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2.5 Pricing an American Contingent Claim

An American contingent claim (ACC) is represented by a (finite) sequence Y =
{Yt, t = 0, 1, . . . , T} of real-valued random variables such that Yt ∈ Ft for
t = 0, 1, 2, . . ., T . The random variable Yt, t = 0, 1, 2, . . ., T , is interpreted as
the payoff for the claim if the owner cashes it in at time t. The time at which
the owner cashes in the claim is required to be a stopping time, i.e., a random
variable τ : Ω −→ {0, 1, . . . , T} such that {τ = t} ∈ Ft, t = 0, 1, 2, . . . , T .
For s, t ∈ {0, 1, . . ., T} such that s ≤ t, let T[s,t] denote the set of integer-valued
stopping times that take values in the interval [s, t]. An example of an American
contingent claim is an American call option with strike price K which has payoff
Yt = (St−K)+ at time t, t = 0, 1, 2, . . . , T . Note that if St ≤ K, cashing in the
contingent claim at time t is equivalent to not exercising the option at all. We
have adopted this convention so that we can use one framework for treating all
contingent claims, including options and contracts.

An important feature of an American contingent claim is that the buyer and
the seller of such a derivative have different actions available to them — the
buyer may cash in the claim at any stopping time τ ∈ T[0,T ], whereas the seller
seeks protection from the risk associated with all possible choices of the stopping
time τ by the buyer. As with the pricing of European contingent claims, for
the pricing of American contingent claims, an essential role will be played by
a trading strategy that hedges the risk of the seller of an American contingent
claim. However, unlike the European contingent claim setting, the seller will
not always be able to exactly replicate the payoff of the American contingent
claim at all times t. Instead, the seller of an American contingent claim seeks
a so-called perfect hedging strategy which is a self-financing strategy H whose
value is at least as great as the payoff of the American contingent claim at each
time t.

More precisely, let Y = {Y0, Y1, . . . , YT} be the payoff sequence for an American
contingent claim. For t = 0, 1, . . . , T , let Zt denote the minimum amount of
wealth that the seller must have at time t in order to cover the payoff if the
buyer exercises the claim at some stopping time τ ∈ T[t,T ]. A perfect hedging
strategy for the seller is a self-financing trading strategy H = {(αt, βt) : t =
1, 2, . . .T} with value Vt(H) at time t = 0, 1, . . . , T , such that Zt ≤ Vt(H) for
t = 0, 1, 2, . . .T . Such a H can be constructed stepwise by proceeding backwards
in the binary tree. In order to see this, note that ZT = YT . Conditioned on
FT−1, let ZuT denote the amount that the seller must cover at time T if the
value of the stock at that time is ST−1u and let ZdT denote the amount that the
seller must cover at time T if the value of the stock at time T is ST−1d. Thus, in
the same manner as for the case of the European contingent claim, conditioned
on FT−1, the minimum amount of wealth needed at time T − 1 to cover the
possible payoff of the claim at time T is

1
1 + r

Ep
∗

[ZT | FT−1] ,
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and there exist FT−1-measurable allocations to stock and bond for the time
interval (T − 1, T ], which we denote by (α̃T , β̃T ), such that

α̃TST + β̃TBT = ZT , (2.44)

α̃TST−1 + β̃TBT−1 =
1

1 + r
Ep
∗

[ZT | FT−1] . (2.45)

Now,

ZT−1 = max
{
YT−1,

1
1 + r

Ep
∗

[ZT | FT−1]
}
,

so that it is possible to cover the payoff YT−1 associated with the buyer cashing
in the claim at time T − 1 and to have sufficient wealth to produce a value at
time T that is at least as large as the time T -payoff ZT = YT . Let

δ̃T = ZT−1 −
1

1 + r
Ep
∗

[ZT | FT−1] . (2.46)

Then δ̃T is the excess wealth in ZT−1 over what is needed to cover the claim
payoff at time T . Note that there is no excess if YT−1 < ZT−1. Proceeding
backwards inductively through the tree and repeating a very similar argument
at each stage to that applied for the time interval (T − 1, T ], we see that for
t = 0, 1, . . . , T − 1, conditioned on Ft, the amount of wealth needed at time t
to cover possible payoff of the claim in [t, T ] is

Zt = max
{
Yt,

1
1 + r

Ep
∗

[Zt+1 | Ft]
}
.

