Homework #8 Due March 13 Math 194

1. Let $\Omega = {\omega_1, \omega_2}$ with a subjective probability $P : P(\omega_i) > 0, i = 1, 2$.

Consider a single period model with one riskless and one risky asset. Suppose the riskless asset $S^0 = \{S_0^0, S_1^0\}$ satisfies $S_t^0 = (1+r)^t$, t = 0, 1 for $r = \frac{1}{9}$, and suppose the risky asset $S^1 = \{S_0^1, S_1^1\}$ is such that $S_0^1 = 5$, $S_1^1(\omega_1) = \frac{20}{3}$, $S_1^1(\omega_2) = \frac{40}{9}$. The discounted value of S_1^1 is given by $S_1^{*,1} = S_1^1/S_1^0$ and $\Delta S_1^{*,1} = S_1^{*,1} - S_0^1$.

Consider the optimal portfolio selection problem

$$(OP) \begin{cases} \text{maximize } \{E^P[u(V_1)]: \ H \in \mathcal{H}\} \\ \text{subject to } V_0 = \nu \end{cases}$$

where $\mathcal H$ is the set of self-financing trading strategies $H=(H^0,H^1)$ and

$$V_1 = V_1(H) = H^0 S_1^0 + H^1 S_1^1 = (V_0(H) + H^1 \Delta S_1^{*,1}) S_1^0$$

is the value of H at time one and $V_0 = V_0(H)$ is the initial value of H. Here, the initial wealth ν is assumed to satisfy $\nu \ge 0$.

For each of the following utility functions, use the risk neutral computational approach to find the solution of (OP).

- (a) $u(x) = \ln x$
- (b) $u(x) = -\exp(-x)$
- (c) $u(x) = \gamma^{-1}x^{\gamma}$ where $-\infty < \gamma < 1, \gamma \neq 0$.