Ep
∗
[X∗], the last line is equal

to V0(J) = 0. Since it was assumed that VT (J) ≥ 0 and the probability measure
associated with p∗ gives positive probability to all possible values of VT (J), it
follows that P (VT (J) = 0) = 1 and hence E[VT (J)] = 0. Thus, there cannot be
any arbitrage opportunity when C0 = V0. �

2.4 Exercises

1. Consider a single period CRR model with S0 = $50, S1 = $100 or $25,
r = 0.25.

(a) Find the arbitrage free price of a European call option for one share of
stock where the strike price is K = $50 and the exercise time T = 1.

(b) Find a hedging strategy that replicates the value of the option described
in (a).
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(c) Suppose the option in (a) is initially priced at $1 above the arbitrage free
price. Describe a strategy (for trading in stock, bond and the option) that
is an arbitrage.

(d) What is the arbitrage free price for a put option with the same strike price
and exercise time as the call option described in (a)?

2. Consider a CRR model with T = 2, S0 = $50, S1 = $100 or S1 = $25, and
an associated European call option with strike price K = $40 and exercise time
T = 2. Assume that the risk free interest rate is r = 0.1.

(a) Draw the binomial tree and compute the arbitrage free price of the Euro-
pean call option at time zero.

(b) Determine an explicit hedging strategy for this option.

(c) (Optional) If you are ambitious, try to automate this pricing procedure in
a computer program where T, S0, u, d,K are variables.

3. (Computer lab exercise) Exercise 1 on page 76 of class handout.
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