Moreover, given S0, S1, . . . , St, and letting Zut+1 and Zdt+1 denote the two pos-
sible values of Zt+1 corresponding to whether St+1 = Stu or St+1 = Std, the
allocations in stock and bond, (α̃t+1, β̃t+1) over (t, t+ 1], that have value

1
1 + r

Ep
∗

[Zt+1 | Ft] ,

at time t and value Zt+1 at time t + 1 are given by

α̃t+1 =
Zut+1 − Zdt+1

(u − d)St
(2.47)

β̃t+1 =
1

(1 + r)t+1

(
uZdt+1 − dZut+1

u− d

)
. (2.48)

Let

δ̃t+1 = Zt −
1

1 + r
Ep
∗

[Zt+1 | Ft] .

Then δ̃t+1 is the excess wealth in Zt over what is needed to cover possible payoff
of the claim in [t+1, T ]. Note from the definition of Zt that δ̃t+1 = 0 if Yt < Zt.
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Assuming that Zt, t = 0, 1, . . . , T and α̃t, β̃t, δ̃t, t = 1, 2, . . . , T are defined as
above, for t = 1, 2, . . . , T , let

α∗t = α̃t (2.49)

β∗t = β̃t +
t∑
s=1

δ̃s
Bs
. (2.50)

Then H∗ = (α∗t , β∗t ), t = 1, . . . , T} is a self-financing trading strategy in stock
and bond with an initial value of

V0(H∗) = α∗1S0 + β∗1B0 = Z0

and a value at time t = 1, 2, . . . , T equal to

Vt(H∗) = α̃tSt + β̃tBt +
t∑

s=1

δ̃s
Bs
Bt.

Note that by construction, for t = 1, . . . , T ,

α̃tSt + β̃tBt = Zt

and so

Vt(H∗) = Zt +
t∑

s=1

δ̃s
Bs
Bt ≥ Zt.

Let

τ∗ = min{v ≥ 0 : Zv = Yv}. (2.51)

Note that δ̃s = 0 for 1 ≤ s ≤ τ∗ and so

Vt(H∗) = Zt for 0 ≤ t ≤ τ∗.

For t = 0, 1, . . . , T , define the discounted random variables

Y ∗t = (1 + r)−tYt, Z∗t = (1 + r)−tZt. (2.52)

Then for t = 0, 1, . . . , T − 1,

Z∗t = max
{
Y ∗t , E

p∗
[
Z∗t+1 | Ft

]}
, (2.53)

and Z∗T = Y ∗T .

Remark. As given by the formulas above, {Z∗t , t = 0, 1, . . . , T} is called the
Snell envelope of {Y ∗t , t = 0, 1, . . . , T}.

Theorem 2.5.1
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(i) {Z∗t ,Ft, t = 0, 1, . . . , T} is the smallest supermartingale (under p∗) such
that Z∗t ≥ Y ∗t for t = 0, 1, . . ., T ,

(ii) Z∗t = maxτ∈T[t,T ] E
p∗ [Y ∗τ | Ft], t = 0, 1, . . ., T ,

(iii) τ∗(t) ≡ min{v ≥ t : Z∗v = Y ∗v } achieves the maximum in the right side of
the equality in (ii) for t = 0, 1, . . ., T .

