Winter 2001 Math 194

Homework #6

Exercise 1:

Take $T = 1, r = \frac{1}{9}$. $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}.$

There are two risky assets with price processes S^1, S^2 :

		S_1^i			
i	S_0^i	ω_1	ω_2	ω_3	ω_4
1	5	20/3	20/3	40/9	20/9
2	10	40/3	80/9	80/9	40/3

(i) Specify the space

 $L = \{G_T^*(H) : H \text{ is a self-financing trading strategy with } V_0(H) = 0\}$

for this example.

- (ii) Are there any abitrage opportunities for this example? If so, find all of them.
- (iii) Are there any risk neutral probabilities for this example? If so, find all of them.

Exercise 2:

Take T = 2, $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5\}$, r = 0. There is one risky asset with price process $S^1 = \{S_0^1, S_1^1, S_2^1\}$.

$S_0^1(\omega_1) = 6$	$S_1^1(\omega_1) = 5$	$S_2^1(\omega_1) = 3$
$S_0^1(\omega_2) = 6$	$S_1^1(\omega_2) = 5$	$S_2^1(\omega_2) = 4$
$S_0^1(\omega_3) = 6$	$S_1^1(\omega_3) = 5$	$S_2^1(\omega_3) = 8$
$S_0^1(\omega_4) = 6$	$S_1^1(\omega_4) = 7$	$S_2^1(\omega_4) = 6$
$S_0^1(\omega_5) = 6$	$S_1^1(\omega_5) = 7$	$S_2^1(\omega_5) = 8$

(i) Draw a tree to represent the possible paths following by S^1 .

(ii) Find the set of all risk neutral probabilities.

Exercise 3 (p. 16, Ex. 1.10 of Pliska's book)

Consider T = 1, $\Omega = \{\omega_1, \ldots, \omega_n\}$. Let A denote the $(n+1) \times (n+2d)$ matrix

$$\begin{bmatrix} 0 & \dots & 0 & 1 & 1 & \dots & 1 \\ \Delta S_1^{*,1}(\omega_1) & -\Delta S_1^{*,1}(\omega_1) & \dots & -\Delta S_1^{*,d}(\omega_1) & -1 & 0 & \dots & 0 \\ \Delta S_1^{*,1}(\omega_2) & -\Delta S_1^{*,1}(\omega_2) & \dots & -\Delta S_1^{*,d}(\omega_2) & 0 & -1 & \dots & 0 \\ \vdots & & & \vdots & & \\ \Delta S_1^{*,1}(\omega_n) & -\Delta S_1^{*,1}(\omega_n) & \dots & -\Delta S_1^{*,d}(\omega_n) & 0 & 0 & \dots & -1 \end{bmatrix}$$

Let b denote the (n + 1)-vector (1, 0, ..., 0)'. Show that

$$Ax = b, \quad x \ge 0, \quad x \in \mathbb{R}^{n+2d}$$

has a solution if and only if there exists an arbitrage opportunity.