HOMEWORK 7

Due March 6, 2001

1. Let T = 2, $\Omega = \{\omega_1, \ldots, \omega_4\}$, $P(\{\omega_i\}) > 0$ for $i = 1, \ldots, 4$, $\mathcal{F}_0 = \{\emptyset, \Omega\}$, $\mathcal{F}_1 = \{\{\omega_1, \omega_2\}, \{\omega_3, \omega_4\}, \emptyset, \Omega\}$, and \mathcal{F}_2 be the collection of all subsets of Ω . Consider a riskless asset with price process $S^0 = \{S_t^0, t = 0, 1, 2\}$ where $S_t^0 = 1$ for all t, and a risky asset with price process $S^1 = \{S_t^1, t = 0, 1, 2\}$ such that

- (1) $S_0^1(\omega_1) = 5, \quad S_1^1(\omega_1) = 8, \quad S_2^1(\omega_1) = 9$
- (2) $S_0^1(\omega_2) = 5, \quad S_1^1(\omega_2) = 8, \quad S_2^1(\omega_2) = 6$
- (3) $S_0^1(\omega_3) = 5, \quad S_1^1(\omega_3) = 4, \quad S_2^1(\omega_3) = 6$
- (4) $S_0^1(\omega_4) = 5, \quad S_1^1(\omega_4) = 4, \quad S_2^1(\omega_4) = 3.$

Then

(5)
$$X = \max(0, S_0^1 - 7, S_1^1 - 7, S_2^1 - 7),$$

is the value at time T of a so-called *look-back* option, where this value depends on the prices of the underlying asset S^1 in the past as well as at time T.

- (a) Draw a tree to indicate the possible "paths" followed by the risky asset price process S^1 .
- (b) Find an equivalent martingale measure for the model.
- (c) Find a replicating strategy for the option whose value at time T is given by X.
- (d) What is the arbitrage free price for the option at time zero?

2. Let T = 1, $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$, $r = \frac{1}{9}$. There are two risky assets with processes S^1 and S^2 :

		S_1^i			
i	S_0^i	ω_1	ω_2	ω_3	ω_4
1	5	20/3	20/3	40/9	20/9
2	10	40/3	80/9	80/9	120/9

- (a) Characterize the set of all replicable European contingent claims X.
- (b) Compute $V_+(X)$ and $V_-(X)$ for X = (40, 30, 20, 10), i.e., $X(\omega_1) = 40$, $X(\omega_2) = 30$, $X(\omega_3) = 20$, $X(\omega_4) = 10$.