Proof. Throughout this proof, all expectations and conditional expectations
are to be computed under p∗. For (i), the supermartingale property and inequal-
ity are immediate consequences of the definition of Z∗. To show that Z∗ is the
smallest supermartingale satisfying the inequality, suppose that W = {Wt, t =
0, 1, . . . , T} is another supermartingale such that Wt ≥ Y ∗t , t = 0, 1, . . ., T .
Then WT ≥ Y ∗T = Z∗T . For a proof by backwards induction, suppose that for
some t ∈ {0, 1, . . ., T−1}, Wt+1 ≥ Z∗t+1. Then by the supermartingale property
of W ,

Wt ≥ Ep
∗

[Wt+1 | Ft] ≥ Ep
∗ [
Z∗t+1 | Ft

]
.

Since, by assumption Wt ≥ Y ∗t , Wt is greater than or equal to the maximum of
Y ∗t and Ep

∗
[Z∗t+1 | Ft+1], which equals Z∗t . This completes the induction step

and so Wt ≥ Z∗t for t = T, T − 1, . . . , 1, 0.

We prove (ii) and (iii) together, using backwards induction again. For t = T ,
both (ii) and (iii) are easy to show since T[T,T ] = T and Z∗T = Y ∗T . For the
induction step, assume that for some s ∈ {0, 1, . . ., T − 1} both (ii) and (iii)
hold for t = s+ 1, s+ 2, . . . , T . By the definition of Z∗s and (ii) for t = s + 1,
for each τ ∈ T[s+1,T ] we have

Z∗s ≥ max
{
Y ∗s , E

p∗
[
Ep
∗

[Y ∗τ | Fs+1] | Fs
]}

= max
{
Y ∗s , E

p∗ [Y ∗τ | Fs]
}
.

(2.54)

For σ ∈ T[s,T ],
Y ∗σ = 1{σ=s}Y

∗
s + 1{σ≥s+1}Y

∗
σ∨(s+1).

Since 1{σ≥s+1} ∈ Fs,

Ep
∗

[Y ∗σ | Fs] = 1{σ=s}Y
∗
s + 1{σ≥s+1}E

p∗
[
Y ∗σ∨(s+1) | Fs

]
≤ max

{
Y ∗s , E

p∗
[
Y ∗σ∨(s+1) | Fs

]}
. (2.55)

Since σ ∨ (s+ 1) ∈ T[s+1,T ], it follows from (2.54) and (2.55) that

Ep
∗

[Y ∗σ | Fs] ≤ Z∗s ,

which proves that

Z∗s ≥ max
τ∈T[s,T ]

Ep
∗
[Y ∗τ | Fs]. (2.56)
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The proof of (ii) and (iii) for t = s will be complete once we verify that the
maximum in the right member of (2.56) is achieved at τ = τ∗(s) and the value
of this maximum is Z∗s . By the definition of Z∗s and (iii) for t = s+ 1,

Z∗s = max
{
Y ∗s , E

p∗
[
Ep
∗
[
Y ∗τ∗(s+1) | Fs+1

]
| Fs

]}
= max

{
Y ∗s , E

p∗
[
Y ∗τ∗(s+1) | Fs

]}
. (2.57)

On {τ∗(s) = s}, Y ∗s = Z∗s , and on {τ∗(s) ≥ s+ 1}, Y ∗s < Z∗s . Thus,

Z∗s = 1{τ∗(s)=s}Y ∗s + 1{τ∗(s)≥s+1}E
p∗
[
Y ∗τ∗(s+1) | Fs

]
.

Moreover, on {τ∗(s) ≥ s+ 1}, τ∗(s) = τ∗(s+ 1) and so the above yields

Z∗s = Ep
∗
[
Y ∗τ∗(s) | Fs

]
,

which completes the proof of (ii) and (iii) for t = s. �

Recall the definition of τ∗ from (2.51) and note that

τ∗ = τ∗(0).

We now argue that Z0 is the unique arbitrage free initial price for the American
contingent claim. For this, we need the notion of an arbitrage in a market where
the stock and bond can be traded, and the American contingent claim (ACC)
can be bought or sold at time zero. For such a market, let the initial price of
the ACC be a constant C0. There are two types of arbitrage opportunities, one
for a seller and another for a buyer of the ACC. The seller of the ACC has an
arbitrage opportunity if there is a self-financing trading strategy Hs in stock and
bond such that V0(Hs) = C0 and for all stopping times τ ∈ T[0,T ],

Vτ (Hs)− Yτ ≥ 0 and E [Vτ (Hs)− Yτ ] > 0. (2.58)

The buyer of the ACC has an arbitrage opportunity if there is a self-financing
trading strategy Hb such that V0(Hb) = −C0 and there exists a stopping time
τ ∈ T[0,T ] such that

Vτ(Hb) + Yτ ≥ 0 and E
[
Vτ (Hb) + Yτ

]
> 0. (2.59)

The price C0 is arbitrage free if there is no arbitrage opportunity for a seller or
buyer of the contingent claim at this price.

To take advantage of a seller’s arbitrage opportunity, an investor could sell one
ACC at time zero for C0 and invest the proceeds C0 according to the trading
strategy Hs until the claim is cashed in by the buyer at some stopping time τ .
At time τ , the seller would give the buyer Yτ to payoff the claim and could put
the remainder of his wealth Vτ (Hs)−Yτ in bond for the time period (τ, T ]. This
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would result in a final value of (Vτ (Hs)− Yτ )(1 + r)T−τ which is non-negative
and is strictly positive with positive probability.

To take advantage of a buyer’s arbitrage opportunity, an investor could buy one
ACC at time zero for C0, and invest −C0 according to Hb until the time τ when
the buyer cashes in the claim. The buyer would then have Vτ (Hb) + Yτ at time
τ and could put this in bond for the time period (τ, T ] so that the buyer’s final
wealth would be (Vτ (Hb) + Yτ )(1 + r)T−τ which is non-negative and is strictly
positive with positive probability.

The following lemma will used in showing that an initial price of Z0 for the
ACC is arbitrage free.

Lemma 2.5.2 Let H be a self-financing trading strategy in stock and bond with
value process {Vt(H), t = 0, 1, . . ., T} and discounted value process {V ∗t (H) =
Vt(H)/(1 + r)t, t = 0, 1, . . ., T}. Then {V ∗t (H),Ft, t = 0, 1, . . . , T} is a martin-
gale under p∗. In particular, for any τ ∈ T[0,T ],

Ep
∗

[V ∗τ (H)] = V ∗0 (H). (2.60)

Proof. Let H = {(αt, βt), t = 0, 1, . . ., T}. Note that V ∗t (H) = αtS
∗
t + βt

and αt, βt ∈ Ft−1 for t = 1, . . . , T . Also recall that {S∗t ,Ft, t = 0, 1, . . . , T} is a
martingale under p∗. Therefore, for t = 1, . . . , T ,

Ep
∗

[V ∗t (H) | Ft−1] = αtE
p∗ [S∗t | Ft−1] + βt (2.61)

= αtS
∗
t−1 + βt. (2.62)

By factoring out 1/(1 + r)t−1 and using the self-financing property of H, it
follows that for t = 1, . . . , T

Ep
∗

[V ∗t (H) | Ft−1] =
1

(1 + r)t−1
(αtSt−1 + βtBt−1) (2.63)

=
1

(1 + r)t−1
(αt−1St−1 + βt−1Bt−1) (2.64)

= V ∗t−1(H). (2.65)

Thus, {V ∗t (H),Ft, t = 0, 1, . . . , T} is a martingale under p∗. Equation (2.60)
follows from Doob’s stopping theorem since τ is a bounded stopping time. �

Theorem 2.5.3 The unique arbitrage free price at time zero for the American
contingent claim is Z0.

Proof. We first show that the arbitrage free price cannot be anything other
than Z0, i.e., we establish uniqueness of an arbitrage free initial price.

Suppose that C0 > Z0. Then there is an arbitrage opportunity for the seller
of the American contingent claim. To see this, let Hs denote the self-financing
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trading strategy in stock and bond corresponding to investing Z0 according to
the perfect hedging strategy H∗ and C0 − Z0 in bonds for all time. Note that
the initial value V0(Hs) = C0 and the value Vt(H∗) of H∗ at time t is at least
Zt for t = 0, 1, . . . , T . Then for any stopping time τ ∈ T[0,T ],

Vτ (Hs)− Yτ = Vτ (H∗) + (C0 − Z0)Bτ − Yτ (2.66)
≥ Zτ + (C0 − Z0)Bτ − Yτ (2.67)
≥ (C0 − Z0)Bτ , (2.68)

where (C0 − Z0)Bτ > 0. Thus, there is an arbitrage opportunity for a seller of
the American contingent claim.

On the other hand, suppose that C0 < Z0. Then there is an arbitrage op-
portunity for the buyer of the American contingent claim. To see this, let
Hb denote the self-financing trading strategy corresponding to investing −Z0

according to the negative −H∗ of the perfect hedging strategy H∗ and invest-
ing Z0 − C0 in bonds for all time. Furthermore, consider the stopping time
τ∗ (viewed as the time at which the ACC should be cashed in). Note that
Vt(−H∗) = −Vt(H∗) for t = 0, 1, . . . , T , and V0(Hb) = −C0. Then, using the
fact that Vτ∗ (H∗) = Zτ∗ = Yτ∗ , we have

Vτ∗(Hb) + Yτ∗ = −Vτ∗ (H∗) + (Z0 − C0)Bτ∗ + Yτ∗ = (Z0 − C0)Bτ∗ .

Since (Z0 − C0)Bτ∗ > 0, there is an arbitrage opportunity for a buyer of the
American contingent claim.

Finally, suppose that C0 = Z0. We need to show that C0 = Z0 is arbitrage free,
i.e., that there exists an arbitrage free initial price. We begin by showing that
there is no arbitrage opportunity for a seller of an American contingent claim
with C0 = Z0. For a proof by contradiction, suppose that there exists a self-
financing trading strategy Hs such that V0(Hs) = Z0 and for each τ ∈ T[0,T ],
(2.58) holds. Note that τ∗ ∈ T[0,T ]. Then it follows from (2.58) with τ = τ∗ and
the equivalence of the probability measures under p and p∗, that

Ep
∗

[V ∗τ∗ (H
s) − Y ∗τ∗ ] > 0. (2.69)

On the other hand, by (2.60), Ep
∗

[V ∗τ∗(Hs)] = V ∗0 (Hs) = Z∗0 , and by (ii) and
(iii) in Theorem 2.5.1, Ep

∗
[Y ∗τ∗ ] = Z∗0 . Combining these two properties, we

obtain Ep
∗

[V ∗τ∗ (Hs) − Y ∗τ∗ ] = 0, which contradicts (2.69). Therefore, no such
Hs exists and consequently there is no arbitrage opportunity for a seller of the
American contingent claim.

Next we show that there is no arbitrage opportunity for a buyer of the Amer-
ican contingent claim with C0 = Z0. For this, suppose that there exists a
self-financing trading strategy Hb such that V0(Hb) = −Z0 and a stopping
time τ ∈ T[0,T ] such that (2.59) holds. For a contradiction, we will show that
E [Vτ (H) + Yτ ] ≤ 0, or equivalently that Ep

∗
[Vτ (H) + Yτ ] ≤ 0, which in turn is

equivalent to showing that Ep
∗

[V ∗τ (H) + Y ∗τ ] ≤ 0 (since we have assumed that
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Vτ (Hb) − Yτ ≥ 0). By (2.60), Ep
∗ [
V ∗τ (Hb)

]
= V ∗0 (Hb) = −Z∗0 . Moreover, by

(ii) in Theorem 2.5.1, Ep
∗

[Y ∗τ ] ≤ Z∗0 . Therefore, Ep
∗ [
V ∗τ (Hb) + Y ∗τ

]
≤ 0, and

so no such pair Hb, τ exists. Consequently there is no arbitrage opportunity for
a buyer of the American contingent claim. �


